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Abstract

Functional ultrasound (fUS) is a rapidly emerging modality that enables whole-brain imaging of 

neural activity in awake and mobile rodents. To achieve sufficient blood flow sensitivity in the 

brain microvasculature, fUS relies on long ultrasound data acquisitionsat high frame rates, posing 

high demands on the sampling and processing hardware. Here we develop an image reconstruction 

method based on deep learning that significantly reduces the amount of data necessary while 

retaining imaging performance. We trained convolutionalneural networks to learn the power 

Doppler reconstruction function from sparse sequences of ultrasound data with compression 

factors of up to 95%. High-quality images from in vivo acquisitions in rats were used for training 

and performance evaluation. We demonstrate that time series of power Doppler images can be 

reconstructed with sufficient accuracy to detect the small changes in cerebral blood volume 

(~10%) characteristic of task-evoked cortical activation, even though the network was not formally 

trained to reconstruct such image series. The proposed platform may facilitate the development of 

this neuroimaging modality in any setting where dedicated hardware is not available or in clinical 

scanners.

Index Terms—

Functional ultrasound imaging; deep learning; convolutional neural networks; neuroimaging; 
Doppler ultrasound

I. Introduction

Functional ultrasound (fUS) is an innovative imaging modality that creates brain-wide 

neural activity maps at micrometer and millisecond-scale resolution by tracking temporal 
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cerebral blood volume (CBV) changes in the brain microvasculature [1]. Similar to 

blood oxygen level dependent functional magnetic resonance imaging (BOLD fMRI), 

the detected CBV signals provide an indirect measurement of local spiking activity via 

neurovascular coupling [2]. However, fUS yields higher spatiotemporal resolution than 

fMRI and uses more affordable and portable equipment, opening the possibility for 

functional neuroimaging performed directly at the bedside [3]–[6]. In addition, fUS is 

more sensitive than fMRI to optogenetically driven stimuli and provides larger effect size, 

potentially facilitating scientific investigations in animal models [7].

Preclinically, fUS enables imaging of neural activity in awake and freely behaving rodents 

and reduces the confounding factors introduced by anesthesia/sedation or physical restraint 

[8], [9]. Furthermore, fUS has proven useful for imaging resting state and task-evoked 

functional connectivity in the rat and mouse brain [2], [10], [11] and for mapping neural 

activation in primates during cognitive tasks and visual stimulation [12]–[14]. In humans, 

fUS has been used intraoperatively for image-monitored brain tumor removal surgeries 

[4], [5], and in neonates to visualize epileptic activity and measure functional connectivity 

through the anterior fontanel window [3], [6].

To detect hemodynamic changes in the brain microvascular network, fUS relies on highly 

sensitive power Doppler sequences based on the use of plane wave emissions. Unfocused 

ultrasound waves insonify the entire field of view, and the received radiofrequency (RF) 

data from tilted plane waves are re-focused (or beamformed) and coherently compounded to 

increase resolution and depth of penetration. This strategy makes it possible to continuously 

acquire long sequences of ultrasound data at high frame rates. The obtained compound 

Doppler signals are then processed to filter out the strong, undesired clutter originating from 

the tissue, and are squared and time-integrated to create power Doppler images with pixel 

amplitude proportional to the CBV (Fig. 1a).

The length of the acquisition sequence is critical to effectively discriminate the weak 

signals scattered by red blood cells circulating in the blood stream from the strong clutter 

originating in the surrounding tissue. When long observation windows are used, efficient 

clutter filtration can be achieved in both large and small vessels by using temporal and 

singular-value decomposition (SVD) filters [9], [15], [16]. Conversely, clutter filtration 

becomes challenging with shorter acquisitions, in particular in the smaller vessels where the 

blood-signal-to-clutter ratio is reduced and the low-frequency Doppler spectral components 

overlap with the tissue spectrum. As a result, fUS imaging implementations use hundreds of 

compound frames (typically 200 to 400) to create a single power Doppler image.

The need to acquire and process large ultrasound datasets poses high demands on the 

hardware platform in terms of storage capacity and computational power, with data 

throughputs on the order of 250 MSa/image (see detailed calculations in the Appendix). 

These requirements make real-time fUS imaging challenging even in graphics processing 

unit (GPU) implementations, and these considerations are yet more relevant for volumetric 

fUS sequences [17]–[19]. Therefore, it is highly desirable to achieve state-of-the-art (SoA) 

fUS imaging performance with shorter ultrasound acquisitions, as this may effectively 

improve access to this imaging modality and expedite its clinical translation.
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Here we propose a deep learning platform to reconstruct power Doppler images from 

temporally and spatially sparse compound datasets. We implemented convolutional neural 

networks (CNNs) based on an encoder-decoder architecture (U-Net) [20]. Variants of 

this model have been used for biomedical image reconstruction in applications spanning 

compressed sensing MRI [21], sparse-projection photoacoustic imaging [22], and sparse 

X-ray computed tomography [23]. We modified the U-Net by (i) adding an input layer of 

3-D convolutional filters that extract spatiotemporal features from the 3-D input data; (ii) 
using residual blocks that implement shortcut connections between the input and output 

features in each layer; and (iii) using a custom loss function.

Prior CNN applications in medical ultrasound imaging include contrast improvement [24] 

and image de-speckling [25], ultrasound contrast agent localization and tracking [26], [27], 

and under-sampled and adaptive beamforming [28]–[31]. To our knowledge, our platform 

is the first attempt to learn a reconstruction mapping between the sparse sequence of 

compound ultrasound data and the power Doppler output image, without requiring any 

prior model-based information (Fig. 1b, c). We trained the networks on high-quality power 

Doppler images from in vivo acquisitions in rats and using a custom loss function.

II. Methods

A. Deep-fUS Networks

We modified a U-Net and trained it to perform the power Doppler reconstruction task. 

This fully convolutional neural network is based on an encoder/decoder architecture. The 

encoder progressively down-samples the input data and learns high-level features that are 

propagated to the next stages. The decoder uses up-sampling operators to increase the 

resolution of the encoder features and to consecutively restore the input resolution at the 

output stage. Skip connections between the encoding and decoding paths allow retention of 

context information, which is propagated to the symmetric up-sampling layers.

Software for all the Deep-fUS networks, trained models, and test data sets are available at 

https://github.com/todiian/deep-fus.

1) 3D-Res-UNet: In the 3D-Res-UNet model, we modified the U-Net by adding an input 

layer of 4 3-D convolutional filters followed by rectified linear unit (ReLU) activations. This 

layer extracts spatiotemporal features from the 3-D input structure. In addition, we replaced 

convolutional layers with residual blocks composed of two cascaded Conv/ReLU/Dropout 

layers and included shortcut connections between the input and output features. Residual 

blocks were arranged in a 5-layer encoder followed by a 4-layer decoder and implement 3 × 

3 convolutions followed by ReLU activations and a dropout layer to improve regularization. 

We used 1 × 1 convolutions at the input of each layer to equalize the number of input and 

output features of each residual block. In the encoder path, down-sampling is performed by 

a 2 × 2 max pooling operator that halves the resolution in both the image dimensions. In 

the decoder, 2 × 2 transposed convolutions with ReLU activations are used as up-sampling 

operators. The number of channels is progressively increased in the encoder (32, 64, 128, 

256, and 512 filters) and then decreased in the decoder (256, 128, 64, and 32 filters). 

The output layer is a single-channel 1 × 1 convolution block. The stride is equal to 1 in 
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all the convolutional layers and 2 in the max pooling and transposed convolution blocks. 

This network has a total of 9,788,421 trainable parameters (Table II). The size of the filter 

kernels at the input stage and the dropout rate were considered as hyperparameters and were 

optimized via Bayesian optimization. All the convolutional kernels were initialized using the 

He initialization [32].

2) 3D-UNet, UNet, and PP-UNet: In addition to the 3D-Res-UNet, we trained and 

optimized three networks. The 3D-UNet uses simple convolutional blocks in place of 

residual blocks. Specifically, each layer is composed of 2 consecutive 3 × 3 convolution 

blocks, each followed by ReLU activations and dropout for network regularization. The 

output layer is a single-channel 1 × 1 convolution block. The stride is equal to 1 in all 

the convolutional layers and 2 in the max pooling and transposed convolution blocks. 

The size of the filter kernels in the first layer and the dropout rate were considered as 

hyperparameters and were optimized using Bayesian optimization.

The UNet is analogous to the 3D-UNet except for the absence of the 3-D convolutional 

filters at the input. These two networks were independently trained and optimized 

to separately analyze the effects on the reconstruction performance of the input 3-D 

convolutional filters and of the residual shortcut connections. In addition, we trained and 

optimized a network with the same characteristics as the above U-Net to perform the 

post-processing of power Doppler images that were generated by conventional processing of 

sparse compound sequences. We refer to this network as postprocessing (PP)-UNet.

All the convolutional kernels were initialized using the He initialization [32].

B. Datasets

We trained the networks to learn a function y = f (x) that maps the input sequence x of 

compound frames of Nx × Ny pixels to the output power Doppler image y of dimensions 

Nx × Ny (Fig. 1b). In all our experiments, we used images of 96 × 96 pixels, and we 

standardized the input compound datasets. We chose to base the processing on beamformed 

data instead of sensor RF data to minimize data throughput and storage (see Appendix). SoA 

images were obtained from in vivo acquisitions of coronal and sagittal slices of the rat brain 

reconstructed by state-of-the-art power Doppler processing using 250 complex compound 

frames. To improve the network regularization, we performed random cropping when more 

than 96 pixels were available in any image dimension, and a random horizontal flipping was 

applied with a probability of 50%.

The training, validation, and test sets were created by selecting pairs of compound data 

and power Doppler images from a total of 58 in vivo acquisitions of coronal brain slices 

recorded in n = 15 rats between 2.7 mm anterior and 7.0 mm posterior to bregma [33]. In 

addition to the variability given by the different subjects and anteroposterior position, each 

pair captured distinct hemodynamic states and levels of anesthesia. We used 740 pairs from 

50 data acquisitions for training, 40 pairs from 4 acquisitions for validation, and 40 pairs 

from 4 acquisitions for testing. Furthermore, in n = 1 rat we recorded data in sagittal view to 

demonstrate the generalization capabilities of the method.
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We performed under-sampling of the compound sequences in the temporal domain by 

selecting the first k frames in each sequence (Fig. 1b). We retained only the real part of 

the beamformed data. For the experiments in Fig. 6, we also under-sampled the compound 

frames in the image domain by selecting sub-samples of pixels with a ratio m = NRet/NT ot, 

with NRet the number of retained pixels and NT ot = 962 the number of total image pixels.

We calculated the final compression factor as

CF = 1 − k
250

1
2m * 100%, (1)

where the factor of 1/2 accounts for the missing imaginary part.

C. Training and Hyperparameter Optimization

At each iteration, the networks predict a new estimate yi, and the parameters are learned 

using the Adam optimizer with default settings β1 = 0.9, β2 = 0.999, and ε = 10−7 [34], [35] 

to minimize the loss function

L(y, y) = λLSSIM(y, y) + (1 − λ)LMAE(y, y) (2)

with

LMAE(y, y) = 1
n ∑

i = 1

n yi − yi 1
N (3)

LSSIM(y, y) = 1
n ∑

i = 1

n
1 − SSIM yi, yi . (4)

In the above equations, y denotes the SoA training images, ∥ · ∥1 the l1 norm, N the number 

of image pixels, and n the number of examples. The structural dissimilarity index metric 

loss LSSIM is a perceptual loss based on the structural similarity index metric (SSIM), which 

integrates luminance, contrast, and structural information [36]. A kernel of 3 × 3 pixels 

was used for the SSIM calculation. We considered the learning rate and the parameter λ as 

hyperparameters, and their optimal value was determined via Bayesian optimization.

We based our quantitative performance analysis on the SSIM of the reconstructed 

images versus the respective SoA images, the normalized mean squared error 

NMSE = yi − yi 2/ yi 2, with ∥ · ∥2 the l2 norm, and on the peak signal-to-noise ratio 

(PSNR). We implemented the networks in Python using TensorFlow 2.1 with Keras API. 

The networks were trained on a single NVIDIA Titan RTX GPU with 24 GB of RAM 

mounted on a Dell Precision Tower workstation (20-core Intel Xeon 3.3 GHz; 32 GB of 

RAM). The mini-batch size was set to 1 in all the experiments.

For each network, we first optimized the hyperparameters using the Bayesian optimization 

routine in the Keras Tuner library. We ran 15 optimization trials using the sparse dataset 
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with CF 75%. The optimization routine was instructed to maximize the validation SSIM. 

Each trial trained the reconstruction CNNs for 2500 epochs and selected the model with the 

best performance. The results of the optimal hyperparameter search for all the networks are 

reported in Table I. Then, we trained the CNNs with the respective optimal hyperparameters 

using CFs of 80%, 85%, 90%, and 95%. We trained the 3D-Res-UNet and 3D-UNet 

networks for 1500 epochs (we noted that these CNNs converged more quickly during 

optimization), the U-Net for 2500 epochs, and the PP-UNet for 500 epochs. In all trainings, 

we saved the model with the best validation SSIM.

D. Ultrasound System and Data Acquisition

For ultrasound data acquisition, we used two 128-element linear array transducers (L22–

14vX and L22–14vLF; Verasonics Inc.) operating at a 15-MHz center frequency with a 

Vantage 256 research scanner (Verasonics Inc.). The probes are geometrically identical 

apart from the focus in the elevation plane; the L22–14vX is focused at a distance of 8 

mm, and the L22–14vLF is focused at 20 mm. For exact positioning relative to the skull 

landmarks, the imaging probe was housed in a custom 3-D printed holder mounted on a 

motorized positioning system. Ultrasound gel was used for acoustic coupling. We used tilted 

plane waves at angle (−6°, −3°, 0°, 3°, 6) emitted with a pulse repetition frequency of 

19 kHz. Two consecutively emitted plane waves were averaged for each angle to increase 

the signal-to-noise ratio, giving a total of 10 emissions per compound frame. We acquired 

data for 250 compound frames at a rate of 1 kHz (i.e., acquiring a new sequence of 

compound frames takes 250 ms), and the data for each compound sequence (250 · 10 

emissions) were transferred in batch to the host computer. Compound frames were created 

by beamforming the received sensor RF data in a regular grid of pixels of 100 μm × 100 

μm in an NVIDIA Titan RTX GPU using a GPU beamformer [37]. Ultrasound data were 

acquired asynchronously and continuously, i.e., a new sequence of frames was acquired 

during processing of the previous sequence and held in the scanner buffer until the host 

computer was available. The compound frames were saved on the host machine for offline 

processing. The final power Doppler frame rate was 0.6 frames/s.

E. Conventional Power Doppler Processing

Sequences of compound ultrasound frames were processed in MATLAB (MathWorks, 

Inc.) for clutter filtration and power Doppler computation. We used a 5th-order temporal 

high-pass Butterworth filter with a cutoff frequency of 40 Hz cascaded with an SVD 

filter that eliminates the first singular value [9]. In the Doppler space, frequencies are 

linearly proportional to the velocity of the scatterers from which the Doppler signal 

originated. Therefore, it is expected that signals emanating from the slowly moving tissue 

surrounding the blood vessels (clutter) are positioned at around 0 Hz, and this assumption 

justifies the use of a temporal high-pass filter. Singular value decomposition filters aim to 

eliminate highly coherent signal components and assume that, while blood signals are highly 

incoherent due to the time-varying stochastic distribution of the moving scatterers (red blood 

cells), tissue signal maintains a high degree of correlation over time. At each pixel location 

(x, y), the intensity of the filtered signal was then calculated to find the power Doppler value 

I(x, y) = ∫ s2(x, y, t)dt (Fig. 1a). For the SoA processing (250 complex compound frames), the 

entire time window of 250 ms was integrated.
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F. Animal Preparation and Imaging Experiments

The experimental protocol for the animal study was approved by the Institutional Animal 

Care and Use Committee at Stanford University. The university’s animal care and use 

program and facilities are AAALAC International accredited, PHS-assured, and USDA 

licensed. Long Evans and Sprague Dawley rats (Charles River; n = 16; age 10–14 weeks; 

weight 260–400 g) were used in this study. We prepared the animals by performing a 

bilateral surgical craniotomy and chronic prosthesis implant using previously published 

protocols [8]. Briefly, animals were anesthetized with 3.5% isoflurane in oxygen and 

anesthesia was maintained with 1.5% isoflurane. Rats were placed in a stereotaxic frame 

during surgery for head fixation and orientation. Body temperature was monitored by 

a rectal probe and maintained at 36.5 °C using a warming pad (RightTemp Jr.; Kent 

Scientific). A pulse oximeter was used to monitor heart rate and arterial oxygen saturation 

(MouseStat Jr.; Kent Scientific). We administered an anti-inflammatory agent to prevent 

brain swelling and inflammation (1 mg/kg dexamethasone intraperitoneally). After a skin 

incision was performed, parietal and frontal skull bone fragments (AP +4 to −9 mm; ML ±6 

mm) were cut using a handheld high-speed drill with a 0.7 mm drill bit (Fine Science Tools). 

We gently removed the bone flaps, paying special attention to avoid any damage to the dura 

mater. We used dental cement (Tetric EvoFlow; Ivoclar Vivadent) to seal a 125 μm thick 

polymethylpentene prosthesis covering the entire craniotomy. The bone was pre-treated with 

a bonding agent (iBOND Total Etch; Kulzer). The space between the dura mater and the 

polymer prosthesis was filled with 0.9% sterile saline. Animals were then allowed to recover 

for 1 week before the first imaging session.

During the imaging sessions, animals were either anesthetized and kept under anesthesia 

with 1.5% isoflurane while placed in a stereotaxic frame or were lightly sedated with 0.5% 

isoflurane and kept in a restraining apparatus [38]. The restrained imaging protocol was also 

used in the lightly sedated fUS experiment of Fig. 7.

G. Visual Stimulation Protocol and Functional Activity Maps

To evaluate whether the Deep-fUS approach provides sufficient accuracy in the 

reconstruction of time series of power Doppler images in a functional neuroimaging 

application, we imaged visual task-evoked brain activation in rats exposed to binocular 

green light stimulation. Rats were anesthetized, placed in a stereotaxic frame, and kept 

in a dark chamber for at least 30 min prior to the visual stimulation session for dark 

adaptation. Six bilateral visual stimuli were delivered using two green light LEDs driven 

by a custom circuit. We controlled the stimulus pattern through a microcontroller board 

(Arduino Uno) connected to MATLAB via the serial port and interfaced with the Verasonics 

scanner for synchronization with the imaging sequence. For each light stimulus, the LEDs 

were flashed for 30 s at a frequency of 3 Hz. Each stimulus was followed by a >30 s pause 

in a pseudo-random fashion. We did not average the resulting CBV traces over multiple 

trials. This stimulation protocol was shown to maximize visual cortex response in prior fUS 

imaging studies [39].

The temporal CBV signals were filtered using a 6th-order median filter and a 2nd-order 

Butterworth highpass filter with cutoff frequency 0.006 Hz to remove the DC offset. 

Ianni and Airan Page 7

IEEE Trans Med Imaging. Author manuscript; available in PMC 2022 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Functional activation maps were then created by calculating the Pearson’s correlation 

coefficient r between the temporal power Doppler signal and the stimulus pattern [1], [9]. 

We used a Fisher’s transformation to calculate the z scores as

z = 1
2 N − 3 ln1 + r

1 − r (5)

with N = 250 the number of temporal samples for a total time of 416 s. Each pixel was 

considered significant for z > 4.74, corresponding to P < 0.01 in a one-tailed t-test after 

Bonferroni correction. We used this threshold to create binary activation maps that only 

show the significant pixels.

III. Results

The received sensor RF data from 10 plane wave emissions were beamformed in a regular 

grid of 96 × 96 pixels with a spatial resolution of 100 μm × 100 μm to create compound 

frames. Sequences of compound frames were then processed to compute the power Doppler 

images. The conventional processing achieves a satisfactory level of detail in coronal brain 

images reconstructed from 250 complex compound frames (Fig. 2b). The resulting SoA 

images were used for the CNN training and as a reference for evaluating the reconstruction 

performance. To test the power Doppler reconstruction with under-sampled data, we 

retrospectively created sparse data sequences by selecting subsamples of k compound frames 

from each sequence, with CF of 75% (k = 125), 80% (k = 100), 85% (k = 75), 90% (k = 50) 

and 95% (k = 25). Power Doppler images reconstructed by the conventional processing with 

under-sampled data appear increasingly noisy due to the reduced blood flow sensitivity (Fig. 

2c).

A. Deep-fUS Power Doppler Reconstruction

The Deep-fUS networks blindly solve a reconstruction problem to directly extract the power 

Doppler values from a sequence of compound frames. The networks take in input a sparse 

compound sequence and output the corresponding power Doppler image (Fig. 1b). The 

results of the Bayesian hyperparameter optimization are reported in Table I.

The Deep-fUS reconstruction restored the reference imaging performance and was able 

to create maps of the rat brain microvasculature from sparse data with CF of up to 95% 

(Fig. 2–4). Our CNNs produced a considerable improvement in the under-sampled power 

Doppler reconstruction when compared to the conventional processing, as confirmed by 

the quantitative metrics in Table II. While all the trained CNNs performed significantly 

better than the conventional processing with sparse data, the 3D-Res-UNet achieved overall 

superior reconstruction performance, with maximum SSIM of 0.92, PSNR of 30.29 dB, 

and minimum NMSE of 0.04. Introducing the 3-D convolutional input layer resulted in a 

maximum SSIM improvement of 0.07 (CF 75%), PSNR improvement of 2.16 dB (CF 80%), 

and NMSE reduction of 0.08 (CF 95%). The residual connections were responsible for a 

further maximum SSIM increase of 0.01, PSNR increase of 0.75 dB, and NMSE reduction 

of 0.02, all in the CF 75% case. As further discussed in Sec. III–B, the 3D-Res-UNet also 
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provided overall better performance in the computation of functional activation maps, for 

which we report the mean absolute error (MAE) in Table II.

Fig. 2 displays a representative coronal slice of the rat brain reconstructed by the 

3D-Res-UNet and by the conventional approach, and scatter plots in Fig. 3a highlight 

that reconstruction errors are more prominent in correspondence of the lower power 

Doppler values, particularly in the case of conventional processing. To further confirm the 

generalization capabilities of our approach, we used the network trained on coronal brain 

images to reconstruct a sagittal slice, as displayed in Fig. 4. The mean prediction time for 

the 3D-Res-UNet calculated on the test set was between 4.4 and 13.5 ms/image (Table III). 

Movies showing side-by-side comparisons of the conventional and Deep-fUS reconstruction 

with CF 75%, 85%, and 95%, are available in Video S1–3.

The PP-UNet provides imaging performance comparable to the 3D-Res-UNet (Table II) but 

adds a run-time overhead of 212 ms/image (averaged over all the CFs) for the conventional 

processing of the sparse power Doppler images, which are then provided as input to the 

neural network for post processing (Table III). It is also worth noting that this approach, 

like the conventional method, is inherently dependent on the design of the tissue clutter 

filter, and a wide range of parameters have been used in the fUS literature for the 

temporal high-pass and SVD filters. Therefore, a data-driven method that does not require 

prior model-based knowledge would be highly advantageous and potentially simplify fUS 

implementations. Interestingly, we noted that the learned convolutional filters in the input 

layer of the 3D-Res-UNet implement highpass transfer functions with strong rejection of the 

0-Hz component (Fig. 1d). These filters appear to mimic the filters used in the conventional 

processing but are learned directly from the data during training.

B. Task-Evoked Functional Activity Imaging

Power Doppler images of the brain vasculature only provide a screenshot of the CBV signal 

at a given time. In fUS neuroimaging applications, the functional information is extracted 

from the temporal evolution of the CBV signals in the form of temporal correlations with 

a stimulus (i.e., functional activation) or between brain regions of interest (i.e., functional 

connectivity). We thus sought to test the performance of the Deep-fUS approach in a 

visual-evoked functional activation application.

The SoA activation map is shown for reference in Fig. 5b. This was created by using 

conventionally reconstructed power Doppler images using the full compound dataset and 

shows significant bilateral activation of the primary and secondary visual cortices (V1/2) 

and superior colliculus (SC). In Fig. 5c we show the activation maps created using power 

Doppler time series reconstructed by Deep-fUS (3D-Res-UNet) using sparse data with 

CF between 75% and 95%. Although the quality of the activation maps degraded with 

increasing data sparsity, significant V1/2 and SC activation could be detected with a CF up 

to 95%. The network generalized well to the reconstruction of time series of power Doppler 

images and was able to accurately reproduce the small changes in relative CBV signal 

(~10%; Fig. 5e–f) characteristic of visual-evoked cortical activation. It is worth pointing 

out that the network did not formally learn to perform the reconstruction of such image 

Ianni and Airan Page 9

IEEE Trans Med Imaging. Author manuscript; available in PMC 2022 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



sequences, as it was trained on single images, and had no direct knowledge of the functional 

information content of the sequence.

Notably, Deep-fUS with CF 95% performed better than the conventional approach with CF 

75%. With shorter data sequences (i.e., higher CF), the conventional processing provides 

increasingly noisy CBV temporal signals that result in lower and non-significant correlations 

with the stimulus (Fig. 5e–f). This is also confirmed by the quantitative error metric (MAE) 

in Table II. Introducing the 3-D convolutional input layer and residual connections reduced 

the activation maps MAE in all the cases except for CF ≥ 90%, as compared to the simple 

U-Net. This may be due to the short temporal signals that make it more challenging to train 

the 3-D filters.

To investigate an alternative approach to data compression, we created temporally and 

spatially under-sampled sequences by retaining only a subset of compound samples in each 

frame, with a spatial under-sampling ratio m = 1/2 and m = 1/4. The spatial samples were 

selected as shown in the bottom plots of Fig. 6. We used k = 50 and k = 100 in the two 

cases to equalize the CF to 95%. This approach improved the quality of the functional 

activation maps compared to the case with temporal under-sampling only (Fig. 6), and the 

resulting activation map MAE was 0.1406 for m = 1/2 and 0.1279 for m = 1/4. These results 

suggest that spatial sparsity may be a viable option to further increase data compression 

while retaining the advantages of longer acquisitions. On the other hand, this approach does 

not benefit from the decreased sensitivity to motion artifacts discussed in the next section.

A movie of the Deep-fUS power Doppler series and relative CBV variation from the 

visual-evoked experiment with temporally and spatially sparse data is provided in Video S-4.

C. Motion Artifact Reduction

To determine whether shorter acquisition sequences reduce the occurrence of motion 

artifacts, we used Deep-fUS to reconstruct a time series of power Doppler images acquired 

in a lightly sedated and restrained animal. We computed the SSIM of each image in the 

series versus a baseline calculated as the median of all images in the acquisition, then 

we applied a SSIM threshold to filter out the images that showed significant degradation, 

possibly due to animal motion (Fig. 7). In the case of SoA processing using the full 

compound sequence, 8.2% of power Doppler images were discarded by the filter (Fig. 7a). 

Image scrubbing was reduced to between 4.5% (with CF 75%) and 2.1% (with CF 95%), 

giving a maximum scrubbing reduction of 74%. Fig. 7c displays a representative SoA power 

Doppler image that was discarded by the SSIM filter. Motion artifacts were resolved in the 

same image processed by Deep-fUS (Fig. 7d). We provide a side-by-side comparison of the 

SoA and Deep-fUS image scrubbing in the lightly sedated fUS experiment in Video S-5.

IV. Discussion

Deep learning and CNNs are drawing increasing attention for the reconstruction and 

processing of biomedical images with sparse data [40]–[42]. In medical ultrasound, 

several strategies have been proposed to restore high image quality while reducing data 

sampling, transmission, and processing [28], [29], [31], [43]. With the exception of a single 
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preliminary study reporting deep learning of color Doppler images [44], however, CNNs 

have not been applied as extensively to ultrasound imaging of blood flows. We proposed a 

deep learning platform for the direct reconstruction of power Doppler images from a 3-D 

space of sparse compound ultrasound data (Fig. 1). Our proposed approach largely enhanced 

imaging performance compared to the conventional method with compression factors up to 

95%, as clearly indicated by the presented quantitative metrics (Fig. 3). We demonstrate 

that our method is able to reconstruct time series of power Doppler images with sufficient 

accuracy to compute functional activation maps in a task-evoked neuroimaging application 

(Fig. 5 and 6). Although it was not formally trained for such reconstruction task, the network 

generalized well and accurately reproduced changes in relative CBV signals on the order of 

10%. Additionally, we show that by minimizing the length of the acquisition sequence, our 

network allows greater robustness to motion artifacts in an experiment with a lightly sedated 

animal and is less sensitive to image scrubbing (Fig. 7).

The first advantage of using sparse sequences is the net reduction in data acquisition, 

storage, and processing resources, which may effectively simplify fUS development. 

To provide an indication of a representative scenario, in our implementation with 250 

compound images each made of 10 plane waves, we acquire and beamform 2500 full 

B-mode-equivalent frames to compute a single power Doppler image. The acquisition lasts 

250 ms, and RF data from each acquisition are sampled and stored on the scanner. The first 

bottleneck is the direct memory access (DMA) for data transfer to the host machine via 

PCIe bus. Data are then beamformed at runtime in a GPU to reduce storage requirements 

(see calculation in the Appendix) and saved on a solid-state drive. Processing (on the host 

machine) and data acquisition (on the scanner) happen in parallel. The power Doppler 

computation is performed offline, as SVD filters are also computationally demanding. Our 

resulting frame rate excluding power Doppler processing is 0.6 Hz. However, it is important 

to note that our field of view is limited, as we are imaging the rat brain in coronal view (~10 

mm × 10 mm), but these considerations become yet more significant in situations where 

larger regions are imaged, as in larger animals or humans.

The suggested approach may facilitate the development of fUS neuroimaging in any setting 

where dedicated hardware is not available or in clinical scanners, making this technology 

more affordable and opening the way to new potential applications based on this imaging 

modality. Additionally, sparse sequences may prove beneficial in experimental situations 

where fUS acquisitions need to be interleaved with long therapeutic ultrasound pulses, such 

as in the monitoring of focused ultrasound neurointerventions [45], [46]. Although in this 

study we retrospectively under-sampled the compound data, we clearly demonstrate that the 

network may considerably reduce the beamforming complexity and eliminate the need for 

computationally demanding filters [15], [16]. Additionally, the network has the potential 

to increase the imaging frame rate and to facilitate the implementation of volumetric fUS 

imaging using swept linear arrays [6]. The platform and conceptual framework that we 

propose may be adapted to other high-frame-rate Doppler ultrasound imaging modalities, 

including vector flow imaging, to expedite their deployment in portable ultrasound systems 

[47], [48].
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To create sparse sequences, we selected subsets of compound images in the initial portion 

of the original sequence. This approach has the advantage of yielding shorter temporal 

acquisition windows and reduces the occurrence of motion artifacts and data scrubbing, 

which are inevitable in mobile rodent and handheld fUS imaging applications [5], [9], [49]. 

Alternative sampling approaches, including interleaved or randomly distributed frames, may 

be integrated with our proposed platform by training and optimizing the networks with the 

desired sampling method. We expect that longer observation times will facilitate the power 

Doppler reconstruction, as displayed in Fig. 6, but will make the sequence more sensitive to 

motion artifacts, as discussed in Sec. III–C. Adaptive sampling based on a motion measure 

could be an exciting future development for this power Doppler reconstruction approach.

We acknowledge that variants of the U-Net have been previously applied to different 

biomedical imaging modalities. However, most of the literature is focused on removing 

artifacts from sub-optimally reconstructed images. We were specifically interested in 

demonstrating a data-driven reconstruction method that, once trained, requires no prior 

model-based knowledge of the image formation process nor requires hand-picked 

parameters. We decided to base our implementation on the U-Net as we hypothesized that 

its encoder-decoder architecture would fit the nature of our data. A critical step in the power 

Doppler reconstruction process is the filtration of the strong clutter signal originating from 

the moving tissue. In the 3-D space formed by the image plane and Doppler time, the 

clutter signal is slowly varying in the temporal domain and highly correlated in the spatial 

domain, therefore it is crucial to account for both spatially and temporally varying features 

in the reconstruction process. By progressively expanding the spatial field of view in the 

encoder layers and with the input filters performing temporal convolutions, our network 

extracts spatiotemporal features from severely under-sampled input datasets. By using more 

sophisticated networks, interesting applications may be developed in the future based on 

the current work. Unsupervised algorithms may be designed to train variants of generative 

adversarial networks (for example, CycleGAN [50]) on 2-D power Doppler images for the 

reconstruction of volumetric fUS data acquired with sparse physical apertures. Considering 

the cost, complexity, and bulkiness of 3-D ultrasound systems, such advances may greatly 

facilitate 4-D fUS imaging applications.

A main limitation of using ultrasound for brain imaging is the presence of the skull, which is 

highly absorbing at the imaging frequencies. This has limited clinical fUS to intraoperative 

applications or to scenarios with natural skull openings, such as the neonatal anterior 

fontanel window. These limitations may be partly overcome by using contrast agents to 

enhance the ultrasound signal [51]–[53].

Finally, further validation of our reconstruction approach is recommended, as changes in the 

functional activation maps at higher compression factors may distort the interpretation of 

clinical or scientific imaging data.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix

Calculation of RF and Beamformed Data Throughputs

Considering compound frames composed of 10 plane wave emissions acquired with an 

array of 128 elements, sampled with a sampling frequency of 60 MHz (4× the pulse center 

frequency of 15 MHz), and covering a depth of 9.6 mm, the data throughput for each 

compound frame is

2 * 9.610−3

1.54 103 * 60106 * 128 * 10 = 957, 510 (6)

RF samples. Eq. (1) considers a speed of sound of 1540 m s−1, and the factor 2 accounts 

for the pulse-echo time-of-flight. If 250 compound frames are used to compute a power 

Doppler image, the total number of RF samples to be transmitted from the scanner to the 

host computer is

957, 510 * 250 = 239, 377, 500 (7)

per image. If 96 × 96 pixels are beamformed in each compound frame, the beamforming 

load is

96 * 96 * 2 * 250 = 4, 608, 000 (8)

pixels per power Doppler image. The factor of 2 in (3) accounts for the beamforming of 

complex (real and imaginary) samples.

By saving beamforming data instead of RF samples, memory usage can be reduced by

957, 510
96 * 96 * 2 = 52 (9)

times, assuming equivalent data precision.

Our CNN processing approach reduces the hardware requirements for data acquisition, 

as well as the storage and beamforming requirements. For example, in the case of 80% 

compression factor with k = 100 real compound frames per power Doppler image and no 

spatial under-sampling (m = 1), the number of RF samples is reduced to
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957.510 * 100 = 95, 751, 000 (10)

(60% reduction), while the number of beamformed pixels to be processed and stored in 

memory is reduced to

96 * 96 * 100 = 921, 600 (11)

(80% reduction). With k = 100 and m = 1/4 (Fig. 6), the number of RF samples is unchanged 

while the number of beamformed pixels becomes

1
4 * 96 * 96 * 100 = 230, 400 (12)

(95% reduction). For the sake of simplicity, in the main text we only refer to the 

beamformed data reduction to compute the data compression factors.
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Fig. 1. 
a, In the state-of-the-art processing, a power Doppler image is created from a sequence 

of 250 compound ultrasound frames. In each pixel, the temporal signal sDopp sampled 

in the Doppler time tDopp, is passed through a bank of filters F to remove the tissue 

clutter component sclutter. The retained blood signal sblood is squared and time-integrated 

to compute the power Doppler pixel value proportional to cerebral blood volume. b, The 

Deep-fUS 3D-Res-UNet architecture uses a modified U-Net network consisting of residual 

blocks arranged in a 5-layer encoder followed by a decoder. An input 3-D convolutional 

layer extracts spatiotemporal features from the 3-D input structure. The input data is an 

under-sampled compound sequence created by selecting the first k frames of Nx × Ny 

pixels (selected frames displayed with a green border). The network outputs Nx × Ny 

power Doppler images. c, Residual blocks composed of two cascaded Conv/ReLU/Dropout 

layers implement a shortcut connection between the input and output. d, Representative 

transfer functions of the input 3-D convolutional filters learned by the network. These were 

computed by performing a fast Fourier transform of the filter kernels averaged in the 3 × 3 

spatial domain. The cutoff frequencies (−3 dB) for the two filters are 95 Hz (left) and 58 Hz 

(right).
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Fig. 2. 
a, Representative power Doppler image of a coronal slice of the rat brain reconstructed 

by Deep-fUS (3D-Res-UNet) from under-sampled sequences with compression factor of 

(CF) 75%, 85%, and 95% (Top) and absolute error images calculated against the state-of-

the-art (SoA) image (Bottom). b, SoA image reconstructed by the conventional processing 

using 250 complex compound frames. c, Power Doppler images reconstructed with the 

conventional processing using under-sampled compound data (Top) and respective absolute 

error images (Bottom). Scale bar in a, b, c: 1 mm.
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Fig. 3. 
a, Scatter plots of the power Doppler pixel amplitudes and linear regression analysis (y = 

b1x + b2). b-d, Structural similarity index metric (SSIM), normalized mean squared error 

(NMSE), and peak signal-to-noise ratio (PSNR) of power Doppler images reconstructed by 

Deep-fUS (3D-Res-UNet; blue) and by the conventional approach (red). The quantitative 

metrics were calculated against the respective SoA reference images. Results are reported as 

mean (solid line) and standard deviation (shaded area) calculated over the test set.
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Fig. 4. 
a, Representative power Doppler image of a sagittal slice of the rat brain reconstructed 

by Deep-fUS (3D-Res-UNet) from under-sampled sequences with compression factor (CF) 

75%, 85%, and 95% (Top) and absolute error images calculated against the state-of-the-art 

(SoA) image (Bottom). b, SoA image reconstructed by the conventional processing. c, 

Power Doppler images reconstructed with the conventional processing using under-sampled 

compound data (Top) and respective absolute error images (Bottom). Scale bar in a, b, c: 1 

mm.
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Fig. 5. 
a, Time series of power Doppler images were recorded continuously during a visual 

stimulation task. The resulting cerebral blood volume (CBV) signals were correlated with 

the stimulus pattern. The visual stimulus consisted of 6 light stimuli, each with an ON 

time of 30 s, distributed in a pseudo-random fashion. b, State-of-the-art (SoA) activation 

map computed using power Doppler images reconstructed by the conventional approach 

using 250 complex compound frames. Statistically significant pixels (P < 0.01; Bonferroni 

corrected) are shown in the heat map. The white contour displays the slice at bregma 

−7.0 mm from the Paxinos brain atlas. The activation map shows significant bilateral 

activation of the rat primary and secondary visual cortices (V1/2) and superior colliculus 

(SC). c, Activation maps computed using power Doppler images reconstructed by Deep-fUS 
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with compression factor (CF) between 75% and 95%. d, Activation maps computed using 

power Doppler images reconstructed by conventional processing with CF between 75% 

and 95%. e, Relative CBV signals in the statistically significant pixels of the SoA map in 

V1/2 for the SoA data (magenta), and Deep-fUS (blue) and conventional processing (red) 

with CF of 95%. Results are reported as mean (solid line) and standard deviation (shaded 

area). The stimulus pattern is displayed in gray. f, Relative CBV signals in the statistically 

significant pixels of the SoA map in SC for the SoA data (magenta), and Deep-fUS (blue) 

and conventional processing (red) with CF of 95%.
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Fig. 6. 
Representative power Doppler test images (top) and activation maps (middle) computed with 

spatially under-sampled sequences with spatial sampling ratio m = 1/2 (a) and m = 1/4 (b). 

To equalize the compression factor (CF) to 95%, k = 50 and k = 100 compound frames were 

used in the two cases. The spatial sampling maps are displayed in the bottom plots. The 

black and white pixels show discarded and retained pixels, respectively. The maps are shown 

in a sub-grid of 12 × 12 pixels.
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Fig. 7. 
a, A series of 1000 power Doppler images was filtered based on a structural similarity 

index metric (SSIM) filter. Black dots display the discarded images in the series. b, We 

defined a threshold (red) to remove the images with an SSIM value lower than 3 standard 

deviations from the baseline. c, d, Representative power Doppler coronal images in a case of 

significant degradation in the conventional reconstruction (c) that was completely resolved 

with under-sampled processing (d). Scale bar: 1 mm.
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TABLE I

Results of Bayesian Optimization

Network Hyperparameter Optimized value

3D-Res-UNet

Conv3D, k1,2 3

Conv3D, k3 16

Learning rate 5.5 × 10−4

Dropout rate 0.2

Lambda 0.1

3D-UNet

Conv3D, k1,2 1

Conv3D, k3 16

Learning rate 1.1 × 10−4

Dropout rate 0.1

Lambda 0.9

UNet

Learning rate 7.4 × 10−5

Dropout rate 0.2

Lambda 0.8

PP-UNet

Learning rate 7.4 × 10−4

Dropout rate 0.1

Lambda 0.2
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