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Background: Multi‑marker approaches for risk prediction in coronary artery disease  (CAD) have been 
inconsistent due to biased selection of specific know biomarkers. We have assessed the global proteome 
of CAD‑affected and unaffected subjects, and developed a pathway network model for elucidating the 
mechanism and risk prediction for CAD.
Materials and Methods: A  total of 252  samples  (112 CAD‑affected without family history and 140 
true controls) were analyzed by Surface‑Enhanced Laser Desorption/Ionization Time of Flight Mass 
Spectrometry (SELDI‑TOF‑MS) by using CM10 cationic chips and bioinformatics tools.
Results: Out of 36 significant peaks in SELDI‑TOF MS, nine peaks could do better discrimination of CAD 
subjects and controls (area under the curve (AUC) of 0.963) based on the Support Vector Machine (SVM) 
feature selection method. Of the nine peaks used in the model for discrimination of CAD‑affected and 
unaffected, the m/z corresponding to 22,859 was identified as stress‑related protein HSP27 and was shown 
to be highly associated with CAD  (odds ratio of 3.47). The 36 biomarker peaks were identified and a 
network profile was constructed showing the functional association between different pathways in CAD.
Conclusion: Based on our data, proteome profiling with SELDI‑TOF MS and SVM feature selection methods 
can be used for novel network biomarker discovery and risk stratification in CAD. The functional associations 
of the identified novel biomarkers suggest that they play an important role in the development of disease.
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INTRODUCTION

Coronary artery disease (CAD) is the principal cause 
of death in most countries and despite of major 
advances in treatment, a large number of victims 
die apparently healthy and suddenly without prior 
symptoms. The major challenge in cardiovascular 
medicine is to find a way of predicting the risk that 
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an individual will suffer from the disease.[1] Most risk 
prediction algorithms screen using the Framingham 
risk score (FRS), which considers conventional 
risk factors such as total cholesterol, high‑density 
lipoprotein (HDL), smoking, hypertension, age, and 
gender in the algorithm. However, Kanjilal et  al.[2] 
have shown that in Asian Indians, the Framingham 
model defined only 5% of their study cohort to be at 
high risk, which was an underestimation of CAD risk 
in the genetically predisposed population. Addition of 
new biomarkers may add a better value proposition to 
the risk prediction.[3] Furthermore, it was also shown 
that use of inflammatory markers such as C‑reactive 
protein.[4] And coagulation factor‑VII expression and 
genetic markers can add value for risk prediction in 
Asian Indians.[5] All data so far suggest that there 
is a need to identify better biomarkers to develop 
a comprehensive model for CAD risk prediction, 
especially for Indians.

Global proteome analysis can provide an overall 
understanding of the disease changes and contribute 
to the field of clinical cardiovascular science.[6,7] 
Biomarker discovery using Surface-Enhanced Laser 
Desorpt ion / Ionizat ion  Mass  Spectrometry 
(SELDI‑TOF MS) is a novel approach and widely 
used in biomarker detection and identification.[8] This 
method is highly advantageous due to the sensitivity 
of the assay and the low sample volume requirement. 
Recent advances in the use of SELDI‑TOF MS in 
CAD have been highlited by Wang,[6] in the chinese 
population.

In the present study we used the SELDI‑TOF MS 
technology for identifying differentially expressed 
protein patterns in subjects with and without CAD. 
Furthermore, we have used three different techniques 
namely Support Vector Machine (SVM), Discriminant 
Analysis (DA), and Multilayer perceptron Artificial 
Neural Networks (ANN) for risk prediction. We identified 
that the SVM models can give better classification and 
therefore can be used along with protein profiles in risk 
prediction. Of the 9 m/z peaks, which could significantly 
discriminate affected and unaffected subjects, one of the 
peaks was HSP27 and was validated as a potential risk 
prediction biomarker in this study.

There are approximately 30,000 articles on cardiac 
biomarkers on PubMed. However, only a small number 
of these studies have yielded useful biomarkers 
for clinical purposes. Genes or proteins usually 
work collaboratively and involve several pathways. 
Protein‑protein interactions and sub‑networks play 
a major role in modulation of specific pathways and 
by using this information the predictive value of 
algorithms could be improved to higher levels. Based 

on the network profile developed from the biomarkers, 
we identified interaction of several pathways like 
stress (HSP27, DAOA), metabolic stress (ROMO1, 
QRFP), inflammation (INFA2, PLDN, CDKN2B, APP, 
FAU, and ENSG00000235915), coagulation (PLG, 
FGA, C3), obesity (APOC2, INSL4), hypertension 
(VIP), calcium binding (CALML4), and cell adhesion 
(VTN, MPZL3) as interacting members in the disease. 
The modulation of one or more of these pathways can 
lead to a chain reaction of changes in the pathways 
leading to the onset of CAD. Therefore, use of these 
novel biomarkers may give better risk prediction for 
CAD in Indians.

MATERIALS AND METHODS

Study participants and samples
The study comprised of 252 population based subjects 
out of which 112 probands without family history of 
CAD and 140 true controls were included. The baseline 
characteristics of study participants are shown in 
Table 1. The affected subjects were selected based on 
the following criteria: (1) Patient is a male ≤60 and 
female ≤65 on the onset of CAD, diagnosis of CAD via 
ECG/echo/biochemical or angiogram, patients posted 
for Percutaneous Transluminal Coronary Angioplasty 
(PTCA) and Coronary Artery Bypass Surgery (CABG) 
as diagnosed and given in the physicians report and 
also as answered in the questionnaire. The control 
subjects were enrolled above the age of 18 and should 
not have cardiovascular disease and other major 
illness like caner, liver failure according to the World 
Health Organization (WHO) guidelines. All the patient 
samples were collected after required ethics review 
board assessment and individual consent.

Biochemical assays
Blood was collected from the participants after a 12‑h 
fasting period. Serum cholesterol and triglycerides were 

Table 1: Baseline characteristics of study participants
Variables Control group CAD group P value
n 112 140
Age (years) 48.66±0.68 55.44±0.77 P<0.001
Gender (%)

Male
Female

78.6
21.4

92.0
8.0

0.003

BMI (kg/m2) 24.70±0.34 25.02±0.38 0.05
Cigarette smoking (%) 43.7 56.3 0.02
Hypertension (%) 28.3 77.1 P<0.001
Diabetes (%) 8.5 91.5 P<0.001
Total cholesterol (mg/dl) 182.58±3.35 151.57±4.03 P<0.001
Triglycerides (mg/dl) 156.61±7.27 170.91±8.76 0.681
HDL (mg/dl) 43.45±0.81 37.50±0.98 P<0.001
LDL (mg/dl) 107.82±2.73 79.90±3.28 P<0.001
CAD: Coronary artery disease, Data are Mean±SE
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estimated by standard enzymatic analyze following 
manufacturer’s guidelines  (Randox Laboratories, 
London, UK). HDL cholesterol was estimated after 
precipitation of non‑HDL fractions with a mixture 
of 2.4 mmol/l phosphotungstic acid and 39 mmol/l 
magnesium chloride, and LDL cholesterol was 
estimated using the Friedewald formula[9]. A normal 
human serum pool  (NHP) prepared in‑house was 
run with each batch. The inter‑assay coefficients of 
variation (CVs) for commercial controls and NHP 
ranged from 4.9% to 7% for total cholesterol, 6.1% 
to 7.7% for triglycerides, and 7.1% to 12.2% for HDL 
cholesterol.

Reagents and instruments
Sinapinic acid (SPA) and CM10 chip were purchased 
from Bio‑Rad, Hercules, CA (USA) and all other 
reagents from Sigma Aldrich, St. Louis, MO (USA). 
The serum samples (in duplicates) were analyzed 
using CM10 chip followed by the Ciphergen Express 
Client software. Serum samples were thawed on ice 
and centrifuged at 14,000 r.p.m. for 5  min at 4°C. 
A 5‑µl volume of supernatant of each sample and 10 µl 
of U9 buffer (9 M urea, 2% CAHPS, 1% dithiothreitol 
(DTT)) were added into a tube, which was mixed for 
30 min on a platform shaker at 4°C. Next, 185 µl of 
sodium acetate (100 mM, pH  4) was added to the 
U9/serum mixture and mixed at 4°C for 2  min on 
the shaker. A 200‑µl volume of sodium acetate was 
added and mixed for 5  min to activate the CM10 
chips. Diluted samples (100 µl) were spotted onto a 
bioprocessor (Ciphergen Biosystems, Fremont, CA, 
USA) containing the ProteinChip arrays and then 
mixed on a platform shaker for 60 min at 4°C. The 
excess serum was discarded and the chips were 
washed three times with 200 µl of sodium acetate and 
twice with 5 µl of dH2O. The chips were then removed 
from the bioprocessor and air‑dried. Before SELDI 
analysis, 1 µl of a saturated solution of SPA (Bio‑Rad) 
was applied on to each chip twice and air‑dried.

Protein chip array analysis
A  set of different protocols was used on each spot 
with varied laser intensities. Pre‑processing was done 
using ProteinChip©

 software 3.1. The peaks with less 
background noise were considered for further analysis 
after baseline subtraction. After normalization peaks 
with standard deviation of ±2 were deleted. Finally 
clusters were made by Expression Differential 
Matrix (EDM) within a range of 1500‑30,000 Da. We 
considered m/z less than 1500 as matrix noise. A first 
pass of 20% anda 0.3% mass window and a second 
pass of 2 were given. Mass accuracy was calibrated to 
<0.1% by all‑in‑one peptide molecular mass standard 
(Ciphergen Biosystems, Fremont, CA, USA).

Bioinformatics and biostatistics analysis
The baseline for the study participants were carried 
out using SPSS version 17 software. The continuous 
data were analyzed and calculated by Student’s t‑test 
and cross‑tabs for the categorical data. We clustered 
the spectra and considered those spectra, which had 
a significant P value (P < 0.05) for further analysis. 
To better discriminate the CAD and control subjects 
based on the peak intensities for diagnostic profiling, 
we considered three methods, Support Vector Machine 
(SVM), Multilayer perceptron Artificial Neural 
Networks (ANN), and Discriminant Analysis (DA).[10,11] 
The type of SVM model we used was C‑SVM and the 
kernel function used was RBF (radial basis function). 
Optimal values for parameters were found by SVM 
grid and pattern search with search criterion to 
minimize the total error. Each combination of peak 
was analyzed by 10‑fold cross‑validation. For ANN, 
architecture was made with an input layer with 36 
neurons, a single hidden layer with nine neurons, 
and output layer with two neurons and four‑fold 
cross‑validation.

The 36  m /z  peaks were determined as 31 
potential biomarkers using proteomics tools from 
SWISSPROT  (www.expasy.org) based on the mass 
and pI (standard deviation of ± 1% of the overall mass 
of the protein).[12‑15]. We selected one peak (m/z 22859) 
corresponding to HSP27 for performing enzyme‑linked 
immunosorbent assay (ELISA) assays in new set of 
affected (n = 125) and unaffected (n = 431) subjects. 
HSP27 ELISA (R and D Systems, Minneapolis, MN, 
USA; cat. no. DYC1580‑2) was performed in serum 
samples of the subjects. The biomarkers identified 
above were given as input into STRING database 
(http://string‑db.org/)[16] to generate the network of 
biomarkers for assessing functional association.

RESULTS

Out of 252 subjects, 91.5% of CAD‑affected subjects 
were diabetic and 77.1% were suffering from 
hypertension [Table 1]. Furthermore the conventional 
risk factors hypertension, diabetes, smoking, total 
cholesterol, HDL, and age were found to be significant 
between cases and controls.

Differential protein pattern in controls and CAD‑affected
The spectra of 112 subjects with CAD and 140 
controls were analyzed. Fifty‑six CAD samples 
and 70 control samples were used as test set and 
same number of samples in the as validation 
set for blind test. A  total of 67  m/z clusters were 
obtained of which 36 were significantly  (P  < 0.05) 
differentially expressed. The specific proteins for 
each m/z were listed in Supplementary Table 1 after 



Vangala, et al.: Network biomarker‑based coronary artery disease risk stratification

4 	 Advanced Biomedical Research | July - September 2013 | Vol 2 | Issue 3

the SWISSPROT database search. We obtained nine 
peaks that could discriminate the cases and controls 
in the SVM model. The descriptive statistics of these 
nine peaks are shown in Table 2. Biomarkers with 
m/z 22,859 [Figure 1], 9284, 14,660, 9481, and 14,720 
were highly expressed in CAD‑affected subjects, 
and m/z 5896, 8922, 8600, and 19,251 were highly 
expressed in controls [Table 2].

Comparison of three different approaches of model 
building
The 36 peaks were further analyzed by different 
techniques to obtain the best set of peaks and algorithm 
for risk prediction. We compared performance of three 
algorithms Discriminative Analysis (DA), Multilayer 
perceptron Artificial Neural Networks (ANN), and 
Support Vector Machine  (SVM) based on accuracy, 
sensitivity, specificity, and area under the receiver 
operating curve (ROC) [Table 3a]. SVM was found to 
be the best model for classification using our data with 
an area under the curve  (AUC) of 0.807 and better 
specificity, sensitivity, and accuracy. Furthermore, 
the test set also gave good classification data with 
SVM [Table 3b] with AUC of 0.785 and other features. 
Also when we consider the overall misclassification 
the least values were observed for SVM with 23.02% 
and 26.19% for training and test data, respectively.

Use of SELDI biomarkers and modulation of seven 
different pathways for risk stratification
As we know that FRS is used widely for risk prediction; 
however we also know that the use of FRS is limited for 
Asian Indians. Therefore, we considered the nine peaks 
identified by SELDI‑TOF‑MS as potential biomarkers 
along with the FRS model for risk stratification. 
FRS alone gave an AUC of 0.888, which improved to 
0.963 on addition of the nine potential biomarkers 
[Figure  2]. These nine biomarkers represent seven 

different pathways, stress and stress/immunity (m/z s 
22,859: HSP27, 5896: Leukocyte‑specific transcript‑1), 
coagulation (m/z s 8922: Plasminogen precursor 
activating peptide, 9284: Vitronectin‑10, 8600: 
Pallidin gene isoform‑2), infection and inflammation 

Table  2: Mean intensity±SE levels in CAD and controls for 
biomarkers in the test data
Peaks Identified protein CAD‑affected Controls P value
22,859 HSP27 4.19±0.14 3.41±0.13 P<0.001
5896 Leukocyte‑specific 

transcript‑1 protein 
(LST1_HUMAN)

122.63±8.37 196.33±7.83 0.023

8922 Plasminogen 
precursor‑activating 
peptide (PLMN_
HUMAN)

323.27±14.54 367.84±13.61 0.026

9284 Vitronectin V10 subunit 
(VTNC_HUMAN)

504.68±18.50 391.53±17.32 P<0.001

19,251 Interferon a2 Chain 
(IFNA2_HUMAN)

2.36±0.37 4.49±0.35 P<0.001

14,660 Farataxin chain 3
Farataxin (78 ‑ 210)
(FRDA_HUMAN)

16.71±0.57 14.56±0.53 0.006

9481 Calmodulin‑like 
protein‑4 isoform‑3 
(CALL4_HUMAN)

94.72±2.74 82.02±2.57 0.001

14,720 Cyclin‑dependant 
kinase‑4 inhibitor‑B 
(CDN2B_HUMAN)

7.60±0.22 6.92±0.20 0.021

8600 Pallidin gene isoform‑2 
(PLDN_HUMAN)

120.63±8.38 151.80±7.50 0.006

CAD: Coronary artery disease

Table 3b: Classification of CAD and controls using three different 
methods, SVM, ANN, and DA, suggesting that the SVM model 
is the best classifier for training data
Model Accuracy (%) Sensitivity (%) Specificity (%) AUC
SVM

Validation 73.81 85.71 58.93 0.785
ANN

Validation 68.25 78.57 55.36 0.765
DA

Validation 70.63 80.00 58.93 0.741
ANN: Multilayer perceptron Artificial Neural Networks, AUC: Area under the 
curve, CAD: Coronary artery disease, DA: Discriminant analysis, SVM: Support 
vector machine

Table 3a: Classification of CAD and controls using three different 
methods, SVM, ANN, and DA, suggesting that SVM model is the 
best classifier for training data
Model Accuracy (%) Sensitivity (%) Specificity(%) AUC
SVM

Training 76.98 82.86 69.64 0.807

ANN
Training 76.98 82.86 69.64 0.794

DA
Training 73.81 77.14 69.64 0.776

ANN: Multilayer perceptron Artificial Neural Networks, AUC: Area under 
the curve, CAD: Coronary artery disease, DA: Discriminant analysis, 
SVM: Support Vector Machine

Figure 1: Representative spectrum report of average m/z 22,859 in 
CAD and control samples
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(m/z 19,251: Interferon a‑2), mitochondrial damage 
(m/z 14,660: Farataxin chain‑3), calcium binding 
(m/z 9481: Calmodulin‑like protein‑4 isoform‑3), and 
cell cycle  (m/z 14,720: Cyclin‑dependent kinase‑4 
inhibitor‑B). Modulation of these biomarkers results 
in the change in the functional implications of the 
pathways, which may result in the disease.

Networking biomarkers and pathways
The proteins identified [Supplementary Table 1] were 
further taken to generate the functional association 
network among themselves and with the other 
proteins. These proteins are from multiple pathways 
like inflammation, cell signaling, cell adhesion, 
immunity, obesity, lipid metabolism, coagulation, 
stress, membrane transport, protein degradation, 
coagulation, and cell cycle. Our data suggest that CAD 
is a multi‑factorial process and deregulation of these 
factors may lead to the disease. As seen in Figure 3a, 
the network of the proteins identified suggests that 
16 of 31 proteins have minimal or no linkage among 
themselves (MPZL3, INSL4, SCOC, ROMO1, CALML4, 
ENSG0000023591, PSAP, SRP9L1, ANKDD1A, 
CMTM1, CDN2B, HMSDV, DSC10, KRTDAP, VGLL4, 
FXN, and APOC2). These proteins need to be proven 
further to understand their biological role suggesting 
that they might be novel biomarkers for CAD in this 
study. Fifteen proteins were networked with at least 
one more protein (HSPB1, FGA, PLG, VTN, APP, 
QRFP, C3, POMC, CHGA, VIP, CRH, FAU, C11orf10, 
IFNA2, and CDKN2B).

Further, when we extended this network by adding 
other interacting or functionally associated proteins 
[Figure 3b], we saw that the individual proteins, which 
were not in the network in Figure 3a, had changed 
from 17 to 9 proteins. These nine proteins (ANKDD1A, 
ROMO1, SCOC, SRP9L, MPZL3, CALML4, CMTM1, 
KRTDAP, and ENSG0000023591) are potentially 
novel members and further analysis may be needed 
to identify their networks and associations. However, 
most of the other biomarkers were directly or indirectly 
were associated.

CAD‑associated networks
Our data [Figure  3a and b] suggest that multiple 
pathways are associated and networked together in 
the CAD subjects for the onset of the disease. The most 
networked proteins [Supplementary Table  1] were 
identified based on number of edges for each protein 
in the network [Figure  3b]. The biomarkers FAU, 
CRH, APP, VIP, CHGA, POMC, HSPB1, C3, FGA, 
VTN, INFA2, FXN, CDKN2B, and PLDN are from 
different pathways suggesting that these pathways 
interact in the disease condition. These association 
studies suggest that coagulation, cell signaling, kinase 

inhibitors, stress, protease inhibitors, and obesity 
are major pathways leading to CAD in Asian Indians 

Figure 3a: Functional association of proteins identified by SELDI‑TOF MS

Figure 3b: Extended network and association of potential biomarkers

Figure  2: Receiver operating curves for FRS and for addition of 
biomarker expressions in discriminating CAD vs. controls. The 
improvement of AUC curve suggests that addition of SELDI‑TOF‑based 
feature selection biomarkers may add value in CAD risk stratification
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Supplementary Table 1: m/z peaks identified after SELDI-TOF analysis. Significant peaks used for discrimination of CAD and 
controls are marker in bold.

S. 
NO

Average 
M/Z

Protein Name Pathway Functional Associations

1 4467.4 Transcription cofactor vestigial-like 
protein 4 VGLL4_HUMAN (VGLL4)

Transcription Factor Co-activator 
Vestigial like 4 (Drosophila); May act as a 
specific coactivator for the mammalian TEFs  
(By similarity) (296 aa)

VEGFA

2 22676 Myelin protein zero-like protein 3  
MPZL3_HUMAN (MPZL3)

Cell Adhesion
Myelin protein zero-like 3; Mediates homophilic 
cell-cell adhesion (By similarity) (235 aa)

--

3 9430.8 Keratinocyte differentiation-associated 
protein KTDAP_HUMAN

Differentiation --

4 7756.9 Ubiquitin-like protein FUBI UBIM_
HUMAN (FAU)

Ubiquitin like function RPS3, RPL35, RPS5, RPS10, RPS21, 
C11ORF10, RPS16, RPL30, RPS9, RPS15, 
RPL12, INS, PRL

5 5896.5 Leukocyte-specific transcript 1 protein 
LST1_HUMAN (ENSG0000023591)

Cell shape and Immunity --

6 9080.8 UPF0197 transmembrane protein 
C11orf10 CK010_HUMAN (C11orf10)

Membrane Transport FAU, RPL35S

7 2789.8 Early placenta insulin-like peptide 
INSL4_HUMAN (INSL4)

Cell Signaling
Insulin-like 4 (placenta); May play an important 
role in trophoblast development and in the 
regulation of bone formation (139 aa)

INS

8 2952.2 CKLF-like MARVEL transmembrane 
domain-containing protein 1 CKLF1_
HUMAN (CMTM1)

Membrane Transport --

9 4643.5 Ankyrin repeat and death domain-
containing protein 1A, Isoform 3, 
AKD1A_HUMAN (ANKDD1A)

Signal Transduction --

10 4746.2 Corticoliberin CRF_HUMAN (CRH) Inflammatory respnse PRL, GHRH, NPY, MC2R, LEP, SST, AGRP, 
MC4R, CRHR1, MC5R, VIPR1, CRHR2, 
POMC, NPY, MC1R, GCG, VEGFA, NR4A1, 
MC3R, VIP

11 5918.6 Gamma-secretase C-terminal  
fragment 50, A4_HUMAN (APP)

Protease Inhibitor APBA1, APBB1, APOE, APBB3, QRFPR, 
KAT5, PSEN1, A2M, PSEN2, APBB2, GCG, 
SPARC, SST, GPC1, POMC, KNG1, NPY, 
PLG, NCSTN, PRS53, C3, APBA2, IDE, 
FN1, APBA3, SERPINF2, SERPINE1, QRFP, 
TGFB2

12 6088.6 Pro-opiomelanocortin, (Lipotropin 
gamma) COLI_HUMAN (POMC)

Obesity, cell signalling PRL, MC5R, FNI, MC1R, MC3R, GHRH, 
AGRP, VTN, MC2R, NPY, MC4R, APP, 
GCG, VIPR1, CHGA, VIP, NR4A1, SCG3, 
KNG1, CHR2, C3, A2M, SST, CRH, LEP, 
CRHR1, VEGFA, INS

13 6108.8 Short coiled-coil protein Isoform 2, 
SCOC_HUMAN 

Protein Binding, Cell signaling --

14 9137.3 Proactivator polypeptide (Saposin-D), 
SAP_HUMAN (PSAP)

Lipid Metabolism and Glycosilation PSEN2, PSEN1

15 9287.4 Down syndrome critical region protein 
10, DSC10_HUMAN

Uncharacterized ---

16 4538.2 VIP peptides, Intestinal peptide  
PHV-42, VIP_HUMAN (VIP)

Vasodilation, lowers arterial blood pressure, 
stimulates myocardial contractility, increases 
glycogenolysis and relaxes the muscles 

CRHR2, GCG, LEP, CCND1, PRL, SST, 
POMC, VPR1, CHGA, SCG3, KNG1, 
VEGFA, NPY, INS, CRH

17 4522 Orexigenic neuropeptide QRFP, QRF-
amide, OX26_HUMAN (QRFP)

Stimulates feeding behavior, metabolic rate 
and locomotor activity and increases blood 
pressure. May have orexigenic activity. May 
promote aldosterone secretion by the adrenal 
gland

LEP, KNG1, GCG, NPY, QRFPR, APP

18 4636.7 Ankyrin repeat and death domain-
containing protein 1A, Isoform 3, 
AKD1A_HUMAN (ANKDD1A)

Signal Transduction 0

19 5894.6 Reactive oxygen species modulator 1, 
Isoform 2, ROMO1_HUMAN (ROMO1)

Oxidative stress 0

Table 1 (contd...)
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S. 
NO

Average 
M/Z

Protein Name Pathway Functional Associations

20 6031.3 Minor histocompatibility protein HMSD 
variant form, HMSDV_HUMAN

Precursor of the histocompatibility antigen 
ACC-6

0

21 8918.5 Apolipoprotein C-II, APOC2_HUMAN 
(APOC2)

Lipid binding LPL. APOBB3, APOE, APOC2

22 9124 Isoform 2 of Signal recognition  
particle 9 kDa protein,  
SRP09_HUMAN (SRP09L1)

Signal-recognition-particle assembly has a 
crucial role in targeting secretory proteins to 
the rough endoplasmic reticulum membrane. 
SRP9 together with SRP14 and the Alu portion 
of the SRP RNA, constitutes the elongation 
arrest domain of SRP. The complex of SRP9  
and SRP14 is required for SRP RNA binding.

0

23 1894.1 Isoform 2 of D-amino acid oxidase 
activator, DAOA_HUMAN

activate D-amino acid oxidase DTNBP1

24 2785.7 Early placenta insulin-like peptide A 
chain, INSL4_HUMAN (NSL4)

Cell Signalling INS

25 5086.6 Pancreastatin, Chromogranin-A,  
CMGA_HUMAN (CHGA)

strongly inhibits glucose induced insulin  
release from the pancreas

NPY, GCG, SST, SCG3, PLG, POMC, VIP, 
INS

26 6083.7 Lipotropin gamma, Pro-
opiomelanocortin, COLI_HUMAN 
(POMC)

Hormonal balance in skin pigmentation PRL, MC5R, FN1, MC1R, MC3R, GHRH, 
AGRP, VTN, MC2R, NPY, MC4R, APP, 
GCG, VIPR1, CHGA, VIP, NR4A1, SCG3, 
KNG1, CRHR2, C3, A2M, SST, CRH, LEP, 
CRHR1, VEGFA, INS

27 22859 HSP27
HSPB1_HUMAN (HSPB1)

Stress and immune response CCND1, PLG, CDKN1A, CTNND1, 
MAPKAPK5, MAPKAPK2

28 8922 Plasminogen Precursor Activating 
Peptide
PLMN_HUMAN (PLG)

Involved in coagulation SERPINF2, SERPINE1, FN1, C3, KNG1, 
SPARC, HSPB1, VTN, TGFB2, APP, FGG, 
FGB, FGA, A2M, PLAU, PLAUR, HRG, 
SERPINC1, IGGB3

29 8900 Compliment C3a
CO3_HUMAN (C3)

Involved in coagulation PLG, APOE, CR2, INS, VTN, VSIG4, CFI, 
CFH, APP. POMC, KNG1, FNI, NPY,SST

30 5901.57 Fibrinogen alpha-E chain  
decomposition product
FIBA_HUMAN (FGA)

Involved in coagulation.  Fibrinogen has a 
double function: yielding monomers that 
polymerize into fibrin and acting as a cofactor  
in platelet aggregation

SERPINF2, FGB. SERPINE1, ITGA2B, PLG, 
ITGB3, F2, HRG, FN1, FGG

31 9284 Vitronectin V10 subunit
VTNC_HUMAN  (VTN)

Interacts with PAI1 in coagulation pathway.  
Vitronectin is a cell adhesion and spreading 
factor found in serum and tissues. Vitronectin 
interact with glycosaminoglycans and 
proteoglycans. Is recognized by certain 
members of the integrin family and serves as a 
cell-to-substrate adhesion molecule. Inhibitor  
of the membrane-damaging effect of the 
terminal cytolytic complement pathway.

SERPINC1, KNG1, ITGAV, POMC, 
SERPINE1, ITGA2B, FGG, PLG, FNI, KDR, 
C3, PLAU, HRG, TGFB2, VEGFA, ITGB3, 
SPARC

32 19251 Interferon Alpha 2 Chain
IFNA2_HUMAN (INFA2)

Inflammation.  Produced by macrophages,  
IFN-alpha has antiviral activities.

CDKN2B, IFNAR1, INFAR2

33 14660 Farataxin Chain 3
Frataxin(78-210)
FRDA_HUMAN (FXN)

Mitochondrial damage LEP, INS, LPL, NPY, APBA1, AGRP, GCG

34 9481 Calmodulin like protein 4 Isoform 3
CALL4_HUMAN (CALML4)

Calcium ion binding --

35 14720 Cyclin dependant kinase 4 inhibitor B
CDN2B_HUMAN

Cell cycle. Interacts strongly with CDK4 and 
CDK6. Potent inhibitor. Potential effector of 
TGF-beta induced cell cycle arrest.

IDE, CTNNB1, CDK4, CDKN1A, CDKN2B, 
CCND1, CCND3, IFNA2, CDKN2C, CDK6

36 8600 Pallidin Gene Isoform 2
PLDN_HUMAN
(PLDN)

Platelet storage pool deficiency.  Involved in  
the development of lysosome-related 
organelles, such as melanosomes and platelet-
dense granules. May play a role in intracellular 
vesicle trafficking, particularly in the vesicle-
docking and fusion process.

BLOC1S2, MUTED, SNAPIN, DTNBP1, 
BLOC1S3

Table 1 (contd...)
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in our studies. It is understood that stress leads to 
several changes, which might play a major role in early 
pathogenesis of CAD. Therefore, markers like ROMO1 
and HSP27 might be the first candidate markers, 
which need to be evaluated, and we evaluated HSP27 
as potential marker for the same.

The stress‑related protein HSP27 is highly associated 
with CAD in Asian Indians
HSP27 is a member of the small heat‑shock protein 
(HSP) (sHSP) family and is involved in diverse range 
of functions in addition to its chaperoning function. 
We identified m/z 22,859 as HSP27 (molecular weight 
22,783 Da). HSP27 is also a member associated with 
five different partners, which in turn are regulating 
multiple pathways such as PLG (plasminogen 
precursor‑activating peptide), CDKN1A, CTNNB1, 
CCND1 (cell‑cycle proteins), and kinases such as 
MAPKAPK2 and 5. These associations suggest that 
many cellular responses may be triggered along 
with HSP27 in CAD and therefore this biomarker 
was further validated. We performed ELISA assay 
for HSP27 in 431 subjects (125 CAD‑affected and 
306 unaffected). We found that the CAD‑affected 
subjects had higher expression levels that unaffected 
[Table 4a]. The odds ratio of HSP27 alone [Table 4b] 
was not significant; however, after addition of 
conventional risk factors (age, gender, body mass 
index, waist circumference, and hypertension), the 
odds ratio of fourth quartile in comparison to first 
quartile improved to 2.81 (95% confidence interval 
(CI): 1.18‑6.79, P  =  0.019). Furthermore, upon 
adjustment with lipids (triglycerides, total cholesterol, 
HDL, and LDL), the odds ratio of the fourth quartile 
improved to 3.47 (95% CI: 1.41‑8.56, P = 0.007).

DISCUSSION

As CAD is a major killer in India, it is very important 
to identify the ways of improving risk prediction. At 

present diagnosis or risk prediction is dependent on 
clinical history, physical examination, and other tests, 
which do not look at the biochemical or molecular 
changes, which might give early risk prediction to 
CAD. In our present study, we have explored and 
validated the process of identification of biomarkers 
using SELDI‑TOF‑MS and further using the patterns 
of m/z to diagnose the risk of CAD in Asian Indians. 
It has been well established that SELDI‑TOF‑based 
CAD diagnosis can be used;[6‑10] our attempt to use 
novel biomarkers for risk prediction can add value 
for early diagnosis and prevention of CAD endemic.

SELDI‑TOF‑based biomarker detection and use of 
protein patterns derived from serum to differentiate 
between CAD and no CAD is of major interest[11,17] as it 
allows complete proteome profiling in a high‑throughput 
format. Using feature selection techniques such as 
SVM helps in a more robust method of classifying the 
subjects.[18,19] Our analysis showed that the power of 
each biomarker to discriminate between the cases and 
controls was best for the SVM model by estimating the 
ROC. The greater the AUC value for the biomarkers 
shows the relative importance value of the ability 
to accurately distinguish between the different 
groups.[20] Apart from using the SVM to identify the 
best biomarkers and their discrimination between 
CAD and no CAD, we have also established that the 
biomarkers add a very important value for FRS risk 
prediction method.

The 31 proteins identified and their networking 
suggests that multiple pathways are associated with 
CAD and in specific inflammation, cell signaling, 
coagulation, cell adhesion, stress, and obesity are the 
major pathways. It is also very interesting to note 
novel proteins, which are not associated with any of 
the known pathways to be identified [Figure 3a and b]. 
These proteins may have no earlier data in relation 
to coronary artery disease and more studies may be 
needed to understand their role. Of the 15 proteins 
identified as highly networked FAU, CRH, POMC, 
VIP, VTN, and PLG are prominent with more than 
10 associations suggesting that further analysis with 
these proteins may yield better understanding of the 
pathways involved in the CAD.

Table 4a: Mean expression levels of HSP27 in CAD‑affected and 
unaffected subjects
Biomarker Affected Unaffected P value
HSP27 1376.95±210.41 854.48±35.08 0.016
CAD: Coronary artery disease, Mean±SE

Table 4b: Association of HSP27 based on odds ratio
HSP27 quartiles 1 2 3 4

Model 0
Quartiles alone

Odds ratio (95% CI) 1 1.39 (0.78‑2.48) 0.66 (0.35‑1.23) 1.23 (0.69‑2.21)
P value 0.091 0.261 0.191 0.49

Model 1
Adjusted with CRF

Odds ratio (95% CI) 1 2.59 (1.10‑6.09) 1.48 (0.58‑3.79) 2.84 (1.18‑6.79)
P value 0.066 0.029 0.416 0.019

Model 2 
Additional adjustment with lipids

Odds ratio (95% CI) 1 2.48 (1.03‑5.97) 1.41 (0.53‑3.74) 3.47 (1.41‑8.56)
P value 0.034 0.043 0.485 0.007

HSP27 shows good association when the model is adjusted for conventional risk factors (body mass index, hypertension, waist circumference, age, and gender) and 
lipids (triglycerides, total cholesterol, HDL, and LDL)
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Our data suggest that the stress‑ and immunity‑related 
protein HSP27 might play a major role in CAD for 
Asian Indians [Table 4a and b]. The functional role 
of several HSPs in atherosclerosis has been well 
studied as they represent the response of the cells 
to blood vessel to different stress signals.[21] It is 
also well known that HSPs are potential targets for 
immune response and contribute to inflammatory 
process.[22] The smooth muscle cells (SMCs) play a 
important role in atherogenesis as they can over 
express HSPs as a part of survival mechanism 
following exposure to variety of stressors (example: 
High blood pressure). Most research on HSPs was 
focused on HSP60/65 and 70; however recently 
evidence of role of HSP27 in CAD is becoming 
evident.[23‑26] In our study we have analyzed the 
serum levels of 431 subjects and found that HSP27 
alone is not associated, but when the model was 
adjusted for conventional risk factors and lipids, 
higher association to CAD was seen [Table 4b]. Our 
data suggest that HSP27 might play important role 
in risk prediction and further studies are needed to 
evaluate the value addition by this biomarker. It 
was also suggested that phosphorylated HSP27 may 
have a protective effect in atherogenesis;[27] therefore 
further studies are needed to evaluate the functional 
role of HSP27 versus the use of expression levels in 
risk prediction.

Our findings revealed that SELDI‑TOF‑MS technique 
can be used for risk stratification of CAD‑affected 
and unaffected subjects using the SVM method. The 
networking of proteins and the pathways indicate 
that several pathways such as stress, inflammation, 
coagulation, cell adhesion, signaling, and obesity are 
interlinked and might crosstalk in the development 
of the disease. Our approach has resulted in 
understanding the network and modulation of 
pathways that contain specific sub‑networks and 
novel biomarkers that may help in improving the 
risk prediction. Further, we used SELDI‑TOF‑MS 
not only in identification of new biomarkers, but also 
as a means of understanding the mechanism of CAD 
development by network construction.
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