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A B S T R A C T

Background: Machine learning has tremendous potential in acute medical care, particularly in the 
field of precise medical diagnosis, prediction, and classification of brain tumors. Malignant gli
omas, due to their aggressive growth and dismal prognosis, stand out among various brain tumor 
types. Recent advancements in understanding the genetic abnormalities that underlie these tu
mors have shed light on their histo-pathological and biological characteristics, which support in 
better classification and prognosis.
Objectives: This review aims to predict gene alterations and establish structured correlations 
among various tumor types, extending the prediction of genetic mutations and structures using 
the latest machine learning techniques. Specifically, it focuses on multi-modalities of Magnetic 
Resonance Imaging (MRI) and histopathology, utilizing Convolutional Neural Networks (CNN) 
for image processing and analysis.
Methods: The review encompasses the most recent developments in MRI, and histology image 
processing methods across multiple tumor classes, including Glioma, Meningioma, Pituitary, 
Oligodendroglioma, and Astrocytoma. It identifies challenges in tumor classification, segmenta
tion, datasets, and modalities, employing various neural network architectures. A competitive 
analysis assesses the performance of CNN. Furthermore it also implies K-MEANS clustering to 
predict Genetic structure, Genes Clusters prediction and Molecular Alteration of various types and 
grades of tumors e.g. Glioma, Meningioma, Pituitary, Oligodendroglioma, and Astrocytoma.
Results: CNN and KNN structures, with their ability to extract highlights in image-based infor
mation, prove effective in tumor classification and segmentation, surmounting challenges in 
image analysis. Competitive analysis reveals that CNN and outperform others algorithms on 
publicly available datasets, suggesting their potential for precise tumor diagnosis and treatment 
planning.
Conclusion: Machine learning, especially through CNN and SVM algorithms, demonstrates sig
nificant potential in the accurate diagnosis and classification of brain tumors based on imaging 
and histo-pathological data. Further advancements in this area hold promise for improving the 
accuracy and efficiency of intra-operative tumor diagnosis and treatment.
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1. Introduction

The modern medical world is transitioning towards artificial intelligence [1] in biological and medical information [2]. Consid
ering complex medical tests, machine learning can improve efficiency and prediction [3] with the optimum accuracy and precision in 
cancer [4], equivalent to interpretations by medical practitioners (e.g. pathologists) [5]. Revolutionary1 algorithms for ML and DL 
demonstrate greater validity and reliability in image processing, especially in cancer patient data and morphology.

In the recent, many technology and medical experts focused on Deep Convolutional Neural Network (DCNN) [6], considered the 
most power full and frequently used algorithm for computer vision and image processing. ML Algorithms associated with neural 
networks may further be applied to patients in early tumor diagnosis, X-ray [7] and CT scan [8]. Tumor rapidly changes is density and 
mitotic activity [9] which can be rectified and diagnosed by Histopathology [10] of different organs for cancer prediction and 
treatment like kidney [11], prostate [12], liver [13], brain [14], breast cancer [15] and heart [16]. According to current statistics, the 
growth in numbers of cancer incidence is different in various regions. It is significantly lower in the African continent and higher in 
Northern Europe REF.

The death rate of the brain, other CNS, and intracranial tumors are proportional life span of different people, older or adult might 
have high fatality rates. UK reported [17] 34 % of deaths per year among people of 75 years and older on average between 2016 and 
2018. When compared to most cancers, there is a smaller percentage of mortality in older age groups as brain tumor considered to be 
one of the vital death caused among men and women of all ages [18]. Recent research trends depict the fact that brain tumors are 
extremely heterogeneous [19,20]. This means that they may rapidly change their color, size, region and mutation that cause the main 
problem for histopathology’s or medical experts to diagnose and classify brain tumor by the virtue of its type.

Inception V3, particularly in CNN, Deep Learning techniques, may be applied to detect and diagnose multiple types of tumors, such 
as Glioma, Meningioma, Pituitary, and Glioblastoma [21]. Machine learning for diagnosis and inspection encompasses a broad 
spectrum, extending beyond MRI and CT scan classification. It also includes Histopathology [22] (SVM/CNN) combined in the field of 
Histopathological diagnosis for brain and breast cancer of two different classes, namely LGG/HGG. This self-learning method identifies 
images of brain and breast tissues using Google Inception V3 and CNN. A label-free soft tissue staining method called H&E [23], along 
with CNN, can predict and diagnose tumors in real-time environments. A single biopsy is insufficient to reflect the physical charac
teristics of a tumor and its spatial genes, a significant mechanism for tumor therapy known to be intra-tumoral genetics and chro
mosomes. The labor-intensive workflow for intra-operative diagnosis based on H&E staining is a time-consuming process. Providing 
secure and efficient treatment during cancer surgery, along with spatial gene and intra-operative diagnosis at the patient’s bedside, is 
more important in the modern world [24].

An Artificial Neural Network (ANN) based programmed network model for classification and segmentation approaches MRI ce
rebrum tumors by utilizing ANN, which includes ROI and texture features as well [25]. The acquired precision value is 92.14 %, with 
89 % sensitivity and 94 % specificity, respectively. DNN segmentation and detection of tumors (Glioma) further combine with two 
effective techniques, such as a combination of modalities for identifying brain tumors [26]. Separate processing algorithms are 
employed for segmentation, using the Brats 2018 dataset, depicting 61.0 % accuracy.

Effective features are identified by employing decision trees and cross-validation of the BraTS 2018 dataset, which is used to rectify 
different tumor intensity levels, such as T2-FLAIR, T2, and T1-Gd for diagnosis [27]. The CNN based on the VGG-19 architecture, 
combines with WND-CHRM, an open-source classifier, to analyze Low-grade Glioma [28]. The programming structure can separate 
and classify tumors (Glioma, Meningioma, Pituitary) accurately, based on contrast-based high-resolution MRI images.

The authors [29] also discuss the possibility of improving the classification performance by interposing optical diffractive layers 
between the microfluidic channel and the camera, which can be directly generalized to the interposition of other arbitrary diffractive 
layers. This could lead to hardware-based improvements in the classification technique. The authors propose a simple and versatile 
machine learning approach that achieves high classification accuracy at an extremely low computational cost. They use a lens less 
micro flow cytometer and a simple visible laser, a pinhole, a microfluidic channel with pumping mechanism, and a camera to classify 
particles based on their 2D interference patterns. The classification is performed using a linear classifier (logistic regression), which 
does not require any feature extraction based on domain knowledge.

The authors [30] introduce a novel strategy for brain tumor segmentation, subtype classification, and survival prediction using 
radiology images. They propose a 3D context-aware deep learning method that takes into consideration the uncertainty of tumor 
location in radiology MRI image sub-regions to ensure precise tumor segmentation. This method is then applied to subtype classifi
cation and survival prediction through a hybrid approach that combines deep learning and machine learning techniques.

The study demonstrates the efficacy of the proposed method in accurately segmenting brain tumors and predicting their subtypes 
and survival rates. The BraTS 2019 dataset, which consists of the Multimodal Brain Tumor Segmentation Challenge 2019, was used to 
evaluate the method’s performance in tumor segmentation and overall survival prediction. The CPM-RadPath Challenge on Brain 
Tumor Classification 2019 dataset was used to evaluate the method’s performance in tumor classification. The results indicate that the 
proposed method achieved excellent tumor segmentation and survival prediction, with the tumor classification results ranking second 
in the testing phase of the 2019 CPM-RadPath global challenge.

The study investigated the diagnostic assurance of both radiologists and Convolutional Neural Networks (CNNs) in identifying 
small hypoattenuating hepatic nodules (SHHN) on computed tomography (CT) scans. The results indicated that radiologists had a 
higher number of nodules with low confidence compared to the CNN, which had fewer nodules with low confidence, especially when 
liver metastases were present. In another study, the authors propose a machine learning technique that utilizes a lensless microflow 
cytometer and a simple visible laser, pinhole, microfluidic channel with a pumping mechanism, and a camera to classify particles based 
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on their 2D interference patterns. The classification is accomplished using a linear classifier (logistic regression) without requiring any 
feature extraction based on domain knowledge. The authors suggest that the classification performance could be improved by 
interposing optical diffractive layers between the microfluidic channel and the camera, which could lead to hardware-based im
provements in the classification technique [31].

1.1. History OF NON-INVASIVE techniques

MRI is generally the primary modality for structural neuroscience research because it provides images with excellent contrast of 
soft fluids, tissues, and great spatial accuracy. It also hasn’t been linked to any known health hazards. Although alternative imaging 
modalities such as computed tomography (CT) and positron emission tomography (PET) are commonly employed in brain research, 
among all of them, magnetic resonance imaging (MRI) and H&E staining are the most frequent. Brain tumor segmentation is usually 
performed at the pixel level or occasionally at a regional tumor area, characterized as the method of separating the tumor from normal 
brain structures [32]. 3D CNN is used to perform segmentation, but MRI multimodalities play an important role in tumor diagnosis. 
Modalities are basically an intensity level of tumor, whether it’s benign or malignant [33], usually contained in MRI. In this, Support 
Vector Machine, a well-known algorithm, performs tumor classification.

Glioblastoma [34] in histopathology aids precision medicine by obtaining specific diagnoses for various diseases, particularly for 
Glioblastoma Multiforme (GBM) soft tissues. In histopathological images of Glioblastoma multiforme (GBM), an automated feature 
extraction and disease classification method has been developed to detect Anaplastic, Astrocytic, and Oligodendroglial tumors [35]. 
Moreover, in secondary Glioblastomas, the Isocitrate Dehydrogenase genes IDH1 and IDH2 are usually diagnosed, which are normally 
called mutations. Given the value of IDH in the diagnosis and treatment of specimens and fluids for Glioma, identifying its genomic 
status is a critical task. H&E is an efficient technique in cancer diagnostics since it improves histological diagnosis and treatment 
planning. However, H&E is insufficient for determining the IDH mutation status of cancer.

This paper contributes the following. 

a) In addition to brain tumor segmentation, classification, and detection methods, explores histological patterns and tissue spatial 
characteristics, along with MRI modalities.

b) Provides genetic bonding and mutation of numerous tumor genes (protein structure) in Glioma, Meningioma and Pituitary tumor 
by using String Network (https://string-db.org).

Genetic structures and mutations in brain tumors can lead to Type I, II, III, and IV classes. Tumor genes and proteins play a vital role 
in these mutations, and these genes can be predicted using K-Means clustering algorithms. This study suggests different types of tumor 
protein and gene compositions for brain tumors at various stages, including I, II, III, and IV.

The K-Means clustering algorithm can be simulated in the string.db network database. To predict the tumor type and the structure 
of proteins in a gene network, K-Means is also utilized. The Strings database creates clusters specified by input parameters accepted by 
K-Means, making predictions accordingly. When K-Means predicts, it results in the following changes:

The nodes’ colors change (each cluster is associated with a distinct color).
Dashed lines are used as a visual representation of inter-cluster edges.

2. Related work

Genetic abnormalities have allowed gliomas to be classified into various subtypes based on their molecular profiles. These subtypes 
may exhibit distinct genetic profiles and underlying mechanisms that drive tumor growth. Researchers aim to enhance glioma 
diagnosis, prognosis, and treatment by understanding these evolving genetic changes.

Malignant gliomas have been associated with numerous genetic alterations, and current research investigates their potential as 
diagnostic, prognostic markers, and therapeutic targets. Frequently studied genetic alterations in gliomas include mutations in genes 
such as IDH1, IDH2, TP53, PTEN, EGFR, and ATRX REF. These mutations can impact critical cellular functions like DNA repair, cell 
cycle regulation, and signal transduction pathways [36].

The primary method for diagnosis remains imaging tests, particularly magnetic resonance imaging (MRI). However, these tests 
have limitations that can impede early detection and diagnosis. Computer-aided intelligent systems can assist doctors in their di
agnoses. In this study, we developed an EfficientNetv2s architecture-based Convolutional Neural Network (CNN) for brain tumor 
diagnosis. The system was enhanced using Ranger optimization and extensive pre-processing. Additionally, we compared the proposed 
model to state-of-the-art deep learning architectures such as ResNet18, ResNet200d, and InceptionV4 for distinguishing brain tumors 
based on their spatial features [37].

Radiologists commonly utilize magnetic resonance imaging (MRI) to detect brain anomalies. The manual grading process is 
challenging and can lead to false-negative or false-positive results, especially in early-stage abnormalities. In individuals with brain 
anomalies, manual errors can impact survival rates. Therefore, computer-aided diagnosis aids radiologists in accurately identifying 
abnormalities, even in the early stages of brain tumors. We developed a Multi-Class Convolutional Neural Network model (MCCNN) to 
identify brain tumors in MRI scans. This study utilized BRATS 2015 and Figshare Data. The feature vector was constructed from pre- 
processed MRI data using the convolution and pooling layers of CNN, and the CNN’s softmax layer identified the tumor. Two ex
periments, Experiment I and Experiment II, were conducted to evaluate the MCCNN model’s performance. Compared to other CNN- 
based networks and pre-trained models, the designed MCCNN offers simplicity, increased classification accuracy, lower loss values, 
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and reduced false-negative and false-positive rates [39].
Identification of chronic nerve conditions like brain tumors, strokes, dementia, and multiple sclerosis, MR images are the best tool. 

They serve as the most accurate method for determining whether diseases of the pituitary gland, brain vessels, eye, and inner ear 
organs are present. In order to monitor and diagnose health from brain MRI images, a variety of deep learning-based medical image 
analysis methods have been proposed. Deep learning’s CNN (Convolutional Neural Networks) branch is frequently used to analyze 
visual data. Natural language processing, suggestive systems, image classification, and image and video recognition are a few examples 
of common applications. In this study, a new modular deep learning model was developed in order to retain the benefits of well-known 
transfer learning techniques (DenseNet, VGG16, and basic CNN architectures) while removing their drawbacks [38].

When it comes to identifying and treating brain tumors in IoT healthcare systems, classification of brain tumors is crucial. In this 
paper, we propose a solid deep learning-based classification model for brain tumors. The Meningioma, Glioma, and Pituitary types of 
brain tumors are classified using the proposed method’s improved Convolutional neural network. Brain magnetic resonance image 
data is used to test the multi-level convolutional neural network model. Using data augmentation and transfer learning techniques, the 
MCNN model’s classification results were enhanced. In the suggested MCNN model, hold-out and performance evaluation metrics have 
also been used. The results of the experiments demonstrate that the proposed model outperformed cutting-edge methods in terms of 
results [39].

T2-SWI MRI scans are used to diagnose glioma tumors in the brain as well as other tumors and diseases using a novel diagnostic 
framework built on CNN and DWT data analysis. A very unbalanced binary problem results from the binary CNN classifier’s treatment 
of the pathology "glioma tumor” as positive and the other pathologies as negative. To show the improved performance of the CNN and 
DWT analysis in diagnosing brain gliomas, the study includes a comparative analysis of a CNN trained with wavelet transform data of 
MRIs rather than their pixel intensity values. The proposed CNN architecture’s performance is also contrasted with that of a deep CNN 
that has already been pre-trained on the VGG16 transfer learning network and with that of the SVM machine learning approach that 
uses DWT data. Methods: Instead of the conventionally used original scans in the form of pixel intensities, the proposed CNN model 
uses as knowledge the spatial and temporal features extracted by converting the original MRI images to the frequency domain by 
performing Discrete Wavelet Transformation (DWT). Furthermore, the original images underwent no pre-processing. T2-SWI parallel 
to the axial plane MRIs are the type of images that are used. For each MRI scan, DWT is first applied in a compression step up to three 
levels of decomposition. To determine whether the scans indicate glioma or not, these data are used to train a 2D CNN. The proposed 
CNN model is trained using MRI slices from 382 different male and female adult patients, displaying both pathological and healthy 
images of a variety of diseases (showing glioma, meningioma, pituitary, necrosis, edema, non-enchasing tumor, hemorrhagic foci, 
edema, ischemic changes, cystic areas) [40].

It has recently become important to segment and classify the brain using neuroimaging techniques. A brain tumor may be fatal if it 
is not found in time. Due to the wide variety of tumors, a poor tumor diagnosis could have serious consequences. In order to treat 
patients appropriately, clinicians will benefit from the correct classification. Deep Learning may be a subset of artificial intelligence 
that has recently excelled in classification and segmentation tasks. This study uses two publicly available datasets to classify brain 
tumors using a convolution neural network, describing the various tumor types (glioma, meningioma, and pituitary tumor) as well as 
the three glioma grades (as described, Grade II, Grade III, and Grade IV). 233 and 73 patients with 516 and 3064 images on T1- 
weighted images are part of a public MRI imaging dataset. In order to compare the performance of our method with other pub
lished methods in the field, methodology uses a 25-layer CNN model on T1-weighted MRI images. Using the same dataset, our method 
performed better than the competition [41].

Researchers use a multimodal hybrid framework to test local samples from a number of brain tumor forms [42]. ANOVA, Bon
ferroni corrections and rank-order correlations are the statistical approaches used for both of them to find out accurate results. The 
inclusion of high-resolution fluorescence imaging in the input data might significantly improve prediction precision. In Ref. [43] 
combine SRH with DNN is applied to dataset of numerous patients of multiple institutions as Whole-slide SRH images.

To develop a 3D CNN architecture to detect brain tumors, which are then moved to a pre-trained CNN model for image feature and 
texture extraction. Results are further input into a correlation-based process that delivers an optimal result [44] in three dimensions. 
CNN can use multimodalities in MRI to segment Gliomas and their constituencies.

Currently [45] SVM-based Expectation Maximization(EM) extracted feature from DICOM data set with 512x512 of pixel resolution 
images that are analyzed critically by applying Fourier Transform (FT). Effective and reliable [46] method for image modality and 
classification which can be used to obtain clinical cases from massive medical dataset. Multimodality dataset ImageCLEF-2012 dataset 
(color and gray-scale images) CT, X-ray, Ultrasound, MRI and Microscopic images are used along with ResNet50.In Ref. [47] classi
fication and detection of brain tumors in the publicly available datasets containing a valid Dice average score of 85.7 %. CNN along 
with softmax classifier is implemented. Transfer learning and extraction of deep auto-encoder functions, proposed the capabilities of 
03 distinct Deep Leaning methods for tumor prediction [48]. Classification of the juvenile brain tumor, this paper presents Genetic 
algorithm (GA) that uses feature embedding from futuristic image classification networks.Image-Net and ILSVRC dataset is used with 
87.8 % ± 3 of accuracy [49].

Evaluate new developments [50] in image segmentation and recognition with an emphasis on the effective treatment of adjacent 
imaging patches of tumor-infection in human brain. The fuzzy transformation algorithm is adopted to discover various image features 
such as preprocessing, image segments, image extraction and image classification. On Cryosections [51] of brain tumors, coherent 
anti-Stokes Raman scattering (CARS), two-photon excited fluorescence (TPEF), and second harmonic generation were acquired the 
highest level of accuracy.

Linear discriminate analysis is implemented on CARS and TPEF images. HE2RNA [52] is a deep-learning algorithm developed 
primarily for gene predicting from the Whole Side Image dataset. It is also known as HE2RNA for microsatellite instability status 
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prediction (transcriptome prediction). Datasets, including the “TCGA Pan-cancer dataset frozen slides from colorectal cancer cases 
TCGA and “Mondor dataset,” have been put into an experimental phase with an accuracy of 80 %.An automatic method [53] for 
identification and classification of glioma and ischemic stroke based on Random Forest.This article based on the detection of glioma in 
their early stages. Features like (GWF, HOG, LBP and SFTA) are utilized. Experiments are performed using a number of BRATS datasets 
from various ears and versions.Rapid image feature extraction method is built for quantitative MRI images by considering the accuracy 
of 92 % by having all these feature extraction techniques e.g.(HOG + LBP + SFTA + GWF).

Artificial Intelligence is the broad domain as it contains multiple subdomains and categories in the field of classification, regression, 
clustering, feature extraction and dimensionality reduction as mentioned in Fig. 1.

Accurate detection of tumor by TIW and MRI is the crucial task in machine learning.Usually MRI pertains the resolution of 256x256 
originally. Fusion based segmentation techniques is actually a spatial alignment used to diagnose various tumor types by different 
diagnostics and modalities e.g. MRI, PET and CT scan. FUZZY C MEANS clustering model is deployed to achieve optimum features from 
image.

Non-sub sampled contour transform (NSCT) and CNN algorithms were adopted to fuse clustered images furthermore C-V and LSM 
algorithms are employed to segment fused images dataset. Fusion method along with CNN and C-V algorithms mitigate the issue of 
losing resolution and un predictable prediction on skull lesion and boundaries it also reduce processing time and accuracy. CNN 
achieves better results than non-fusion technique in detecting tumors from MRI images. The NSCT approach collected more spatial 
data as image but produced output in image format had undesired properties that degraded visual quality and impairments. While the 
LSM segmentation process had curve initialization concerns. In terms of features, C-V segmentation excels LSM in identifying brain 
tumors, whereas CNN beats the NSCT fusion technique [55].

In today’s healthcare systems, multimodalities in medical image diagnosis and fusion has established a strong foothold. Several 
fusion techniques are applied that combine several source photos to obtain comprehensive information that may be used to improve 
clinical diagnosis. However these methods have a number of limitations and flaws including edge blurring decomposition, significant 
information loss that leads in spurious structural anomalies and significant spatial inaccuracy due to insufficient contrast. This paper 
attempts to address the concerns by proposing an innovative CSID method that uses spatial gradients to conduct contrast stretching and 
edge detection. The application of cartoon-texture decomposition as proposed by CSID results in a comprehensive vocabulary. 
Furthermore, to get the final fused picture this study presents a modification to the historic convolutional sparse coding approach 
which utilizes upgraded decision maps and fusion rule. compared to other existing fusion algorithms results show CSID performs better 
in terms of picture quality and enhanced information extraction [56].

AISA a framework for MRI analysis is proposed to brain scan data. Independent small scale structures were created using this 
strategy. Discriminative classification, texture is retrieved and dimensionality of the feature is decreased by using t-SNE embedding. 
After that the KNN classification is used. The NAMIC dataset’s practical findings demonstrated the method’s efficiency. The suggested 

Fig. 1. Machine learning categories [54].
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model had a 94.7 percent of accuracy rate. Image subspace classification is employed to identify variations in brain functional MRI 
image that segregate between normal and abnormal individuals [57].Image segmentation is hindered by the presence of complex edge 
structures and abnormalities. It’s very important to extract characteristics from multi-sequence multi resolution MRI scans. To assess 
the performance of the recommended model, simulation experiments are carried out to identify and diagnose tumor features on the 
basis of experiment. It concludes 75.58 % DSC, 92 % of feature extraction, 79.55 % Jaccard coefficient, 90 % PPV and 73.09 % of 
Sensitivity.

2.1. Article selection Criteria

The inclusion of keywords like "brain tumor,” "MRI”, "Histology” and "Machine Learning” determines the choice of the current 
article. The survey/review is spans up to multiple digital databanks. 

1. Nature, which publishes highly reputable science and technology journals.
2. IEEE Digital Library
3. Elsevier
4. MDPI open access.

The literature review is conducted up to 2021. Selecting relevant papers could be challenging, especially when there are so many 
different study and multiple topics has to be consider. Filtering articles is essential and especially helpful when exploring certain topics. 
The basic stage was to eliminate redundancies, which was accomplished with the help of Zotero citation software. Title and abstract 
are further examined and any articles that were identified to be irrelevant were discarded. Reading the selected articles is the next 
stage; sometimes the abstract does not reflect the full contents as we dug deeper into certain articles. Furthermore, we have discovered 
irrelevant articles in the current study. As a result we have eliminated those papers as shown in Fig. 2.

2.2. Research questions

Q.1 what is the primary difference in contemporary machine and deep learning techniques between MRI classification and seg
mentation methods?

Ans. classification method is more efficient and relatively simple than segmentation since it groups or categories all objects in a 
single image into a single class. Segmentation process of splitting the data into a patchwork of sections [58], all of which are “ho
mogeneous,” or similar in some way color, texture, intensity and so on. Class segregation is significantly important during segmen
tation and classification as shown in Table 1, where each entity or object in image represents particular class which illuminated 
different colors.

Findings:

Fig. 2. Prisma methodology.
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Q.2. What is (ATRX) in Brain Tumor and how does it effects human intellectual property?
Ans. It’s the method usually acquired by H&E stain method. ATRX syndrome [59] (Alpha-thalassemia x-linked intellectual 

disability) is a neurological disorder that involves intellectual disability, muscle weakness (hypotonia), low stature, a specific facial 
appearance, physical defects, and potentially other signs. Face expression and gestures are usually changes if person is suffered from 
alpha thalassemia X-linked intellectual disability syndrome. The upper lip formed in the shape of an uptrend "V,” while the bottom lip 
is noticeable. Early infancy is when these face traits are most noticeable. The facial features develop coarser with time, resulting in a 
flatter face and a smaller nose.

Findings.
ATRX role (Chromatin Remodeling) in tumor genesis, precisely in Gliomas, is comprehensively elucidated.
1-Its is one of the key indicators used to classify Gioma’s molecular nature.
The 2-possible link between ATRX status and other gene mutations is also addressed.
3-This types of specific Protein comes with two isoforms (180 and 280 kDa) and is abundant in GC-rich and repetitive regions.
Q.3What type of protein expression, biochemical activity or methylation status correlates with responsiveness to alkylator treat

ments in brain tumor therapy?
Ans. MGMT [60] is a DNA recovery enzyme (O [6]-methylguanine-DNA methyltransferase).Considering this chemical process 

protein protects tumor cells from alkylating agent induced damage tissues or cells, making alkylating compound-based chemotherapy 
less effective.

Findings:
Finding biomarkers in malignant Glioma patients is crucial for identifying patients suffering at risk of tumor recurrence.
Q.4 How the H and E stains method helps in the classification of different types of tumor cells and tissues. Why is it important to 

rectify valuable tumor information on the pattern, shape, and structure of cells in a tissue sample?
Ans. study of cells and tissues preservations [61] (under a microscope vision) containing any specific tumor or malignancies. 

Histo-pathologist is a key person of examining tissue and advising doctors with a patient’s tumor mutation according to WHO clas
sification I, II, II, IV.

Findings.
The first and most crucial step in specimen management is the preservation (fixation) of the tissue sample. In anatomical pathology, 

formaldehyde is the most typically applied. Formaldehyde has the chemical formula HCHO. It’s the easiest aldehyde compound. The 
gas form aldehyde is highly water soluble.

Q.5.What are the molecular genetic signature and co-deletion methods in Brain tumor for patient survival?
Ans. 1p19q co-deletion [62] is defined as the loss of both the short arm of chromosome 1 (for example 1p) and the long arm of 

chromosome 19 (for example 19q) in patients with diffuse Gliomas, especially those with Oligo-dendroglial tumors. It is thought to be 
a genetic marker analysis of a favorable response of chemotherapy and consolidated chemo radiotherapy as well as a overall survival of 
a patients with diffuse Gliomas. The 1p19q co-deletion was used in 70–85 % of Oligo-dendrogliomas and half of Oligo-Astrocytomas in 
general. The value of 1p19q co-deletions used by WHO classification of CNS tumors which made it mandatory for the diagnosis of 
Oligo-dendroglioma (alongside the IDH transformation).

Table 1 
Findings of segmentation and classification.

Segmentation Classification

1. Noisy images(e.g. motion artefact, bias field, …) 1. Classifications are in limited numbers e.g. Glioma, Meningioma …
2. complex texture and contrast 2.Simple texture an contrast
3. Heterogeneous (Size an variations) 3.Homogeneous
4. Complex (shapes an structures) 4.continuous shapes and structure

Table 2 
Tumor Types and its gene.

Tumor Type Tumor Gene Protein Structure Mutations

Glioma [72]IDH1 and 
IDH2

Enzymes that metabolize glucose Mutations in these genes can lead to the formation of gliomas.

Glioma PTEN Protein that regulates cell growth and 
proliferation

Mutations in this gene can lead to the formation of high-grade 
gliomas.

Glioma TP53 Tumor suppressor gene Mutations in this gene can lead to the development of many types of 
cancer, including gliomas.

Meningioma NF2 Protein that is involved in the development of the 
nervous system

Mutations in this gene can lead to the formation of multiple 
meningiomas.

Meningioma SMARCB1 Protein that is involved in the repair of DNA 
damage

Mutations in this gene can lead to the formation of meningiomas.

Pituitary 
tumor

MEN1 Protein that is involved in the development of the 
endocrine system

Mutations in this gene can lead to the formation of pituitary tumors.

Pituitary 
tumor

GHRH receptor Receptor that binds to growth hormone-releasing 
hormone

Mutations in this gene can lead to the formation of aggressive 
pituitary tumors.
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Findings.
The 1p/19q co-deletion technique considered as the Histo-pathologic biomarker for Oligo-dendrogliomas that separates them from 

other types of gliomas.1p/19q co-deletion is a potent independent prognostic factor connected to a greater survival rate in both diffuse 
low-grade and anaplastic tumors.

Q.6. Explain the phenomena of MGMT promoter and Methylation process?
Ans. The O6-alkylguanine-DNA-alkyltransferase (AGT) gene, which is ciphered by the O6-methylguanine-DNA-methyltransferase 

(MGMT) gene, primary healing catalyst that eliminates “alkyl and methyl” adduction from DNA, producing cells of useful chemical 
more resistant to alkylating and Methylating chemotherapy as compare to others who are ill-equipped to repair these adducts. Gliomas 
with methylation of the MGMT advertiser have been found and receptive to the alkylating specialist Temozolomide (TMZ) [76]. 
Immune-Histo-chemistry as a biomarker for the maintenance protein is less obvious [63,64]. It was discovered that methylation of 
distinct areas in the MGMT advertiser was exceptionally related to MGMT articulation [65,66].

Findings:
MGMT basically a potent drug-resistance gene, it has emerged as the favorite target gene for protection of hematopoietic stem cells 

during chemotherapy for cancer. Clinical and biological implications of Glioma usually segregate in two subsets CGIMP (high and 
low). Glioma must be classified to investigate distinct genetic structure. CIMP show Glioma heterogeneity as well.

3. Methodology

These are just a few of the new novelties in brain tumor classification and detection. These new technologies are still in devel
opment, but they have the potential to revolutionize the way brain tumors are diagnosed and treated. Here are some additional details 
about each of these novelties:

Multimodal imaging: Multimodal imaging allows doctors to see tumors in more detail and to better understand their location and 
extent. This can help doctors to make more accurate diagnoses and to plan more effective treatments. For example, MRI scans can be 
used to see the shape and size of a tumor, while CT scans can be used to see the bones and blood vessels around the tumor. PET scans 
can be used to see how active the tumor is mentioned in Ref. [67].

Machine learning: Machine learning algorithms can be used to analyze large amounts of data, such as MRI scans, and to identify 
patterns that would be difficult or impossible for humans to see. This can help doctors to better diagnose and classify tumors, and to 
plan treatment. For example, one machine learning algorithm was able to identify tumors with optimum accuracy [68].

Biomarkers: Biomarkers are biological molecules that can be used to identify and track tumors. Biomarkers are being developed for 
brain tumors, and they could be used to improve diagnosis, classification, and treatment. For example, one biomarker that is being 
studied is called the epidermal growth factor receptor (EGFR). EGFR is a protein that is found on the surface of many cancer cells. 
Drugs that target EGFR have been shown to be effective in treating some types of brain tumors [69].

These new technologies are still in development, but they have the potential to revolutionize the way brain tumors are diagnosed 
and treated. By using these new technologies, doctors may be able to diagnose tumors earlier, when they are more treatable. They may 
also be able to develop more effective treatments that target the specific tumor cells.

Fig. 3. Histopathology Patterns/Invasive Diagnosis and Molecular classification with IDH mutation of 1p19q co-deletion method (a) IDH1 protein 
(mutant) (b) diffuse astrocytoma, (c) ATRX loss expression (d) positive expression [80].
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3.1. Dataset and online repositories

For the better understanding and clarity this section split into three subsections, each of which contains a particular image form e.g.
3.1.1 H&E histopathology.
3.1.2 Tumor Types and Mutation.
3.1.3 MRI scans in image processing.

3.1.1. H&E histopathology (non Invasive techniques)
Hematoxylin and Eosin (H&E) combines two histology pigments. Colors are physically manifested in different tones, hues and 

combinations. Histo-pathological technique of diffuse Glioma is comparatively straight forward for cancers classification. However 
there is a remarkably extensive morphological range as shown in Fig. 3 which shows (a)Normal, (b)IDH mutation, (c)Tumor Protein 
TP53 and (d) ATRX (alpha-thalassemia mental retardation X-linked) protein, that contains both mutual and diagnostically deceptive 
forms (see Fig. 4).

3.1.2. Tumor Types and Mutation
Tumor normally categorize in 4 different classes e.g. Glioma, Pituitary, Meningioma and Normal. Glioma growth in adults are 

Atrocytic which presents nearly 75 % of the Glioblastoma are almost two third of them considered as the most malignant form [71]. In 
2007 characterization Oligodendroglial or blended, diffuse Glioma as Astrocytic, these genetic structure are evaluated as grade II poor 
quality, grade III as anaplastic or grade IV as glioblastoma [72]. Genetic variations of these tumors is hard to catch in exact measures e. 
g. microscopy. Additionally the examples accommodated Histo-pathological investigation that are not generally an agent. Gliomas in 
diffused composition including Oligodendroglial molecular structure [73–75] which are different in gene analysis. Genetic analysis 
and mutation of Various Tumor’s is performed by using strings database (https://string-db.org/)

3.1.2.1. Glioma. IDH1 and IDH2: These genes are involved in the metabolism of glucose, and mutations in these genes can lead to the 
formation of gliomas.

PTEN: This gene is involved in cell growth and proliferation, and mutations in this gene can lead to the formation of high-grade 
gliomas.

TP53: This gene is a tumor suppressor gene, and mutations in this gene can lead to the development of many types of cancer, 
including gliomas.

3.1.2.2. Pituitary tumor. MEN1: This gene is involved in the development of the endocrine system, and mutations in this gene can lead 
to the formation of pituitary tumors.

GHRH receptor: This gene is involved in the growth of pituitary tumors, and mutations in this gene can lead to the formation of 
aggressive pituitary tumors.

3.1.2.3. Meningioma. NF2: This gene is involved in the development of the nervous system, and mutations in this gene can lead to the 

Fig. 4. (h&e staining) non-diagnosed (left) and non-tumor patient (right) [70].
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formation of multiple meningiomas.
SMARCB1: This gene is involved in the repair of DNA damage, and mutations in this gene can lead to the formation of meningioma.

3.1.2.4. Glioblastoma. Glioblastoma considered to be the most deadly kind of tumor in humans. Glioblastoma patients having poor 
prediction with overall survival of around 1 year. If Glioblastoma is primary or secondary it may form rapid genetic alteration in 
elderly individuals or by development from anaplastic Astrocytomas in earlier people. Significant progress has been made in our 
knowledge of the mechanisms that lead to Glioblastoma over the last decade and numerous key genetic abnormalities that appear to be 
critical in the genesis and growth (Fig. 5) of this tumor have been found.

Finding out regular mutations in the Isocitrate dehydrogenase1 (IDH1) gene in particular Table 3, It’s provided new look inside the 
Glioblastoma molecular landscape. Indeed new research is required the effects of mutant IDH1 protein appearance reveals that 
neomorphic enzymatic action promoting the formation of the oncometabolite 2-hydroxyglutarate affects variety of cells that change 
the epi-genome which enhance the development of Glioblastoma. IDH1 mutation in the mainstream of secondary Glioblastoma 

Fig. 5. Glioblastoma genes and mutation rate.

Table 3 
Tumor Gene description.

Gene Description Associated Tumors

[77] EGFR Epidermal growth factor receptor Gliomas, meningiomas, sarcomas, and other types of cancer
ERBB2 Human epidermal growth factor receptor 2 Gliomas, breast cancer, and other types of cancer
PIK3CA Phosphatidylinositol 3-kinase catalytic subunit alpha Gliomas, breast cancer, and other types of cancer
IK3R1 Insulin receptor substrate 1 Gliomas, astrocytomas, and other types of cancer
IDH1 Isocitrate dehydrogenase 1 Gliomas, astrocytomas, and other types of cancer
NF1 Neurofibromatosis type 1 Meningiomas, schwannomas, and other types of cancer
PTEN Phosphatase and tensin homolog Gliomas, astrocytomas, and other types of cancer
RB1 Retinoblastoma gene Retinoblastoma, a type of eye cancer
TP53 Tumor protein p53 Gliomas, astrocytomas, and other types of cancer
PTPRD Protein tyrosine phosphatase, receptor type D Gliomas, astrocytomas, and other types of cancer

Fig. 6. Glioblastoma genes.
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patients but it is essentially non-existent in original or primary Glioblastoma. This is one of the most interesting findings in tumor 
history as well. Cumulative evidence suggests that this mutation has scientific and prognostic significance that will become a sig
nificant in initial differentiation of Glioblastoma diagnosis [76].

By applying K means clustering on Glioblastoma genes the above mentioned genetic structure as shows in Fig. 5 shows the 
following mutation and genetic bonding in Figs. 6 and 7.Network is clustered to a specified number of 03 clusters whereas dotted Lines 
shows edges between clusters. Glioblastoma Gene Mutation and clustering is mentioned in Table 04.

3.1.2.5. Pituitary gland. The majority of PA’s (Pituitary Adenomas) as mentioned in Fig. 8, are discovered in the past are unrelated to 
treatment. However certain could present as clinically significant because they produces hormones or induce symptoms due to 
compression or invasion of adjacent tissues [78].

PAs have a wide range of causes and more than half of them have no known as hereditary origin. However PA development has 
been linked to Germline or somatic genetic abnormalities in some circumstances. Additional genetic modifications reported in PAs has 
copy number variations (CNVs), chemical reactions and miRNA abnormalities have been examined as possible factors in 

Fig. 7. Genetic mutation and prediction of glioblastoma.

Table 4 
Glioblastoma genes and mutation clusters.

Cluster Id Gene count Protein names

Cluster 1 4 EGFR, ERBB2,PIK3CA,IK3R1

Cluster 2 5 IDH1,NF1,PTEN,RB1,TP53

Cluster 3 1 PTPRD

Fig. 8. gene presence in pituitary.
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Fig. 9. Genetic mutation and prediction of pituitary gland.

Table 5 
Gene description.

Gene Description Associated Tumors

[80] AIP Activating transcription factor 4 Pituitary tumors, meningioma, and other types of cancer
MEN1 Multiple endocrine neoplasia type 1 Parathyroid tumors, pancreatic tumors, and other types of cancer
NF1 Neurofibromatosis type 1 Meningioma, schwannomas, and other types of cancer
RET RET proto-oncogene Medullary thyroid cancer, pheochromocytoma, and other types of cancer
CDKN1B Cyclin-dependent kinase inhibitor 1B Gliomas, astrocytomas, and other types of cancer
DICER1 Dicer RNA processing enzyme Medulloblastoma, a type of brain tumor
TSC2 Tuberous sclerosis complex 2 Gliomas, astrocytomas, and other types of cancer
GNAS G protein-coupled receptor 30 Pituitary tumors, meningioma, and other types of cancer
GPR101 G protein-coupled receptor 101 Pituitary tumors, meningioma, and other types of cancer
PRKAR1A Protein kinase A regulatory subunit 1A Pituitary tumors, meningioma, and other types of cancer

Table 6 
Pituitary glands genes and mutation clusters.

Cluster ID Gene count Protein names

Cluster 1 4 AIP,MEN1,NF1,RET

Cluster 2 3 CDKN1B,DICER1,TSC2

Cluster 3 3 GNAS,GPR101, PRKAR1A

Fig. 10. Pituitary tumor and prevalence rate.
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pathophysiology, presentation and behavior of these tumors, particularly in terms of aggressiveness and treatment response [79].
By applying K means clustering on Pituitary Adenomas the above mentioned genetic structure as shows in Fig. 7 reveals the 

following mutation and genetic bonding. KNN Network is clustered to a specified number of 03 clusters as mentioned in (Fig. 9. Genetic 
mutation and Prediction of Pituitary Gland) whereas dotted lines show edges between clusters. Gene description, clustering and gene 
counts are mentioned in Tables 5 and 6.

Prevalence rate is the vital marker that shows the presence of cancer gene cases present in population as mentioned in Fig. 10.

3.1.2.6. Meningioma. Meningioma’s are more common in the elderly and more common in the sixth and seventh decades although 
they are extremely rare in children [81] as mentioned in Tables 7 and 8. In adults, meningioma is the most frequent main central 
nervous system (CNS) tumor. It accounts for one-third of all primary intracranial tumors (37.1 %) [82]. The deletion of chromosome 22 
was originally identified as a recurring genetic change in meningioma in the 1970s using a fluorescence approach [83].Moreover, 
Genetic structure of meningioma is shown in Fig. 11.

By applying K means clustering on meningioma genes the above mentioned genetic structure reveals the following mutation as 
mentioned in Fig. 12.

Table 7 
Gene Description with associated Tumors.

Gene Description Associated Tumors

[84] AKT1 Protein kinase B Gliomas, astrocytomas, and other types of cancer
KLF4 Kruppel-like factor 4 Glioblastoma multiforme, a type of brain tumor
NF2 Neurofibromatosis type 2 Meningiomas, schwannomas, and other types of cancer
PIK3C Phosphatidylinositol 3-kinase catalytic subunit Gliomas, astrocytomas, and other types of cancer
SMO Smoothened Medulloblastoma, a type of brain tumor
TERT Telomerase reverse transcriptase Glioblastoma multiforme, a type of brain tumor
TRAF7 Tumor necrosis factor receptor-associated factor 7 Glioblastoma multiforme, a type of brain tumor
POLR2A RNA polymerase II Gliomas, astrocytomas, and other types of cancer
SMARCB1 INI1, SWI/SNF complex, subunit B1 Meningiomas, rhabdomyosarcoma, and other types of cancer
SMARCE1 INI2, SWI/SNF complex, subunit E1 Meningiomas, rhabdomyosarcoma, and other types of cancer
BAP1 BAP1 tumor suppressor protein Glioblastoma multiforme, a type of brain tumor

Table 8 
Meningioma genes and mutation clusters.

Cluster ID Gene count Protein names

Cluster 1 7 AKT1,KLF4,NF2,PIK3C,SMO,TERT, TRAF7

Cluster 2 3 POLR2A,SMARCB1, SMARCE1

Cluster 1 BAP1

Fig. 11. Genetic structure of meningioma.
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3.1.3. MRI scans in image processing
There are many collections of cancer imaging in this archive. Figshare [85] is an open source archive for brain tumor datasets, 

another publicly available dataset called Brats 2018, Brats 2020 [86,87],The Cancer Imaging Archive (TCIA) [88].These MRI includes 
two forms of brain tumors e.g. LGG/HGG. Images of these two modalities was obtained from 49 patients of varying ages. Data sets for 
cancer patients are publicly accessible for research and development purposes in Brain Tumor domain, some of which are popular e.g. 
Brats 2013 SICAS Medical Image Repository, Brats 2014 and Brats 2015 Dataset consist of two groups of Gliomas: LGG and HGG. Total 
number of MR scans in the dataset is 274 with 220 for HGG and 54 for LGG, respectively. T1, T1c, T2, and Flair are the intensity level in 
MRI scanning as shown in Fig. 13. BRATS 2016, BRATS 2017 [87]. Online Brain Image Repositories NITRC IBSR is a brain tumor 
classification database for researchers. In this data set there several MRI scans containing 18 T1 3-D. Each of the 60 to 65 segmented 
slices in an MRI image has an optimum gray scale resolution of 512x 512.Harvard Whole Brain Atlas Dataset [89] NNLIB is an online 
archive of Central Nervous System MRIs. This archive which contains over 13,000 MRIs from 30 cases is also available online. These 
MRI’s includes a wide range of benign and normal scans of different types of strokes or Central nervous system injuries, Stimulated 
Raman Histology [90], Pseudo-PHI-DICOM dataset DICOM [91], RIDER NEURO MRI [92], alzheimer’s disease neuro images (ADNI) 
[93], Allen Institute of Brain Science (AIBS) [94], BrainWeb Simulated Brain Database [95].The medical procedure used in the his
tological stain [24] is Hematoxylin and Eosin. (H&E). It’s really simplistic but it’s also prominent and reliable. At the gene, molecular 

Fig. 12. Genetic mutation and prediction of meningioma.

Fig. 13. Brain tumor mri modalities [96].
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and tissue level this method (H&E) is used to determine and classify tumor types such as.
Usually MRI contains GRAY and WHITE scale for modalities and Tissue presentation some of them are called Cortex, Inflammation, 

Fluid which usually help radiologist to classify tumor.
In the process of literature review different types of repositories and Modalities are used with different researchers and medical 

institutions. The following table contains institutions with intensity level in MRI (modalities).This noninvasive diagnosis technique 
reflects types of tumor (Benin, Normal, High and low Grade Glioma e.g. (HGG/LGG).

3.2. Journals inclusions for SLR

Information Sources: Research papers from reputable publications such as Nature, Elsevier Research, Springer, Molecular & 

Table 9 
Research journals.

NO JOURNAL NAME

1 ELSEVIER
2 WILEY PERIODICALS
3 MOLECULAR & CELLULAR ONCOLOGY
4 PUB MED
5 MDPI
6 ACM
7 ARXIV
8 IJATCSE
9 BRITISH JOURNAL FOR CANCER
10 PLOS COMPUTATIONAL
11 SPRINGER NATURE
12 NATURE RESEARCH
13 JOURNAL OF BIOMEDICAL OPTICS
14 IEEE ACCESS
15 FRONTIERS
16 OXFORD UNIVERSITY PRESS
17 BIORXIV
18 IPE
19 WORLD JOURNAL OF GASTROINTESTINAL ONCOLOGY

Fig. 14. Number of articles included per year.

Fig. 15. Classification and performance of distinct networks.
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Oncology, MDPI, Frontiers in Bio-engineering and Biotechnology, IPEM, and British Journal for Cancer are mentioned in Table 09.
In the recent past, researchers have used many models and algorithms which show a significant role in tumor detection and 

classification. Table mentioned below reflects the number of publications (Fig. 14) included in this study/review.
According to the literature review and statistics CNN and SVM are considered as the most prominent and commonly used algo

rithms in image processing. Classification and segmentation CNN depicts the most vital Characteristics of feature extraction methods 
from different forms of tumor and disorder e.g. (Benin or Malignant).

This graphical analysis is based on Table 09 with a maximum images count of 3064 and accuracy of DNN 97 %, DCNN 96 %, CNN 
93 % and miscellaneous 99 % as mentioned in Fig. 15. Classification and region-based methods, several algorithms and convolutional 
neural networks are employed.

3.3. Advantages and disadvantages of various techniques and methods

1. Training takes a long time, especially in testing and training of huge volume dataset, therefore the timeframe cannot be estimated.
2. Due to the usage of activation functions, training the proposed framework requires a huge number of training data that prune 

samples.
3. There is no single criterion or method for determining the best artificial NN structure for a task since it involves trial and error.
4. Majority of Neural Network can interact with numerical values and digital binary matrix at the back end all of its inputs need to be 

in statistical values.
5. The learning rate, number of nodes in the hidden layers, and which may all be optimized.
6. It’s still ambiguous how Artificial NN analyses data and creates the desired results.
7. Spatial modeling is a type of disaggregation method that includes breaking a location into numerous indistinguishable or identical 

components. It is a collection of analytical techniques used to obtain data about spatial linkages between geographic periods or 
occurrences. Machine learning advantages and disadvantages are elaborate in Table 10; further understanding of cutting edge 
technologies, techniques and trends is mentioned in Table 11.

3.4. Algorithms implemented in literature review

We observed numerous algorithms and networks introduced by different researchers during literature review more importantly, 
CNN and SVM have been used more frequently and extensively by researchers due to their lower computational cost, complexity and 
Time consumption. There are various medical imaging techniques like x-ray, computed Tomography (CT), positron emission to
mography (PET), magnetic resonance imaging (MRI) is widely acceptable due to its greater resolution and also make it more 
compatible and most widely utilized modality format for brain tumor growth, imaging,dimension and identification. However BRATS 
PASCAL VOC, RIDER, figshare, TCGA-GBM Image CLEF-2012 are the most popular in tumor detection technique.

An effective research analysis has been completed based on the findings of the study. In addition, a comparative examination of the 
performance of currently utilized algorithms is offered. As a consequence it was discovered that CNN and SVM algorithms out
performed on publicly accessible datasets. However these algorithms are tweaked to yield fantastic results with minor alterations.ML 
and DL use a number of strategies to make conclusions based on massive volumes of complicated data. With precise inputs provided to 
the machine these algorithms fulfill the process of learning from data. It’s critical to comprehend how these algorithms, as well as a 
machine learning system as a whole function so that we can learn how to use them in current or future state. According to literature 
review these algorithms are used in in different aspect image processing.

During literature review majority of the researchers have frequenty performed various machine learning and neural network 
models (as shown in Fig. 16) along with their respective counts. Among these are popular techniques like Convolutional Neural 
Networks (CNN) with 63 instances, followed by Support Vector Machines (SVM) with 33 occurrences. Other methods include Deep 
Convolutional Neural Networks (DCNN) with 21, Random Forest with 13, and Fully Convolutional Networks (FCN) with 8 instances. 
Additionally, there are less frequent mentions such as Genetic Algorithm (6), Deep Neural Networks (DNN) (15), and 3D-CNN/2D-CNN 
(10). Some approaches appear only once, such as Hour-Glass Net, Generative Probabilistic Model, and Hidden Markov Model, among 

Table 10 
Machine learning advantages and disadvantages.

R# Method Technique Advantages Disadvantages

[97] Threshold segmentation Local and global Simple calculation Difficult to maintain accuracy
[98] Edge Detection and 

Segmentation
Discontinuous local features Separates multiple regions (edge/Region) Doesn’t accurately work on noisy 

data.
[99] K-Means clustering distance-based partitioning 

method
Fast efficient and simple. 
Simple to execute.

Trouble clustering data 
Centroids can be dragged by outliers.

[100] Regional Growth 
Segmentation

Seed and region based pixel Good boundary information and 
segmentation results.

computational cost is higher

[101] Sobel Operator (3x3 matrix) Edge detection. simplicity Signal to noise ratio.
[102] Hybrid ensemble classifiers applying gray level length 

matrix
High accuracy Resource consuming/high 

computational cost.
[103] Pixel based KNN/SVM Majority voting system Reduce Mis-Classification KERNAL dependency
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Table 11 
Cnn based classification and performance.

Paper 
No

Year Neural 
Network

Method and Model Dataset and Modalities Tool Cohort/ 
Study

[37] 2023 CNN Inverted Residual Block 
(MBConv) 
EfficientNetv2s 
ResNet18

BR35H/CE-MR Python v.3.7 
NVIDA Tesla T4 13 GB 
GPU

2768/ 
3064

[104] 2023 Multi Class Convolutional 
Neural Network model 
(MCCNN)

feature vector BRATS 2015 and Figshare Data 
are used

– 220 
(HGG) 
54 (LGG)/ 
3064

[38] 2023 CNN Morphological-based 
segmentation methods; 
DenseNet, VGG16,

Br35H Python 2768

[39] 2023 CNN 
ResNet-50, VGG-16, and 
Inception V3

SGD/ADAM Nanfang hospital and General 
hospital

Python 233

[40] ​ CNN VGG16 
DWT analysis

MICCAI/T2-SWI schemic 
Stroke Lesion Segmentation 
(ISLES) 
BraTS 2016/2017

Keras API Python 572 
images

[41] 2022 25-layer CNN Sgdam optimizer public datasets – 3064 
images

[105] 2020 DCNN DL based for Multi-grade 
Brain Tumor

public 
TCIA 
BRATS 2015 T1- (CE)/Harvard 
WBA

NVidia TITAN X 121/3064

[106] 2020 Deep-Surv-Net DCNN 
Deep-Surv-Net

TCGA 
Private d

Python 400/9

[107] 2020 DCNN predictive model/ 
Resnet50

TCGA 
Private

Python 200/66

[108] 2020 CNN DCNN Public/MR (T1 WCE) MATLAB R2018a 3064
[109] 2020 DNN CNN/DCNN FLSCBN BraTS2013, (WBD)/MR (T2 

weighted)
Python, Core-I5,4 GB 
RAM

4500/281

[110] 2019 DNN CNN 
AlexNet 
Linear-SVM

ILSVRC-2012 Image-Net Caffe, MATLAB 164

[111] 2019 K-means PCA DCNN/INRV2-DSFN TCGA/TCIA PyTorch NIVIDIA 1080Ti 
GPU

2034, 
2005

[112] 2019 Res-Net -ResNet34 
-G-ResNet

private/MR (T1 WCE) Python 3064

[113] 2019 DNN DCNN/MDCNN/DNN private/MR (T1 WCE) PyTorch, NVidia 220
[114] 2018 Deep CNN DCNN MRI TensorFlow,Core-I7 

processor, 32 GB RAM
200

[115] 2019 DCNNs DCNN- Histological 
images

Private N/A 50

[116] 2018 KE-CNN DCNN public N/A 3064
[117] 2019 Dense-Net 

LSTM
holistic 3D MR images Public/Private TensorFlow 

Nvidia
3064/422

[118] 2018 DNN/Caps-Net Caps-Net MR (T1 WCE) Keras 3064
[119] 2018 Random Forest Caps-Net MR (T1 WCE) N/A 3064
[120] 2018 3D-GRE CE 3D-GRE Radiopaedia 

BraTS2015 
3T images

Python N/A

[121] 2018 DWT-DNN, Fuzzy C-means, 
LDA

(DWT) 
DNN

Public+ (http://med.harvard. 
edu/AANLIB/)

MATLAB R2015a, WEKA 
3.9

66

[122] 2018 DCNN/ELM-LRF/random 
forest classifier

ELM-LRF. Public/(T1 weighted) MATLAB R2015a 16

[123] 2018 Classical regression, (SVM) CNNs/SVC Ensemble -BraTS 2018 
-MRI

Python package 
pyradiomics5 version 
2.2.0

293

[124] 2018 DNN Patch-Network Slice- 
Network

TCGA 
HGG/LGG

Python 
Nvidia 
1080 GPU 
32 GB RAM

461

[125] 2018 DNN Identify IDH1/2 
mutations by ResNet50

MRI Kera, Tensorflow 603 
414 
471

Medical Terminologies (Tumor Abbreviations.
DSFN (Deep Spatial Fusion Network),HDF(hierarchical discriminative features), MET(Metastasis), MDCN(Modified Deep Convolutional Network), 
PET (Positron Emission Tomography),BB(Black-blood), (Sarc)Sarcoma, (LDA)Linear Discriminant Analysis, (DWT) Discrete Wavelet Transform, 
(GM) Gray Matter, (WM) white matter, (MVF)modality fusion vector, (SVM)Support Vector Classifier, (NGTDM) Neighbouring Gray tone difference 
Matrix,(LGF) Laplacian of Gaussian filter).
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others. In total, there are 227 instances of various machine learning and neural network models present in the dataset. Moreover state 
of the art tumor detection methods are mentioned in Table 12.

3.5. Modalities and intensities in image processing

Imaging is crucial in the assessment of individuals with brain tumors. Computed tomography (CT) and magnetic resonance imaging 
(MRI) are the two most important and commonly used imaging techniques (MRI). They have a significant impact on patient care. Every 
brain imaging Modality presents gives different and critical data relevant for every location of the tumor, several studies have used four 
distinct modalities: T1, T1c, T2, and FLAIR. Despite the fact that some of them produced remarkable segmentation results on the 
BRATS 2018 dataset, their structure is complex, necessitating additional time to train nd assess Modalities types, MRI intensities and 
Radiomic Gene Expressions are mentioned in Table 13.

Machine learning techniques have shown great potential in the field of brain tumor classification and detection, enabling more 
accurate and efficient diagnosis. However, there are several significant obstacles and difficulties related to security and privacy when 
applying these techniques are data privacy, data security, Informed consent and ethical considerations, Bias and discrimination, data 
sharing and collaboration. Furthermore, obstacles and difficulties in brain tumor detection are privacy preserving techniques (e.g. 
secure multi party computation, homo-morphic encryption, differential privacy etc.), secure data infrastructure, explainable AI, 
regulatory compliance etc.

4. Conclusion and future work

The most recent research publications on deep learning based on medical imaging challenges, notably brain tumor classification 
and segmentation tasks that we have evaluated in this study. The review contributed to the growth of a roadmap (shown in Figs. 1 and 
2 above) for accomplishing both objectives. Researchers can use this knowledge to generate their own models. Tables 1 and 2 also 
contain a compilation of significant knowledge, practical methodologies in deep learning networks, and the performance of DCNN- 
based models for the further research in this area. In this paper a detailed spectrum of Brain tumor is presented by using various 
ML and DL algorithms. Majority of the researchers incorporated CNN in most of valuable journals, a comprehensive analysis has been 
presented, Medical image processing and related technologies e.g. H&E staining, CT scan and others are used ML as Prime method for 
Image segmentation and classification.

This paper also gives a brief introduction by using publicly available MR images datasets. ML and Deep learning techniques shows 
relatively high accuracy in classification and segmentation. Complexity and accuracy are the most prominent factor in brain tumor 
research.

In future, AI algorithms there is a need to be developed and predict molecular mechanisms and alterations in brain tumors, such as 
methylation of O-methylguanine DNA methyltransferase (MGMT), isocitrate dehydrogenase (IDH), and thalassemia/mental- 
retardation-syndrome-X-linked gene (ATRX) condition [206]. In model’s robustness can be thoroughly assessed, a dataset origi
nating from different repositories had been used.T1 post-contrast images, as well as other types of images, should be analyzed for their 
possible significance. In multiple texture features, can be used as feedback to the deep Neural Network. Furthermore, more brain tumor 
MRI data must be obtained on a regular basis for concrete results.
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Table 12 
Machine learning methods in image processing for tumor Detection.

R # Attributes Techniques Dataset • Sen (%) •
Cropp

• Un-cropp
• Segmented

• Spec (%) • Acc (%)
• Cropped
• Un-cropped
• Segmented
• FNR
• NPV
• (DSC)

• AUC
• Pre %
• PPV
• JSI

• F- 
Alarm 
• FPR 
•FN •
Recall 
•

Method 
• Time

• TPR
• TN
• M.A (%)
• HD95_ET
• D95_WT
• HD95_TC

Dice/Enhancement/ 
Tumor Validation

F1-Score % 
MCC G-Mean

[126] CNN Support Vector 
Machine

TCIA 100 100 99.65 – – – – –

[127] 2D HISTOGRAM Matrix FCM Cohort 83.00 100 92.00 – – – – –
[128] GWF + HOG + SFTA Random forest BRATS 2012, 

2013, 2014, 2015
100 92.9 93.3 1, 0.93, 1 5 Fold 

0.5
– – ​

[129] TLFE + FLDO + FLSC +
FLSCD + FLSCBND +
FLSCBN

Deep-CNN BraTS 2013 – ​ 88.91 ​ 3.25 7.6 – ​

[130,131] N4ITK 
ROI

CNN 
HOG

Private DataSet 86.26 
89

90.9 
94

85.69 
92.14

– – – – ​

[132] RGBA DNN BraTS 2018 0.9239 0.9956 – – – – 0.9268 ​
[133] GLCM + GLRLM + GLSZM 

+ NGTDM + GLD
3D CNN BraTS 2018 – – 46.40 % – – – 0.80522/0.84943/ 

0.90444
​

[134] MXN pixel matrix CNN figshare 99.35 
87.76

99.95 
98.61

99.81 
96.29

99.84 
94.51

– – – 99.6 
91.01/99.47, 
88.77, 
99.65, 93.02

[135] Mb-FCRN + MvNet SPNet -CNN BRATS 17 – – 0.68 – – – 0.74/0.68/0.86 ​
[136] Fourier Wavelet+

Chebyshev
DNN DICOM 92.72 98.13 98.25 94.71 – – ​ 93.71

[137] 2D-CNN ConvNet Cohort Study – – 97 Normal- 
100 
Tumor- 
94

– – – Normal-100 
Tumor-94

[138] LBP + GLCM + Geometric 
+ PSO

DRLBP + CNN BRATS 2018 – – 92 – – ​ 91.20 %/88.34 % 
81.84

–

[139] GWM + BWM 2D-CNNs+3D-CNNs MICCAI BRATS 
2018

0.825 0.997 – – – – 0.843 –

[140] CMFT + CMFF DCNN PASCAL VOC 0.833 – – – – – 0.903/0.833/0.791 –
[141] Radiomic + manual feature 

extraction
DCNNs+
MDCNN

Patient cohorts +
Private

– – 0.613 ± 0.055, 
96.4

– – 0.88 
0.97

– –

[142] TLRN-LDA CNN ImageCLEF-2012 89.3 99.6 87.91 88 – – – 88.3/88.1
[143] SLIC CNN BRATS 2019 97.81 100 0.932 0.99 – – 96.32 –
[144] BWT SVM DICOM 97.72 94.2 96.51 % ​ ​ ​ ​ ​
[145] DWPT CNN ImageNet dataset 100 ​ 100/0.82 100 – – – 100
[146] Robust features GNN T1-CE MR images 90.16 95.58 91.7 91.17 – – – 90.54
[147] region of interest (ROI) CNN Figshare 98.18 

98.52 
97.40

​ 98.93 
99 
97.62

– – – – –

[148] (NS-EMFSE CNN + SVM TCGA-GBM 93.75 ± 0.62 
91.25 ± 1.25

92.5 ± 1.87, 
83.75 ± 2.5

93.1 ± 1.25 
87.5 ± 1.87

– – – – –

[149] I-linear CNN BRATS 2015 – – – – – – 0.9/0.87/0.86 –

(continued on next page)
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Table 12 (continued )

R # Attributes Techniques Dataset • Sen (%) •
Cropp

• Un-cropp
• Segmented

• Spec (%) • Acc (%)
• Cropped
• Un-cropped
• Segmented
• FNR
• NPV
• (DSC)

• AUC
• Pre %
• PPV
• JSI

• F- 
Alarm 
• FPR 
•FN •
Recall 
•

Method 
• Time 

• TPR
• TN
• M.A (%)
• HD95_ET
• D95_WT
• HD95_TC

Dice/Enhancement/ 
Tumor Validation 

F1-Score % 
MCC G-Mean

[150] Multilayered Mode CNN BRATS 
2013+WBA

– – 96–99 – 3.25 1.56 – –

[151] GLCM-CA ANN BRATS 2015 90.09 96.78 94.07 – – – – –
[152] SR-FCM-CNN CNN TCGA-GBM – ​ 98.33 – – – – –
[153] GLCM forward-feed 

convolutional 
network

Kaggle 96 96 96.05 92.31 – – – 94.12

[154] Tumor genomic prediction Patch-wise CNN ImageNet +
Private data

0.93 0.82 0.88 – – – – –

[155] GLCM + GW SVM RIDER+
Local

91.9 98 97.1 0.98 – – – –

[156] 2D slice DNN BRATS+
ISLES

95,100 95.2100 95.1100/0.05, 
0.00 
95,100

97.2 
90.4 
100

0.05 
0.00

– – –

[157] DWT CNN(Automatic 
Feature Learning)

BRATS 2018 0.92 0.8 0.87/0.08 – 0.2 – – –

[108] One test DNN BRATS – – 90.39 85.99 85.84 – – 85.91
[158] CANet CNN – – – – – – 3.319 

4.897 
6.712

0.821/0.835/0.895 –

[159] KE-CNN SVM 3064 images – – – 94.5 
91 
98.3

76.8 
97.5 
1

– – 85.8 
94.1 
99.1

[117] auto-encoder Dense-Net 
LSTM 
RNN

Public+
Proprietary

– – (92.13,71.10) 
(84.61,60) 
(91.28,86.56)

– – – – –

[160] CE 3D-GRE + BB 3D-CNN Private 90.3 % (56/ 
62) 
100 % (62/62)

– 0.9708 
0.9437

– 1,8 – – –

[121] DWT) DNN Harvard – – 96.97 0.984 0.97 – – 0.97
[122] ELM-LRF CNN Public 96.8 

96.23
97.12 
95.92

97.18,96.45 – – – – –

[161] DMDF FCNN BRATS 2015 0.9012 – 90.98/0.9129 – 1.0322 0.8916 – –
[162] Encoder-decoder structure AHN BRATS 2018 – – 92 – – – 0.66,0.62/0.72,0.65/ 

0.82, 0.79
–
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Table 13 
Types of modalities/intensities in image processing.

Paper # T1-W 
T1-Gd Sequence,T2 
Flair (MRI)

CIFAR10 Taxonomy Contents SRS/H&E Staining 
Radiomic 
Gene Expression DNA

MISC 
Diffuse Tensor Imaging

TlTc-SPECT 
FDG-PET 
TlTc-SPECT 
T2,T1 –WCE

[163] YES – – – –
[164] YES – – – –
[165] – – YES – –
[166] – – YES – –
[147] – – – – YES
[167] YES – – – –
[168] – – YES – –
[169] – – YES – –
[131] YES – ​ – –
[170] YES ​ ​ – YES
[171] – YES YES – –
[172] YES – – – –
[173] YES – – – –
[174] YES – YES – –
[106] – – YES – –
[175] – – YES – –
[176] – – YES – –
[177] – – YES – –
[170] – – – – –
[178] YES YES ​ – YES
[179] – – YES – –
[180] – – YES – –
[119] YES – – – YES
[108] YES – – – –
[181] YES – – – –
[161] YES – – – –
[182] – – YES – –
[183] – – YES – –
[184] YES – – – YES
[185] YES – – – ​
[186] YES – – – ​
[152] YES – – – YES
[187] YES – YES – –
[155] YES – – – –
[188] YES – – – –
[189] – – YES – –
[190] YES – – YES YES
[191] YES – – – –
[192] YES – – – –
[193] – – YES – –
[159] YES – – – YES
[191] YES – – – –
[178] YES – – – –
[151] YES – – – –
[111] – – YES – –
[194] YES – – – –
[195] YES – – – –
[117] YES – – – –
[34] – – YES – –
[196] – – – YES –
[118] YES – – ​ –
[197] – – – YES –
[122] – – – YES –
[34] – – – YES –
[198] YES – – ​ –
[199] – – – YES –
[200] – – – YES –
[201] YES – – – –
[202] YES – – – –
[124] YES – – – –
[203] – – – – YES
[106] – – YES – –
[204] YES – – – –
[205] YES – – – YES
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[148] F. Özyurt, E. Sert, E. Avci, E. Dogantekin, Brain tumor detection based on Convolutional Neural Network with neutrosophic expert maximum fuzzy sure 
entropy, Measurement 147 (Dec. 2019) 106830, https://doi.org/10.1016/j.measurement.2019.07.058.

[149] Segmentation of glioma tumors in brain using deep convolutional neural network, Neurocomputing 282 (Mar. 2018) 248–261, https://doi.org/10.1016/j. 
neucom.2017.12.032.

[150] T. Kalaiselvi, S.T. Padmapriya, P. Sriramakrishnan, K. Somasundaram, Deriving tumor detection models using convolutional neural networks from MRI of 
human brain scans, Int. J. Inf. Technol. 12 (2) (2020) 403–408, https://doi.org/10.1007/s41870-020-00438-4.

[151] N. Arunkumar, et al., K-Means clustering and neural network for object detecting and identifying abnormality of brain tumor, Soft Comput. 23 (19) (2019) 
9083–9096, https://doi.org/10.1007/s00500-018-3618-7.
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