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Abstract

Aneuploids of a single species that have lost or gained different chromosomes are useful for

genomic analysis. The polyploid nature of many crops including oilseed rape (Brassica

napus) allows these plants to tolerate the loss of individual chromosomes from homologous

pairs, thus facilitating the development of aneuploid lines. Here, we selected 39 lines from

advanced generations of an intergeneric hybridization between Brassica rapa and Orycho-

phragmus violaceus with accidental pollination by B. napus. The lines showed a wide spec-

trum of phenotypic variations, with some traits specific to O. violaceus. Most lines had the

same chromosome number (2n = 38) as B. napus. However, we also identified B. napus

nulli-tetrasomics with 22 A-genome and 16 C-genome chromosomes and lines with the typi-

cal B. napus complement of 20 A-genome and 18 C-genome chromosomes, as revealed by

FISH analysis using a C-genome specific probe. Other lines had 2n = 37 or 39 chromo-

somes, with variable numbers of A- or C-genome chromosomes. The formation of quadriva-

lents by four A-genome chromosomes with similar shapes suggests that they were derived

from the same chromosome. The frequent homoeologous pairing between chromosomes of

the A and C genomes points to their non-diploidized meiotic behavior. Sequence-related

amplified polymorphism (SRAP) analysis revealed substantial genomic changes of the lines

compared to B. rapa associated with O. violaceus specific DNA bands, but only a few genes

were identified in these bands by DNA sequencing. These novel B. napus aneuploids and

introgressants represent unique tools for studies of Brassica genetics and for Brassica

breeding projects.
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Introduction

Maintaining a balanced euploid genome is a key feature of all multicellular organisms. How-

ever, aberrant segregation events during mitosis or meiosis can result in aneuploidy, a condi-

tion in which cells acquire a karyotype that is not a whole-number multiple of the haploid

complement. The balance between chromosome types and the genes they encode is disturbed,

resulting in the altered expression of many genes [1–5].

The most common viable form of aneuploidy in humans is Down syndrome, which results

from the presence of a third copy of chromosome 21 in a diploid background. This syndrome

is typically associated with a delay in cognitive ability and physical growth, as well as a particu-

lar set of facial characteristics [6]. Plants are more tolerant of aneuploidy than are animals, and

aneuploid individuals are frequently found spontaneously within polyploid plant populations.

Various types of dosage compensation can affect plant autosomes, allowing them to better tol-

erate gene copy imbalances [7]. These aneuploids exhibit few or subtle phenotypic abnormali-

ties and can often compete with their euploid progenitors [8]. Plants therefore provide an

excellent opportunity for genome-wide investigations of aneuploid syndromes [9–12].

Many plants, including crops, are allopolyploids, that contain two or more genomes from

different progenitors. The polyploid nature of these plants, including cereals (e.g., Triticum
aestivum L., 2n = 6X = 42, AABBDD genomes) and oilseed rape (B. napus L., 2n = 4X = 38,

AACC), allows them to tolerate the loss of individual chromosomes from homologous pairs,

thus facilitating the development of aneuploid lines. As described in detail previously [13], the

availability of intraspecific aneuploids (including hypoploids such as nullisomics and monoso-

mics, as well as hyperploids such as trisomics and tetrasomics) and interspecific aneuploids

(harboring alien chromosome additions or substitutions) has greatly contributed to studies of

chromosome homoeology, genomic analysis, and the chromosomal localization of genes [14–

20]. However, it is challenging to produce hypoploid s in Brassica and few have been reported

[4, 5, 21–23]. Nulli-tetrasomics are individuals in which one chromosome pair is missing but

four copies of another nonhomologous chromosome are present. In common wheat (Triticum
aestivum), a complete set of compensating nulli-tetrasomics has been obtained and studied

extensively to investigate the homoeologous relationships of chromosomes [14], as the lack of

one chromosome pair (nullisomics) can be genetically compensated for by the presence of

four copies of a different pair of chromosomes (nulli-tetrasomics). The presence of two extra

chromosomes could result in decreased, unchanged, or increased amounts of proteins [24–

26].

However, various Brassica aneuploids, including hypoploids and those harboring alien

additions or substitutions, have been identified among the hybrid progeny from intergeneric

crosses between cultivated Brassica species in the U-triangle [27] and another crucifer, Orycho-
phragmus violaceus (L.) O. E. Schulz (2n = 2X = 24, OO). These lines have been examined for

the possible occurrence of complete and partial separation of parental genomes during mitotic

and meiotic divisions in the hybrids [13,28–32]. Many novel lines have been established from

a single mixoploid hybrid progeny between Brassica rapa L. (2n = 2X = 20) and O. violaceus
through successive selections for fertility and viability for 10 generations. The lines with high

productivity showed a wide spectrum of phenotypes and seed quality profiles, as well as varia-

tions in genomic and chromosomal constituents. These lines had variable chromosome num-

bers centered on the same number as B. napus (2n = 38) but contained no intact O. violaceus
chromosomes, as revealed by genomic in situ hybridization (GISH) analysis [33].

In this study, through consecutive selections for several generations based on phenotype

and fertility, we established 39 F16 lines and characterized their phenotypes, genomic/chromo-

somal complements, and meiotic pairing. Interestingly, several types of chromosomal
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complements were detected, including B. napus nulli-tetrasomics with 22 A-genome and 16

C-genome chromosomes, aneuploids with variable A- or C-genome chromosomes, and B.

napus introgressants with 20 A-genome and 18 C-genome chromosomes. These lines showed

genomic variations and deviations from parental line B. rapa, as they exhibited the loss of

DNA bands from the B. rapa, the gain of novel bands, and the introgression of bands from O.

violaceus. These B. napus-like lines likely originated from the pollination of hybrid progeny by

B. napus and subsequent chromosomal reorganization during the long process of artificial

selection (Fig 1). These B. napus aneuploids and introgressants could serve as valuable tools

for Brassica breeding efforts and genetic analysis.

Materials and methods

Plant materials

An intergeneric cross between B. rapa cv. ‘Aijiaophuang’ and Orychophragmus violaceus, with

the latter used as the male parent, was performed by hand emasculations and pollinations in

Fig 1. Crossing and selection scheme for new B. napus types produced from a single hybrid between B. rapa and

O. violaceus. xO: uncertain number of chromosomes from O. violaceus.

https://doi.org/10.1371/journal.pone.0210518.g001
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1995, and only one mixoploid hybrid (2n = 23–42) progeny with some O. violaceus character-

istics was identified [30]. This hybrid was partially fertile and produced some seeds of different

sizes after selfing and open pollination. From the 10 F2 plants, 59 F10 lines were developed by

consecutive selection for viability and seed fertility. These lines showed a wide spectrum of

phenotypes and some variations in chromosome numbers, but most had 2n = 38 chromo-

somes [33]. The pedigrees of these lines were advanced to the F16 generation by selfing, with

further selection for phenotype and seed set. The F16 seeds, together with B. rapa ‘Aijiaohuang’

and O. violaceus seeds, were planted in an experimental field at Huazhong Agricultural Uni-

versity in October 2010, and the young leaves of F16 plants and their two parents were collected

for DNA extraction. Young ovaries and floral buds were also collected from the same plant for

cytological analysis in the Spring of 2011. Petiole length and petiole angle of three active basal

leaves were surveyed at the flowering stage from three plants per line. Some lines were crossed

with both B. rapa ‘Aijiaohuang’ and B. napus ‘Oro’. The hybrid progeny were planted in Octo-

ber 2011, and floral buds were collected for chromosome pairing observation in the Spring of

2012.

Cytological investigation and pollen fertility analysis

Ovaries from young flower buds were collected and treated with 8-hydroxyquinoline for 3–4 h

at room temperature before being fixed in Carnoy’s solution I (3:1 ethanol:glacial acetic acid,

v/v) and stored at –20˚C for chromosome counting in somatic cells. The young flower buds

were fixed directly in a Carnoy’s solution and stored at –20˚C for meiosis studies. Cytogenetic

observation was carried out according to the methods as described previously [28]. More than

300 pollen grains from three flowers of the same plant were stained with acetocarmine (1%, w/

v), and the percentage of stainable pollen grains was calculated to measure pollen viability.

DNA extraction, labeling, and in situ hybridization

Plasmid DNA of BAC BoB014O06 (Brassica C-genome-specific repetitive sequence BAC

clone, provided by Dr. Susan J. Armstrong, University of Birmingham, Birmingham, UK) was

extracted, labeled with biotin-11-dUTP by random priming using a Bio-Prime DNA Labeling

System Kit (Invitrogen, Life Technologies), and used as a probe. Fluorescent in situ hybridiza-

tion was performed following standard procedures [34] with minor modifications. The probe

mixture consisted of 50% (v/v) formamide, 2× SSC, 10% (w/v) dextran sulfate, 2 μg salmon

sperm DNA, 125 μM EDTA, 0.125% (w/v) SDS, and 50 ng of the labeled probes in a total vol-

ume of 50 μL. The probe mixture was pre-denatured at 85˚C for 10 min and cooled on ice for

at least 5 min. The mixture was placed onto a slide and covered with a plastic coverslip. The

probe and preparation were then denatured together at 74˚C for 7 min before cooling slowly

to 37˚C for overnight hybridization. The immunodetection of biotinylated and digoxigenated

DNA probe was carried out using Cy3-labeled streptavidin (KPL, St. Louis, MO, USA). Finally,

the preparations were counterstained with 49-6-diamidino-2-phenylindole (DAPI) solution

(Roche, Basel, Switzerland) (1 mg/mL) and mounted in antifade solution (Vector Laboratories,

Peterborough, UK). Images were taken under a Zeiss Axioplan fluorescent microscope with a

CCD camera and processed in Photoshop using only functions that affected the entire image

equally.

Sequence-related amplified polymorphism (SRAP) analysis, DNA recovery,

and sequencing

Total genomic DNA was extracted and purified from young leaves according to classical meth-

ods [35]. Randomly selected SRAP primer pairs were used to detect polymorphisms in open
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reading frames [36]. Each 20-μL PCR mixture consisted of 1.5 U Taq DNA polymerase (Fer-

mentas), 1× PCR buffer, 0.2 mM dNTP, 0.3 μM primer, 3 mM Mg2+, and 25–100 ng template

DNA. The thermal cycling conditions were 3 min at 94˚C for initial denaturing, five cycles of

30 s at 94˚C, 30 s at 35˚C, and 1 min at 72˚C, followed by 35 cycles of 30 s at 94˚C, 30 s at

50˚C, and 1 min at 72˚C. The last cycle was followed by a 7-min extension at 72˚C. Amplified

products were analyzed on 8% (w/v) polyacrylamide gels and visualized by silver staining. The

21 SRAP primer pairs were used, and 80- to 800-bp bands were scored.Interesting specific

bands from B. rapa and O. violaceus and new bands in progeny lines were excised from the gel,

squashed, and dissolved in distilled water by boiling for 15 min. The fragments were re-ampli-

fied as described for the SRAP protocol. The PCR products were cloned into the pMD18-T

vector (TaKaRa), and 3–5 individual clones were sequenced.

Results

Phenotypic variation

F10 lines, derived from a single intergenetic hybridization between Brassica rapa cv. ‘Aijiao-

huang’ and Orychophragmus violaceus, that had distinct phenotypes and good seed set [30, 33]

were selected and used to produce 39 F16 lines that could be distinguished based on their mor-

phological differences (Fig 1). The spectrum of phenotypes ranged from B. rapa-type to O. vio-
laceus-type, with most being intermediate. Several traits that originated from O. violaceus were

readily detected among the lines, such as serrated leaves, purple coloration of stems, leaf veins,

and even pods, basic clustering branches, and drooping inflorescences (Fig 2). The differences

in leaf phenotype, including leaf shape, lobes, serration, hairs, color, and petiole length and

angle (Fig 2; S1 Table), were most obvious. The leaves and stems of Line 2 were deep purple,

while Line 21 had drooping stems, like O. violaceus (Fig 2). Interestingly, some lines produced

elliptic pollen grains similar to those of O. violaceus (Fig 3). These lines also showed wide varia-

tions in flowering time after planting (at the beginning of October in Wuhan), ranging from

46 days for Line 25 to 188 days for Line 10 and an average of 129 days. Most lines flowered at

similar times to B. rapa ‘Aijiaohuang’ but earlier than winter type B. napus, which requires

approximately 150 days for flowering. Notably, most lines exhibited phenotypes similar to

those of B. napus, such as waxy powder on the plant surface. Cytological analysis (described

below) indicated that these lines contained C-genome chromosomes, which were likely intro-

duced through pollination of the hybrid progeny by B. napus at a certain stage of selection (Fig

1).

Chromosomal complements

We determined the somatic chromosome numbers of these lines via conventional cytological

analysis and examined the genomic origins of the chromosomes by FISH analysis. Analysis of

the chromosome numbers in ovary cells of the 39 F16 lines showed that one line (2.6%) had

2n = 37 chromosomes, two (5.1%) had 2n = 39 chromosomes, and 36 (92.3%) had 2n = 38

chromosomes (Table 1). Using labeled genomic DNA from O. violaceus as a probe, no intact

chromosomes were detected in any line, as reported previously [33]. However, using labeled

C-genome-specific BAC clones as probes, very clear signals appeared on some chromosomes,

indicating their genome origin (Fig 4). Among the 36 lines with 2n = 38 chromosomes, 15

lines contained 20 chromosomes from the A genome and 18 chromosomes from the C

genome, i.e., the same complement as that of B. napus, whereas 19 lines contained 22 chromo-

somes from the A genome and 16 chromosomes from the C genome (Fig 4A–4A1 and 4B–

4B1). Of the two lines with 2n = 39, one had 22 A-genome and 17 C-genome chromosomes

and the other had 20 A-genome and 19 C-genome chromosomes (Fig 4C–4C1). The two
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Fig 2. Morphology of the F16 lines. Upper panels: young O. violaceus (P1) and B. rapa (P2) plants; A1–F1: Lines 20, 17, 10, 2, 25, and 8. Lower panel:

(A–F): flowering plants of all six lines. The arrow points to a bent main stem.

https://doi.org/10.1371/journal.pone.0210518.g002
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remaining lines with 2n = 38 contained 23 A-genome and 15 C-genome chromosomes (Fig

4D–4D1). The only plant with 2n = 37 chromosomes contained 20 A-genome and 17 C-

genome chromosomes, as it has lost one C-genome chromosome from B. napus. Therefore,

nearly half of the lines (17/39) recovered the chromosome complement of B. napus, while the

remaining half had lost or gained individual chromosomes, mainly gaining A-genome and los-

ing C-genome chromosomes.

To examine the genomic relationship of these lines with B. rapa and B. napus, we hybrid-

ized several selected lines with these two species, which showed high crossability and seed set.

The chromosomes in pollen mother cells (PMCs) of the hybrids with B. rapa were paired as

9–12 bivalents and 5–11 univalents, but those in the hybrids with B. napus showed relative

normal pairing, predominantly as 19 bivalents, or 17 bivalents and one quadrivalent, pointing

to the homology of their chromosomes (S1 Fig, S2 Table).

Chromosome pairing and pollen fertility

We expected that some multivalents, including trivalents and quadrivalents, would form in the

PMCs of some lines containing more than two copies of an individual chromosome. We there-

fore examined chromosome pairing by observing 21–121 PMCs per line at diakinesis, with an

average of 65 PMCs, but were unable to analyze Lines 19 and 25 due to the failure to collect

enough flower buds at suitable stages. In all lines examined, the chromosomes were mainly

paired as bivalents, but there were 0.1–1.1 quadrivalents per PMC, and 2.4–73.3% PMCs con-

tained at least one quadrivalent (Table 1). At the extreme, up to four quadrivalents in one

PMC occurred in line 21, with 22 A-genome and 16 C-genome chromosomes. On average,

37.1% of the PMCs had at least one quadrivalent, as detected in 19 lines with 22 A-genome

and 16 C-genome chromosomes; this percentage was significantly higher than the 9.4%

observed for the 13 lines with 20 A-genome and 18 C-genome chromosomes (χ2 test,

P = 2.02E-05<0.01). Trivalents or univalents were often found in five lines with odd numbers

of A- or C-genome chromosomes, but rarely in other lines.

In lines with 22 A-genome and 16 C-genome chromosomes, FISH analysis using a C-

genome-specific probe revealed the occurrence of quadrivalents formed by one pair of C-

genome and A-genome chromosomes (Fig 5A and 5A1) and by four unlabeled A-genome

chromosomes (Fig 5B–5B1 and 5C–5C1). The two types of quadrivalents appeared as rings or

chains (Fig 5A–5A1, 5C–5C1). The highly similar morphology of the four paired A-genome

chromosomes also indicated that they might originat from duplication of the same chromo-

some (Fig 5B–5B1 and 5C–5C1). Of course, four A chromosomes involved in the tetravalents

might also be paralogous A genome chromosomes due to the genome collinearities existing

between paralogs. In fact, pairing between paralogous chromosomes are frequent at diakinesis

in Brassica like in diploids of B. oleracea [37]. The only way to confirm the origin of the chro-

mosomes would be to use BACs that hybridize specifically to a unique A chromosome pair. Of

Fig 3. Different pollen grain shapes in the progeny lines. (A) Stainable round and unstainable shrunken pollen

grains from Line 5. (B, C) Stainable elliptic pollen grains from Line 23 and O. violaceus, respectively.

https://doi.org/10.1371/journal.pone.0210518.g003
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the 57 cells with clear pairing configurations and bright signals, 43 (75.4%) cells contained at

least one quadrivalent, and only 9 (14.5%) of the 62 quadrivalents counted were formed by

four A-genome chromosomes, whereas the others were formed by one pair of A-genome and

Table 1. Quadrivalents formation in meiotic cells and pollen viability in various lines.

Lines

2n

Chromosome complement

(A/C)

Number of PMC with

quadrivalents

Percentage (%) of PMC with quadrivalent Quadrivalents /PMC Pollen stainabiliy

(%)

0 1 2 3/4

1 38 22/16 57 17 4 0 26.9 0.3 98.3

3 38 22/16 22 15 1 1 43.6 0.5 91.2

7 38 22/16 40 12 1 0 24.5 0.3 86.8

8 38 22/16 31 9 0 0 22.5 0.2 89.9

9 38 22/16 51 28 17 0 46.9 0.6 91.9

10 38 22/16 30 9 4 0 30.3 0.4 58.8

11 38 22/16 22 17 14 6 62.7 1.1 75.4

16 38 22/16 76 31 3 0 30.9 0.3 74.2

17 38 22/16 55 12 0 0 17.9 0.2 91.9

20 38 22/16 37 14 6 0 35.1 0.5 73.8

21 38 22/16 24 39 17 9/2 72.8 1.2 79.6

22 38 22/16 87 24 13 2 30.9 0.4 46.3

24 38 22/16 35 31 3 0 49.3 0.5 88.5

28 38 22/16 51 16 7 0 31.1 0.4 94.2

32 38 22/16 55 30 11 3 45.0 0.6 76.6

33 38 22/16 81 29 11 0 33.1 0.4 96.8

35 38 22/16 70 28 11 5 38.6 0.6 42.2

37 38 22/16 40 15 4 0 32.2 0.4 96.7

38 38 22/16 35 15 0 0 30.0 0.3 71.6

Average 47.3 20.6 6.7 1.4 37.1 0.5 80.2

6 38 20/18 36 3 0 0 7.7 0.1 65.2

13 38 20/18 36 4 0 0 10.0 0.1 89.6

14 38 20/18 80 2 0 0 2.4 0.0 74.9

15 38 20/18 50 5 0 0 9.1 0.1 81.8

18 38 20/18 86 15 0 0 14.9 0.1 89.7

19 38 20/18 / / / / / / 94.3

23 38 20/18 35 20 3 0 39.7 0.4 94.7

25 38 20/18 / / / / / / 89.3

26 38 20/18 90 6 0 0 6.3 0.1 98.9

27 38 20/18 55 3 0 0 5.2 0.1 96.9

29 38 20/18 46 4 0 0 8.0 0.1 95.6

30 38 20/18 32 1 0 0 3.0 0.0 78.3

31 38 20/18 62 2 0 0 3.1 0.0 94.1

34 38 20/18 42 2 0 0 4.6 0.0 93.9

39 38 20/18 90 7 1 0 8.2 0.1 90.1

Average 56.9 5.7 0.31 0 9.4 0.1 88.5

2 37 20/17 44 4 0 0 8.3 0.1 88.7

5 39 22/17 33 12 4 2 35.3 0.5 90.1

12 39 20/19 74 40 5 1 38.3 0.4 75.4

4 38 23/15 16 5 0 0 23.8 0.2 84.2

36 38 23/15 33 7 0 0 17.5 0.2 90.3

Average 40 13.6 1.8 0.6 24.64 0.28 85.74

https://doi.org/10.1371/journal.pone.0210518.t001
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C-genome chromosomes. This finding indicates that the formation of the quadrivalent by four

A-genome chromosomes occurs much less frequently than their pairing as two bivalents. Mean-

while, the finding also indicated that homologous pairing of the four A-genome chromosomes

occurs less frequently than homoeologous pairing between one pair of A-genome and C-genome

chromosomes. Occasionally, we detected multivalents formed by more than four A- and C-

Fig 4. Chromosome complements of different lines, as revealed by BAC-FISH analysis. Red signals are from the C-genome-specific probe; DAPI and

merged images are shown for each cell. (A–D) 2n = 38, 38, 39, and 38 from Lines 23, 28, 12, and 4, respectively, which include 18, 16, 19, and 15 labeled

chromosomes (A1–D1). Bar: 10 μm.

https://doi.org/10.1371/journal.pone.0210518.g004

Fig 5. BAC-FISH analysis of meiotic cells from line 21. A–D: Inverted images of DAPI staining. A1–D1: Merged images. Red signals are from the C-genome-specific

probe. Arrows show quadrivalents or multivalents. The two arrowheads in C1 show two pairs of homologous chromosomes between A and C genome chromosomes.

https://doi.org/10.1371/journal.pone.0210518.g005
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genome chromosomes (Fig 5D and 5D1). Bivalents formed by two A- and C-genome chromo-

somes other than quadrivalents were observed at a very low rate (Fig 5C and 5C1). In the lines

with 20 A-genome and 18 C-genome chromosomes, homeologous quadrivalents were only

formed by one pair of C-genome and A-genome chromosomes. Among the lines observed by

FISH, no quadrivalents formed by four C-genome chromosomes were detected.

The average pollen viability of these lines was 84.1%. Most lines had relatively high fertility,

but two lines (Lines 22 and 35) had low fertility, 46.3% and 46.2%, respectively (Table 1).

There was a weak, negative correlation between pollen viability and the average number of

quadrivalents in PMCs (r = −0.26). However, although the average pollen viability of 19 lines

with 22 A-genome and 16 C-genome chromosomes (80.2%) was <87.9% for the 13 lines with

20 A-genome and 18 C-genome chromosomes, this difference was not significant (χ2 test,

P = 0.14>0.01), suggesting that their higher frequency of quadrivalent formation did not affect

pollen viability. Finally, Lines 22 and 35, with 22 A-genome and 16 C-genome chromosomes,

showed much lower fertility than the other lines with such chromosome complements, and

they had higher mean numbers of quadrivalents (0.4 for Line 22 and 0.6 for Line 35).

Genomic composition revealed by SRAP and sequencing

To investigate the genomic composition of different lines and the introgression of alien func-

tional genes from O. violaceus, we employed SRAP markers, as they are designed to amplify

open reading frames (ORFs) [36]. Using 21 pairs of SRAP primers, 223 and 279 bands were

amplified in B. rapa and O. violaceus, respectively. In addition, 191 bands were specific for B.

rapa, 135 bands were specific for O. violaceus, and 88 bands were shared by both species.

These lines produced 223–367 bands, with an average of 321, including specific bands for the

two parents, bands shared by both parents, and new bands not detected in the two parents (Fig

6). On average, these lines contained 40.7% (36.6–45.7%) B. rapa-specific bands, 8.8% (6.5–

11%) O. violaceus-specific bands, 23.3% (19.8–26.1%) shared bands, and 27.1% (24.1–29.6)

new bands (S3 Table). Four B. rapa-specific bands were lost in some lines, three B. rapa-spe-

cific bands were present in all lines, and seven O. violaceus-specific bands were detected. We

excised all these types’ bands and re-amplified by corresponding primers for sequencing. In

general, only one PCR product was found in the bands excised from B. rapa and its progeny

lines, whereas more than one product was usually found in the bands from O. violaceus. The

sequences of the same band excised from B. rapa and various progeny lines were usually the

same. The sequences of all B. rapa-specific bands were mapped successfully to the referenc

genome of B. rapa (Chiifu-401-42, V 2.0), but the sequences of the new bands shared higher

similarity with sequences from the C genome (B. oleracea var. capitata line 02–12, V1.1). How-

ever, only four bands contained sequences homologous to known functional genes (S4 Table).

To investigate the seven O. violaceus-specific bands, 20 lines were subjected to band excision,

but only one line had the same sequences as those of O. violaceus, which were homologous to

the glutamate-ammonia ligase gene from Arabidopsis (S4 Table).

There was no obvious association between the genomic compositions and phenotypes of

different lines or between their genomic compositions and chromosomal complements, as

lines with different chromosomal complements had very similar band components (Table 1;

S3 Table). Finally, the number of O. violaceus-specific bands was not obviously related to the

degree of expression of the phenotypic traits of this species.

Discussion

Although the lines examined in this study were selected from the progeny of a single interge-

neric hybrid between B. rapa and O. violaceus, our molecular cytogenetics and genomic

Brassica napus introgressants derived from an intergeneric hybridization with Orychophragmus

PLOS ONE | https://doi.org/10.1371/journal.pone.0210518 January 10, 2019 10 / 16

https://doi.org/10.1371/journal.pone.0210518


sequence analyses clearly demonstrated that they contained C-genome chromosomes and

maintained B. napus-like chromosomal complements. This finding suggests that the hybrid or

progeny was accidentally pollinated by pollen from B. napus plants that grew nearby, giving

rise to progeny with the AAC genomes plus some O. violaceus chromosomes (Fig 1). There-

fore, these lines were derived from the progenitor progeny by chromosomal reorganization,

stabilization, and introgression of the alien fragments from O. violaceus during the relatively

Fig 6. SRAP profiles of 39 lines as well as B.rapa and O. violaceus generated from one of the primer pairs (e1m6). Arrows of a, e indicated the specific bands for O.

violaceus, b indicated the specific band for B. rapa, c,d indicated that the new bands not detected in the two parents.

https://doi.org/10.1371/journal.pone.0210518.g006
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long process of artificial selection. The recovery of B. napus-like chromosomal complements

from the progeny of the progenitor plants was not unexpected, as new B. napus lines are fre-

quently selected from the progeny of interspecific hybrids between B. napus and B. rapa [38].

The predominant maintenance of the B. napus-like chromosomal complements in these lines

also indicates that such plants had improved survival rates under selection for viability and

fertility.

Brassica aneuploids have previously been identified from among the progeny of interspe-

cific hybrids, such as one trisomic B. rapa line [22], one monosomic B. napus line [21], and

one nullisomic B. juncea line [23]. However, using new cytogenetic tools to identify all homo-

eologous chromosomes, a high degree of aneuploidy together with inter- and intragenomic

rearrangements was revealed in the successive generations of resynthesized B. napus [39].

Changes in the copy numbers of individual chromosomes appeared in early and later genera-

tions, while the mean chromosome number among lines was approximately 38. The reciprocal

monosomy–trisomy of homoeologous chromosomes (1:3 copies) or nullisomy–tetrasomy (0:4

copies) primarily occurred within chromosome sets with extensive homoeology, i.e., A1/C1

and A2/C2. Therefore, dosage balance requirements maintained chromosome numbers at or

near the tetraploid level. A similar pattern of aneuploidy by reciprocal loss and gain of homo-

eologous chromosomes was also found to prevail in the neo-allopolyploid species, Tragopogon
miscellus, with a history of ca. 40 generations [40]. The protracted and prolonged chromo-

somal instability in the neo-allopolyploids and our hybrid progeny of advanced generations

may increase the opportunity for changes to genome structure and gene expression [40]. In a

previous study, seed yield and pollen viability were found to be inversely correlated with

increasing aneuploidy, and lines that were additive for parental chromosomes showed the

greatest viability [39]. The normal growth and high viability of our nulli-tetrasomic lines with

22 A-genome and 16 C-genome chromosomes also pointed to dosage balance and compensa-

tion between homoeologous A/C chromosomes, but the identity of the related chromosome

set remains to be confirmed. Selection for growth vigor and fertility resulted in the preferential

maintenance of lines with the complete complement of B. napus chromosomes, suggesting

that plants with additive karyotypes were the best adapted of the lines.

The high frequency of homoeologous pairing of chromosomes in artificially synthesized

Brassica allopolyploids together with non-paired and multipaired chromosomes [41–43]

might lead to aberrant chromosome segregation and the formation of aneuploid gametes and,

subsequently, aneuploid progeny, as the three cultivated Brassica diploids had closely related

genomes. In our nulli-tetrasomic lines, in addition to the quadrivalents formed by the four A-

genome chromosomes, other quadrivalents resulted from homeologous pairing between A-

and C-genome chromosomes, showing non-diploidized cytological behavior. By contrast,

quadrivalents from the four duplicated or different paralogs of A-genome chromosomes only

occurred in ~15% of cells, indicating that they mainly formed two bivalents by homologous

pairing. It was somewhat unexpected that most quadrivalents (~85%) consisted of chromo-

somes from both the A and C genomes. The variable frequencies of quadrivalent formation

among lines points to subtle differences in chromosome homoeology and structure. The high

frequency of quadrivalent formation in lines with 20 A-genome and 18 C-genome chromo-

somes also reveals the high degree of homoeology among some chromosome sets and indicates

that the new B. napus lines required longer periods of time for meiotic diploidization.

Hybridization and introgression are important methods for the transfer and/or de novo
origination of traits, and they play an important role in facilitating speciation [44] and plant

breeding. Rapid introgression of alien genes/traits has been achieved using crosses that pro-

duce partial hybrids with the same chromosome number as the female parent but morphologi-

cal variations in plants such as rice (Oryza sativa, [45]), sunflower (Helianthus annuus; [46]),
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and rapeseed [32,47–49]. Extensive stochastic genomic and epigenomic variations could be

induced by the introgression of alien genetic elements [50]. Although few genes or DNA

sequences from O. violaceus were confirmed to be incorporated in our lines, many more novel

DNA bands were detected (S3 Table), which may provide the genetic foundation for their phe-

notypic variation (S1 Table). These B. napus introgression and aneuploid lines, particularly

nulli-tetrasomics, are unique and should be valuable for studying the genetic control of meiotic

pairing, chromosome balance, and dosage compensation, as well as chromosomal manipula-

tion during breeding.
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