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Calorie restriction (CR), which is a factor that expands lifespan and an important player in immune response, is an effective
protective method against cancer development. Thymus, which plays a critical role in the development of the immune system,
reacts to nutrition deficiency quickly. RNA-seq-based transcriptome sequencingwas performed to thymus tissues ofMMTV-TGF-α
mice subjected to ad libitum (AL), chronic calorie restriction (CCR), and intermittent calorie restriction (ICR) diets in this study.
Three cDNA libraries were sequenced using Illumina HiSeq™ 4000 to produce 100 base pair-end reads. On average, 105 million
clean reads were mapped and in total 6091 significantly differentially expressed genes (DEGs) were identified (p < 0 05). These
DEGs were clustered into Gene Ontology (GO) categories. The expression pattern revealed by RNA-seq was validated by
quantitative real-time PCR (qPCR) analysis of four important genes, which are leptin, ghrelin, Igf1, and adinopectin. RNA-seq
data has been deposited in NCBI Gene Expression Omnibus (GEO) database (GSE95371). We report the use of RNA sequencing
to find DEGs that are affected by different feeding regimes in the thymus.

1. Introduction

Calorie restriction (CR) is the reduction in calorie intake
without inducing malnutrition [1, 2]. The two main types
of calorie restriction are chronic calorie restriction (CCR)
and intermittent calorie restriction (ICR). ICR refers to the
application of calorie restriction in periods “on” and “off”
[3–6]. Researchers have reported that CR is a more highly
effective experimental manipulation for suppressing tumor
development [7, 8], suppressing autoimmunity [9, 10], and
extending lifespan [11] than fed ad libitum (AL) diet, in
rodents [12]. Moreover, in genetically engineered animal
models, several studies have shown that ICR is more effective
for prevention of cancer development compared to CCR
[4, 13–16], while other studies have found that ICR is less
effective for cancer prevention than CCR [17–22].

The thymus, which plays an important role in the
development of the immune system, is a primary lymphoid
organ and a place of T-cell differentiation and maturation
[23, 24]. The thymus and other lymphoid organs react to
nutrition deficiency more rapidly than most of the other
organs [25, 26]. Several studies show that CR potentiates thy-
mic function [2] and can regulate thymic adiposity [27], since
CR specifically inhibits the adipogenic transcription in the
aging thymus [28].

Breast cancer is the most frequent cancer in women and
causes mainly the death of millions of women each year.
Animal studies have shown that calorie restriction prevents
mammary tumor development [29–32]. MMTV-TGF-α
transgenic mice have a particular value in age-related mam-
mary tumor (MT) development studies. These mice have
been reported to develop MT in their second year of life
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[33] and overexpress TGF-α, epidermal growth factor, which
plays a critical role in the development of the human breast
cancer [34–38].

RNA sequencing (RNA-seq) is one of the applications of
the next generation sequencing (NGS) technologies, with
which gene expression can be measured [39–42]. It is a
sensitive, fast, and efficient method for gene discovery in
organisms [43, 44]. Moreover, RNA-seq has been success-
fully used for annotation, transcript profiling, detecting gene
fusions, single-nucleotide polymorphism (SNP) discovery,
and detecting alternatively spliced RNA forms [40, 45–49].

In the present study, we used RNA-seq technology to
perform a comparative transcriptome analysis of the
MMTV-TGF-α female mouse thymus tissues. The mice were
subjected to AL, CCR (85% of AL-fed mice), and ICR
(3 weeks AL fed, 1 week 40% of AL-fed mice) diets from 10
weeks of age to 17 weeks of age or 18 weeks of age. The aim
of this study is to determine the differences in the gene
expression profiles of the thymus tissue due to different
feeding regimes.

2. Materials and Methods

2.1. Animals and Experimental Design. In this experiment,
MMTV-TGF-α (C57/BL6) female mice were used. These
mice overexpress human TGF-α, a part of epidermal growth
factor receptor (EGFR)/ErbB cascade which is known to play
a role in the development of human breast cancers [34–38].
Mice colonies were maintained using a breeding protocol
and genotyping assay at Yeditepe University Animal Facility,
as previously described [13]. At 10 weeks of age, female
MMTV-TGF-α mice were assigned to one of the following
dietary groups: ad libitum (AL), chronic caloric restricted
(CCR), and intermittent caloric restricted (ICR). The CCR
group received 85% of the daily food consumption of AL
mice, in other words, 15% caloric restriction were applied
to them. The ICR group was fed AL for 3 weeks, and then
for the following week, 60% caloric restriction compared to
AL was applied for one week. Mice diets (Altromin
TPF1414) were purchased from Kobay AS (Ankara, Turkey).
All mice had free access to water. Body weights were mea-
sured weekly, and food intakes were determined daily, for
all mice. The health statuses of the animals were checked
by an expert veterinarian on a regular basis, at least once
a week. Mice were euthanized after overnight fasting, at
the age of 17 or 18 weeks old. Mice in the ICR group were
euthanized after three weeks of AL feeding. Thymus tis-
sues were collected in liquid nitrogen and stored at minus
80°C, until used.

2.2. RNA Extraction, Library Construction, and Sequencing.
Total RNA was extracted from the thymus tissue samples
of three different individual mice in each different diet group,
using Trizol extraction method (Invitrogen, Carlsbad, CA,
USA) according to the manufacturer’s protocol, then further
purified with RNeasy columns (Qiagen). The concentration
of each RNA sample was measured with BioSpec-nano
UV-VIS specthrophometer (Shimadzu, Kyoto, Japan). The
integrity of the RNA was assessed by the Agilent 2100

Bioanalyzer system (Agilent Technologies, Santa Clara, CA).
The mRNA sequencing libraries for RNA-seq were con-
structed with the TruSeq RNA Sample Prep Kit (Illumina,
SanDiego, CA), according to themanufacturer’s instructions.
Pair-end (2× 100 bp) sequencing was performed using an
Illumina HiSeq 4000 Sequencing System (Illumina) at Beijing
Genomics Institute (BGI). RNA-seq data has been deposited
in NCBI Gene Expression Omnibus (GEO) database under
accession number GSE95371.

2.3. RNA-seq Data Processing. Raw pair-end reads were sub-
jected to quality control, and clean reads were filtered with
FASTX-Toolkit (http://hannonlab.cshl.edu/fastx_toolkit/in
dex.html). Clean reads were mapped to GRCm38 mouse
assembly in the Ensemble database using Tophat 2.0.13
[50]. Gene expression levels were quantified by Cufflinks
2.2.1 and normalized by the fragments per kilobase of tran-
script per million fragments mapped method (FPKM). The
differentially expressed genes (DEGs) were identified with
Cuffdiff, a part of Cufflinks package [51]. The DEGs were fil-
tered employing the false discovery rate (FDR) correction,
Fisher’s exact test, and a fold-change method, exhibiting a
corrected p value not greater than 0.05 (p value < 0.05) along
with a fold change value not less than 2.0. All of the data pro-
duced by a Cuffdiff analysis was visualized and integrated
with R [52].

Gene Ontology (GO) is an international, standardized,
gene-function classification system. GO enrichment analysis
identifies all of the GO terms that are significantly enriched
in DEGs compared with the genome background and filters
the DEGs that correspond to biological functions. According
to this method, all DEGs have been mapped to GO terms in
the database (http://www.geneontology.org/); gene numbers
have been calculated for every term, using a hypergeometric
distribution compared with the genome background [43].
We mapped all the DEGs obtained from these libraries
(p value < 0.05) to GO database, to classify for enriched
GO terms.

2.4. RNA-seq Data Validation by qPCR. After the analysis of
RNA-seq data, four of the important genes for calorie restric-
tion studies, leptin (Lep), ghrelin (Ghr), insulin-like growth
factor 1 (Igf1), and adinopectin (Adipoq), were selected and
their differential expression results were validated by using
quantitative real-time PCR (qPCR). All qPCR reactions were
run in replicates using GM SYBR Green qPCR kit and con-
ducted on the LightCycler Nano real-time system (Roche,
Switzerland). The PCR conditions were as follows: denatur-
ation at 95°C for 2min followed by 45 cycles of amplification
(95°C for 20 s, 58°C for 30 s, and 72°C for 45 s). Primer
sequences can be found in Table 1. The 2−ΔCT method was
used to calculate relative gene expression levels in each
sample, and Gapdh was used as an internal control.

3. Results

3.1. Summary of RNA Isolation, RNA-seq Libraries, and
Mapping. Nine total RNA isolations were done, and three
sequencing libraries were constructed from thymus tissues
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of MMTV-TGF-αmice in the AL, CCR, and ICR diet groups
for RNA-seq. Three libraries were subsequently sequenced
on an Illumina HiSeq 4000 Sequencing System (Illumina)
generated about 127 million raw reads. After filtering adapter
sequences, contamination, and low-quality sequences, a total
of 105 million clean reads were finally produced (Table 2).

Clean reads were mapped to GRCm38 mouse assembly
in the Ensemble database with TopHat. As a result, mapping
ratios (mapped reads/all reads) of 91.9%–94.9% were
attained for all the three sequencing libraries.

3.2. Differentially Expressed Genes (DEGs) and Gene Ontology
(GO) Analysis. To detect transcriptomic changes in gene
expression, gene expression levels were computed by Cuf-
flinks 2.2.1 and normalized to FPKM values. 44,426 detected
genes were quantified with corrected FPKM values. Accord-
ing to the results, the number of isoforms, TSS (transcription
start site), CDS (coding sequences), and promoters were
quantified 138,066, 80,392, 48,900, and 133,278 in three
sequencing libraries, respectively. Corrected FPKM values
were subjected to analysis of DEGs; a total of 6091 signifi-
cantly differentially expressed genes were identified in three
different diet groups, by using corrected p value < 0.05 as
the filter (Table 3).

The 2821, 2825, and 445 significantly differentially
expressed genes were detected between the diet groups
AL-CCR, CCR-ICR, and AL-ICR, respectively (p < 0 05).
The numbers of significantly differentially expressed genes
(DEGs) and numbers of isoforms, TSS, and CDS between
the diet groups are shown in Table 3. According to these
results, 916, 1877, and 200 genes were upregulated and 1905,

948, and 245 genes were downregulated in DEGs between
the diet groups AL and CCR, CCR and ICR, and AL
and ICR, respectively.

For better understanding of gene function, DEGs
obtained from three libraries were further subjected to Gene
Ontology (GO) functional enrichment analysis, which pro-
vided biological terms to identify gene products in three
perspectives: cellular components, biological processes, and
molecular functions. DEGs obtained between the AL and
CCR, AL and ICR, and CCR and ICR diet groups (p < 0 05)
were classified according to three main categories of GO
terms via http://www.geneontology.org/, as shown inFigure 1.

The assigned functions of DEGs covered a broad
range of GO categories. In the molecular function cate-
gory, catalytic activity (GO:0003824) (978 unigenes,
34.6%) and binding (GO:0005488) (882 unigenes, 31.2%)
in significant 2821 DEGs between AL and CCR (AL-
CCR), catalytic activity (GO:0003824) (170 unigenes, 38%)
and binding (GO:0005488) (183 unigenes, 41.1%) in sig-
nificant 445 DEGs between AL and ICR (AL-ICR), and

Table 2: The statistical results for the AL, CCR, and ICR diet groups’ libraries.

Diet groups Raw reads Clean reads Read length (bp) Clean bases GC (%)

AL 39,760,624 34,926,546 100 3,492,654,600 49.63

CCR 39,760,624 34,991,272 100 3,499,127,200 48.4

ICR 47,826,710 35,113,458 100 3,511,345,800 47.91

Table 1: The information of the primer pairs used for the analysis of gene expression levels by qPCR.

Gene name Primer Product size (bp)

Leptin
5′GGT TGT CCA GGG TTG ATC TC 3′

110 bp
5′GTG GGA GAC AGG GTT CTA CT3′

Ghrl
5′GCT GTC TTC AGG CAC CAT CT3′

113 bp
5′TTC TCT GCT GGG CTT TCT GG5′

Igf1
5′CAA GTC CAG AGA GGA AGC TAT G3′

155 bp
5′CCG AGA GGT GGA GTG ATT TG3′

AdipoQ
5′GCA CGA GGG ATG CTA CTG TT3′

127 bp
5′CAC AAG TTC CCT TGG GTG GA3′

Gapdh
5′ACT CCA CTC ACG GCA AAT TC3′

150 bp
5′CAG TAG ACT CCA CGA CAT ACT C3′

Table 3: Number of genes differentially expressed between diet
groups.

Diet groups AL-CCR CCR-ICR AL-ICR

Number of significantly DEGs 2821 2825 445

Number of isoforms 1686 1637 331

Number of TSS 2391 2314 461

Number of CDS 1739 1614 316
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catalytic activity (GO:0003824) (966 unigenes, 34.1%) and
binding (GO:0005488) (875 unigenes, 31%) in significant
2825 DEGs between CCR and ICR (CCR-ICR) were
prominently represented.

GO results showed that in the top two abundant GO
terms in biological process, categories were cellular process
(GO:0009987) and metabolic process (GO:0008152). In
cellular process (GO:0009987), 1283 unigenes (45.4%), 216
unigenes (48.5%), and 1288 unigenes (45.5%) were involved
in significant DEGs AL-CCR, AL-ICR, and CCR-ICR,
respectively. Also, in metabolic process (GO:0008152),
1285 unigenes (45.5%), 212 unigenes (47.6%), and 1255
(44.4%) were involved in significant DEGs AL-CCR,
AL-ICR, and CCR-ICR, respectively.

In the category of cellular component, 802, 119, and 802
unigenes were located in the cell parts, and 531, 78, and 537
unigenes were located in the organelle parts.

Besides, the expression of genes grouped as “immune
system process” GO term (0002376) based on analyzed
transcriptome reveals that 188 of 2821, 36 of 445, and 176
of 2825 genes were differentially expressed between AL-
CCR, AL-ICR, and CCR-ICR diet groups, respectively.
These DEGs were shown in Figure 2 according to the three
different diet groups.

3.3. Validation of Gene Expression. To validate the results of
differentially expressed genes in transcriptome sequencing,
leptin (Lep), ghrelin (Ghr), insulin-like growth factor 1
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Figure 2: Heat map showing the expression profiles of significantly differentially expressed genes between the AL, CCR, and ICR diet groups
involved in immune response processes (GO: 0002376).
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(Igf1), and adinopectin (Adipoq) genes were selected
because they were differentially expressed in each diet
group. Also, important roles of these genes in adipogene-
sis, nutrition metabolism, and tumor development have
been reported [15, 53–56]. The results of RNA-seq
(Figure 3(a)) and qPCR (Figure 3(b)) for four differentially
expressed genes were shown in Figure 3. According to the
results of RNA-seq, Lep, Ghr, and Adipoq were upregu-
lated in the CCR diet group compared with the ICR and
AL diet groups but Igf1 was upregulated in the CCR and
ICR diet groups compared with the AL diet group
(Figure 3(a)). According to the qPCR results, Ghr, Igf1,
and Adipoq were upregulated in the CCR diet group com-
pared with the ICR and AL diet groups but Lep was
upregulated in the AL diet group compared with other
diet groups (Figure 3(b)).

4. Discussion

Calorie restriction (CR) is a strong metabolic intervention
that induces a state of chronic negative energy balance and
robustly expands mean and maximal lifespan in experimen-
tal animals [57, 58]. There are many studies from animal
models that suggest that calorie restriction has a significant
impact on various arms of the immune system. Most of the
reports suggest that CR improves many parameters of
immune responses [2, 28, 56]. There are two major calorie
restriction applications: chronic calorie restriction (CCR)
and intermittent calorie restriction (ICR). Although CCR
method is commonly applied in most studies, there are a

limited number of studies that have been reported for ICR.
In many experimental animal studies, ICR and CCR have
been reported to have anticancer effects. Some of the studies
show that compared to the AL group, CCR is more effective,
while the others showed that ICR is more effective [59].

The thymus is one of the major lymphoid organs in the
immune system, and several studies have reported that calo-
rie restriction (CR) potentiates thymic function [2, 28, 60].
RNA were isolated from thymus tissue of ad libitum, chronic
calorie restriction, and intermittent calorie restriction diet
MMTV-TGF-α mice from 10 weeks of age to 17 weeks of
age or 18 weeks of age. RNA-seq resulted in an average
of ~127 million raw reads, 100 bp reads per sample with
average of ~95 million mapped reads. 6091 significantly
differentially expressed genes (DEGs) were obtained between
three diet groups. The results of DEGs were annotated into
molecular function, cellular component, and biological pro-
cess GO terms.

According to the DEG analysis, there are 2821, 2825, and
445 significantly differentially expressed genes between the
diet groups AL-CCR, CCR-ICR, and AL-ICR, respectively.
These results show that calorie restriction and/or the types
of calorie consumption has a great effect on gene expression
in the thymus. Compared to the AL group, although only
15% of calorie restriction was applied to the CCR diet group,
2821 DEGs were shown between the AL and CCR diet
groups. Despite the fact that, compared to the AL diet group,
only one-week long calorie restriction (60%) was applied to
the ICR group, 445 significantly DEGs were determined
between the AL and ICR groups.
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Figure 3: (a) Heat map showing the expression profiles of leptin, ghrelin, Igf1, and adiponectin genes in the CCR, AL, and ICR groups
revealed by RNA-seq. (b) qPCR validation showing the expression levels of leptin, ghrelin, Igf1, and adiponectin genes in the CCR, AL,
and ICR groups.
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The studies have reported that adinopectin (Adipoq), lep-
tin (Lep), ghrelin (Ghr), and insulin-like growth factor (Igf1)
hormones have an important role in the cancer development
and immunity [15, 54, 56]. Adinopectin is a significant hor-
mone to initiate insulin sensitivity; its levels rise during CR
[61, 62]. Leptin decreases the level of stress hormones and
rises thyroid activity and thyroid-hormone levels [63].
Because CR upregulates stress hormones and downregulates
thyroid hormones, leptin levels decline inCR [63, 64]. Ghrelin
also regulates immune function by reducing proinflammatory
cytokines [56]. In the present study, increased Igf1 levels were
detected in the CCR and ICR diet groups, compared to the AL
group. Although many studies have reported reduced level of
Igf1 with calorie restriction [65–67], there are other reports
that show either no change or increase in Igf1 levels with
calorie restriction [68, 69]. In this context, current results sup-
port our previous findings which was done using the same
mouse model [70]. In our previous study, we also reported
increased levels of Igf1 and IGFBP3 protein expressions in
mammary fat pad tissue of mice of the CCR and ICR diet
groups, compared to the AL group at 37 weeks of age [70].
In addition, Igf1 gene expression levels were similar among
all diet groups. It should also be noticed that 18 weeks of
age is considered to be young for a mouse model. There-
fore, it is not unexpected to see higher Igf1 gene expres-
sion levels in the calorie-restricted group which needs
more growth factors. With respect to our RNA-seq and
qPCR results, adinopectin gene expression level increases
in the CCR diet group. According to RNA-seq results,
leptin gene expression level is highest in the CCR diet
group, but according to the qPCR results, it has highest
expression level in the AL diet group. Ghrelin gene expres-
sion was only observed in the CCR group; this result indi-
cates CCR effects developing immune function positively.

The current studies suggest that CR improves many
parameters of immune responses [2, 28, 56, 71, 72], such as
responses of T-cells to mitogens, natural killer cell activity,
and the ability of mononuclear cells to produce proinflamma-
tory cytokines. According to the GO analysis results, the
number of immune response of DEGs was higher in between
the AL-CCR and CCR-ICR diet groups, than between the AL-
ICR groups. This shows that the expression of immune system
genes was regulated up or downregulated by chronic diet.

Results from present study indicate that RNA-seq is a
powerful tool to analyze transcriptomes, to study gene
expression profiles and to compare distinct stages of different
conditions. According to our findings, differences of gene
expression have occurred in AL, CCR, and ICR diet types
and these results will provide new clues for caloric restriction,
immune system, and cancer development studies.
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