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Abstract: Herein, we have investigated principally with the use of UV and fluorescence (steady-state
and time-resolved) spectroscopy the interactions between selected pentapeptides with tyrosine
residue (EYHHQ, EHYHQ, EHHQY, and KYHHE) and various metal ions (Cu2+, Mn2+, Co2+, Ni2+,
Zn2+, Cr3+, Cd2+, Ag+, Pb2+, Sr2+, Ba2+, Ca2+, Mg2+, Al3+, Fe2+, and Ga3+) in order to establish
the relationship between the position of a tyrosine residue in the peptide sequence and the metal
ion-binding properties. Among the peptides studied, EHYHQ was evaluated as an efficient and
selective ligand for developing a chemosensor for the detection of copper(II) ions. While significant
fluorescence emission quenching was observed for that peptide in the presence of Cu2+ cations,
other metal cations used at the same and at considerably higher concentrations caused a negligible
change of the fluorescence emission spectrum, indicating a high selectivity of EHYHQ for Cu2+ ions.
Under optimum conditions, fluorescence intensity was inversely proportional to the concentration
of Cu2+ ions. The limit of detection of Cu2+ ions with the use of EHYHQ was determined at the
level of 26.6 nM. The binding stoichiometry of the complexes of the studied peptides with Cu2+ ions
was evaluated spectrophotometrically and fluorimetrically (as in the case of EHYHQ confirmed by
mass spectrometry) and found to be 1:2 (Cu2+-peptide) for all the investigated systems. Furthermore,
the stability constant (K) values of these complexes were determined. The reversibility of the
proposed Cu2+ ions sensor was confirmed, the pH range where the sensor acts was determined,
while its analytical performance was compared with some other reported recently fluorescent sensors.
The mechanism of the interactions between EHYHQ and Cu2+ was proposed on the basis of NMR
spectroscopy investigations.

Keywords: Cu2+ ions; fluorescent chemosensor; pentapeptides; fluorescence quenching

1. Introduction

In recent years, there has been a particular emphasis on the development of new highly selective
molecular sensors for cations with biological interest (such as Na+, Ca2+, Cu2+, and Zn2+) because
of their potential applications to clinical biochemistry and environmental research [1]. Among these
ions, the Cu2+, ion as the third most abundant essential transition metal in a human organism [2],
plays a significant role in a variety of fundamental physiological processes (many proteins use
Cu2+ ion as a cofactor for electron or oxygen transport as well as a catalyst for oxidation–reduction
reactions [3]). The imbalance in the level of free copper ions can have a pernicious influence on
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biological systems—their deficiency is the symptom of anemia [4]. On the other hand, when the levels
of Cu2+ ions exceed cellular needs (the concentration of copper in blood is expected to lie between
11.8 and 23.6 µM [5]), they catalyze the generation of reactive oxygen and nitrogen species that can
damage lipids, nucleic acids, and proteins [6]. Furthermore, disorders in cellular homeostasis of Cu2+

ions have been proven to result in various diseases, such as Alzheimer’s disease, Parkinson’s disease,
prion diseases, or amyotrophic lateral sclerosis [7]. Because of its wide applications, Cu2+ ion is also
attributed as a significant metal pollutant. The US Environmental Protection Agency set the limit of
copper in drinking water at 1.3 ppm (∼20 µM) [6].

Considering all the above reasons, there has been a growing interest in the analytical
detection of Cu2+ ions using, for example, colorimetry [8,9], spectrophotometry [10], laser ablation
inductively coupled plasma mass spectrometry [11], flame atomic absorption spectrometry [12],
and voltammetry [13]. Although all these methods provide relatively low limits of detection
and wide concentration ranges, many of them are destructive techniques that require the use of
expensive equipment, making them not adaptable for online monitoring. Therefore, the development
of fluorescent chemosensors (due to high sensitivity of fluorescence spectroscopy, easy operation,
visual simplicity [14], instantaneous response, real-time detection [15], and a variety of fluorophores [16])
for the detection of Cu2+ ions is of great importance [17]. On the other hand, the availability of a variety
of fluorophores and the selectivity of such fluorescent probes still remain a great challenge, as many
recently reported chemosensors for cations demonstrated a change in their fluorescent features after
binding with more than one ion [18–20].

Studies of the complexes of amino acids and peptides with metal ions have been performed with
a main goal to better understand transition metal complexes in proteins [21,22]. For instance, it has
been shown that several ions, e.g., Cu2+ and Zn2+, are involved in the amyloid-β peptide aggregation
process, which presumably plays a main role in Alzheimer’s disease [23]. From among all amino acids
present in the amyloid-β (1–42) peptide sequence, histidine and tyrosine side chains are proven to have
a distinct affinity for Cu2+ and other metal cations [24]. The main goal of our work was to investigate
the interactions between selected pentapeptides with a tyrosine moiety including EYHHQ, EHYHQ,
EHHQY, and KYHHE, where E denotes glutamate, Y tyrosine, H histidine, Q glutamine, K lysine
(structures of these pentapeptides are shown in Figure S1 in the Supplementary Materials), and a list
of chosen metal ions (Cu2+, Mn2+, Co2+, Ni2+, Zn2+, Cr3+, Cd2+, Ag+, Pb2+, Sr2+, Ba2+, Ca2+, Mg2+,
Al3+, Fe2+, and Ga3+) to evaluate the relationship between the position of a tyrosine residue in the
pentapeptide sequence and the metal ion-binding properties.

2. Results and Discussion

In order to establish the metal ion-binding properties of the studied peptides, UV absorption
spectra of 0.1 mM EYHHQ, EHYHQ, EHHQY, and KYHHE in 5 mM MES buffer (pH 6.0) were recorded
in the absence and in the presence of 80 µM of various metal ions (molar ratio 1:0.8), including Cu2+,
Mn2+, Co2+, Ni2+, Zn2+, Cr3+, Cd2+, Ag+, Pb2+, Sr2+, Ba2+, Ca2+, Mg2+, Al3+, Fe2+, and Ga3+, and are
shown in Figure 1. It can be observed that the addition of only Cu2+ ions (80 µM) promoted a 1.5×
enhanced response at 275 nm and even higher at <275 nm compared to other metal ions. This can
also be observed as a rapid (a few seconds) response. A noticeable change in the shape of the spectra
and intensity of the absorbance are arguments supporting the formation of a new chemical species.
As no other metal ion/peptide systems showed any significant changes in their absorption features
compared to that of Cu2+ as well as taking into consideration an evidenced stronger affinity of various
peptides for Cu2+ ions (when compared to other metal ions) [25–27], we have assumed the observed
result for Cu2+ to have arisen from the chelation of Cu2+ ions with the peptides under study [28–31].
Furthermore, no shift of the band with a maximum at 275 nm (as can be observed, for example,
in Figure 1b) indicates that a reformed new excited electronic state of tyrosine in a complex is similar
to the one in a ligand alone [32]. It is noteworthy to mention that an increase in the absorbance was
observed until the peptides were saturated at approximately 0.5 molar equivalent of added Cu2+ and
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that subsequent addition of excess Cu2+ ions produced no significant changes in UV spectra (details
will be described further and shown in Figure 3).

Figure 1. The UV absorption spectra of EYHHQ (a), EHYHQ (b), EHHQY (c), and KYHHE (d) (0.1 mM
in 5 mM MES buffer, pH 6.0) in the absence of any ions (free peptide) as well as in the presence of Cu2+

and other cations (80 µM, molar ratio 1:0.8) including Mn2+, Fe2+, Co2+, Ni2+, and Zn2+.

To further explore the selectivity of the studied peptides toward metal ions, their fluorescence
emission spectra were also recorded upon excitation at 275 nm in the presence of 80 µM of various metal
ions (molar ratio 1:0.8), including Cu2+, Mn2+, Co2+, Ni2+, Zn2+, Cr3+, Cd2+, Ag+, Pb2+, Sr2+, Ba2+,
Ca2+, Mg2+, Al3+, Fe2+, and Ga3+, immediately after the addition of each ion and mixing the solution.
The results are shown in Figure 2. The obtained results indicated that Cu2+ was the sole cation that
contributed to an efficient and rapid fluorescence quenching of all studied peptides. However, in the
cases of EHHQY, EYHHQ, and KYHHE (contrary to EHYHQ), the addition of Ni2+ ions led to a very
slow but indisputable (approximately 6%) decrease in the fluorescence intensity. We are using this as
an evidence for very slow binding of Ni2+ ions to EHHQY, EYHHQ, and KYHHE but, at the same time,
not to EHYHQ. Indeed, additional spectrophotometric experiments revealed that EHYHQ (in contrast
to EHHQY, EYHHQ, and KYHHE) does not interact with Ni2+ ions (Figure S2 in the Supplementary
Materials). Hence, an exceptional, significant (approximately 3.5 times in the presence of 50 µM of
metal ion) and very fast (few seconds) decrease in the fluorescence intensity of EHYHQ caused only by
Cu2+ ions indicated its specific sensing ability to these cations. It is worth to mention that (similarly to
absorbance measurements) an increase in the fluorescence quenching was observed until EHYHQ was
saturated at approximately 0.5 molar equivalent of added Cu2+, and subsequent addition of the metal
ion produced no further quenching (details will be described further and shown in Figure 3). One of the
most probable reasons responsible for the observed phenomenon is the formation of a nonfluorescent
Cu2+-peptide complex due to a chelation enhancement quenching effect [33] or/and ligand to metal
charge transfer [34–36]. The presence of a paramagnetic d9 Cu2+ ion in the proximity of a tyrosine
residue makes that, in each complex, the forbidden intersystem crossing becomes faster (paramagnetic
effect) [17,33]. As a result, the studied complexes after excitation undergo intersystem crossing from S1

to T1 state of the fluorophore that is further deactivated by bimolecular non-radiative processes.
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Figure 2. The fluorescence emission spectra of EYHHQ (a), EHYHQ (b), EHHQY (c), and KYHHE (d)
(0.1 mM in 5 mM MES buffer, pH 6.0) in the absence of any ions (free peptide) as well as in the presence
of Cu2+ and other cations (80 µM, molar ratio 1:0.8) including Mn2+, Fe2+, Co2+, Ni2+, and Zn2+.

Figure 3. The plots of F0 − F
F0

(blue) and absorbance measured at 275 nm (red) against the metal ion

to peptide molar concentration ratio
(

cCu2+

cpeptide

)
for EYHHQ (a), EHYHQ (b), EHHQY (c), and KYHHE

(d); cpeptide = 0.1 mM: Line–line intersections represent the stoichiometry of the formed Cu2+-peptide
complexes. F0 is fluorescence intensity (measured at 305 nm, λex = 275 nm) of the peptide in the absence
of Cu2+ ions; F is fluorescence intensity (measured at 305 nm, λex = 275 nm) of the peptide at any given
concentration of Cu2+ ions.

UV absorption and fluorescence titration experiments of EYHHQ, EHYHQ, EHHQY, and KYHHE
(0.1 mM) with Cu2+ ions (0–80 µM) in 5 mM MES buffer (pH 6.0) were also carried out in order to
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establish the binding stoichiometry of the formed complexes as well as to determine appropriate
stability constant (K) values. The binding stoichiometry of the resulting complexes was evaluated
according to commonly used Yoe and Jones’ method [37]. According to this method, the analytical
signals measured (in our experiment, these are (i) F0 − F

F0
, where F0 denotes fluorescence intensity

(measured at 305 nm, λex = 275 nm) of the peptide in the absence of Cu2+ ions while F denotes
fluorescence intensity (measured at 305 nm, λex = 275 nm) of the peptide at any given concentration
of Cu2+ ions, and (ii) absorbance measured at 275 nm) were plotted versus the corresponding molar
concentration ratio

cCu2+
cpeptide

, and appropriate curves were obtained. Subsequently, the stoichiometry
of the complexes was estimated from the points where these curves changed their slopes (Figure 3).
As these results revealed unequivocally that the complexes of the stoichiometry of 1:2 (Cu2+ to peptide)
are formed for all the investigated systems, the equilibrium model presented in Table 1 was applied to
calculate the stability constants of the complexes under study using the HypSpec program [38].

Table 1. logK values (standard deviation in parentheses) for the Cu2+-peptide complexes in 5 mM
MES buffer solution (pH 6.0) calculated for T = 25 ◦C: Cu and P denote the Cu2+ ion and the peptide,
respectively (the charges are omitted for the sake of clarity). Twenty-two data points were used to
estimate each standard deviation (n = 22).

Reaction logKn Cu2+-EYHHQ Cu2+-EHYHQ Cu2+-EHHQY Cu2+-KYHHE

Cu + P = CuP logK1 1.48 (±0.03) 1.25 (±0.01) 1.55 (±0.01) 1.46 (±0.01)
CuP + P = CuP2 logK2 3.34 (±0.08) 3.25 (±0.02) 3.34 (±0.02) 2.55 (±0.05)
Cu + 2P = CuP2 logK 4.82 (±0.04) 4.50 (±0.01) 4.89 (±0.01) (±0.01)

To estimate the sensing ability and selectivity of EHYHQ toward Cu2+ ions, we have carried out
competitive experiments, where the peptide was exposed to various metal cations separately (Mn2+,
Co2+, Ni2+, Zn2+, Cr3+, Cd2+, Ag+, Pb2+, Sr2+, Ba2+, Ca2+, Mg2+, Al3+, and Ga3+) and then to Cu2+ ions
(Figure 4). The fluorescence of 0.1 mM of EHYHQ in the 5 mM MES buffer was firstly evaluated in the
absence of any ions, then in the presence of each potentially interfering ion (0.25 mM), and finally in the
presence of a mixture of potentially interfering ion (0.25 mM) and Cu2+ (0.05 mM). The obtained results
revealed that only Cu2+ ions induced a significant decrease in the fluorescence intensity of EHYHQ
at 305 nm, while under the action of other ions (used at concentrations five times higher than Cu2+

ions), there were no changes observed or the fluorescence quenching was negligible. Furthermore,
the decrease in the fluorescence intensity of EHYHQ in the presence of a mixture of Cu2+, Mn2+, Fe2+,
Co2+, Ni2+, and Zn2+ (each 80 µM) was comparable (within the range of experimental error) with
that observed for 80 µM of Cu2+ ions alone (Figure S3 in the Supplementary Materials). All these
results demonstrated the good anti-interference ability of EHYHQ to other cations. It consequently
permitted highly selective detection and determination of Cu2+ ions in aqueous solutions with the use
of that peptide.
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Figure 4. The fluorescence intensity (measured at 305 nm) of EHYHQ (0.1 mM) with the addition
of 0.25 mM of various metal ions (orange columns) in 5 mM MES buffer (pH 6.0) and then with the
addition of 0.05 mM of Cu2+ ions (blue columns): Molar ratio 1:2.5:0.5 (EHYHQ to Men+ to Cu2+).

Figure 5 shows the linear plot of F0
F for EHYHQ as a function of the concentration of Cu2+ ions

that fits the Stern–Volmer equation, suggesting that only one type of quenching (either dynamic
or either static) is involved in the fluorescence intensity decrease. It revealed that the extent of the
fluorescence quenching is proportional to the concentration of Cu2+ ions over the range of 79.9–792 nM,
which forms the basis of the method for the Cu2+ determination. The inset of Figure 5 tabulates the
analytical parameters obtained for the calibration graph reflecting the determination of Cu2+ ions with
the use of EHYHQ as a fluorescent sensor. In the presence of EHYHQ as a ligand, the limit of detection
(LOD) of Cu2+ was estimated to be less than 27 nM, which is ∼750 times lower than the recommended
maximum contaminant level for these cations in drinking water [6]. Within the investigated range of
quantitation, a linear relationship was observed (between the relative fluorescence decrease and the
concentration of Cu2+ ions)—as it is evidenced by the values of the coefficients of determination (R2)
close to unity. Furthermore, the determination of Cu2+ ions with the use of EHYHQ is characterized
with a high accuracy.



Int. J. Mol. Sci. 2020, 21, 743 7 of 16

Figure 5. A calibration plot reflecting the relationship between the relative fluorescence decrease of
EHYHQ (0.1 mM) and the concentration of Cu2+ ions: the inset gathers analytical characteristics of the
graph. F0

F values are shown as a mean value from 30 data points (n = 30). LOD—limit of detection;
LOQ—limit of quantification.

The determination of fluorescence lifetimes was carried out to confirm that the static quenching
is solely responsible for the observed fluorescence decrease. According to performed time-resolved
experiments in the case of all peptides under study, the values of their fluorescence lifetimes were
constant regardless of the Cu2+ ions concentration and equal to 1.12 ns for EHHQY, 0.78 ns for EHYHQ,
0.85 ns for EYHHQ, and 0.77 ns for KYHHE. Therefore, since Cu2+ ions had no effect on fluorescence
lifetimes of all studied peptides, it could be concluded that the mechanism of fluorescence quenching
is purely static. It is in a great agreement with the results shown in Figure 1, as appropriate complex
formation very often impacts the absorption spectrum of the fluorophore.

The pH dependence of the fluorescence emission intensities of EHYHQ (0.1 mM) in the absence
and presence of 80 µM of Cu2+ ions was examined over a wide range of pH values. As shown in
Figure 6, the determination of Cu2+ ions can work well in the range of pH approximately 4.0–11.0,
where the decrease of fluorescence intensity of EHYHQ under the action of Cu2+ ions is significant.
These observations indicate that EHYHQ is a very effective fluorescent sensor for Cu2+ ions under the
environmental and physiological conditions.

The reversibility of EHYHQ towards Cu2+ ions was evaluated as shown in Figure S4 in the
Supplementary Materials. When EHYHQ (0.1 mM, pH 7.4) is saturated by the addition of Cu2+ ions
(0.5 equiv.), approximately 3 times decrease in fluorescence intensity is observed. However, upon the
addition of Cu2+ chelating agent (2 equiv. of EDTA) to the EHYHQ with Cu2+ solution, a significant
increase in the fluorescence intensity was observed. The obtained results clearly demonstrate that Cu2+

ions can be effectively replaced by EDTA from Cu2+-EHYHQ complex and consequently prove that
Cu2+ ions recognition is a complexing and reversible process.
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Figure 6. The pH influence on the fluorescence intensity of EHYHQ (0.1 mM) in the absence and
presence of 80 µM of Cu2+.

In order to propose the mechanism of interactions between EHYHQ and Cu2+ ions, we have
performed additional NMR spectroscopy investigations. Figure 7 shows the effect of the presence of
Cu2+ ions on the appearance of the 1H NMR spectrum of EHYHQ. We have observed that the addition
of Cu2+ ions to the peptide solution caused no significant change of linewidths and chemical shifts
except for aromatic protons of the imidazole ring, but slight line-broadening was observed. This is
in good agreement with reports [39,40] that paramagnetic Cu2+ ions are known to broaden 1H NMR
signals without any dramatic change in chemical shifts when the 1H is in close vicinity to a cation or
on a donor atom directly coordinated to a metal. As the nitrogen atom of the imidazole ring very
effectively competes with the terminal amino group as an anchoring point for Cu2+, it strongly points
to histidine residues as anchoring sites and to their involvement in complexation [41,42]. As the signals
corresponding to protons of glutamine are slightly broadened too, it may demonstrate a participation of
that residue (along with histidine) in a complexation as well [43]. Taking into consideration the fact that
Ni2+ ions unambiguously interact with EHHQY, EYHHQ, and KYHHE but, at the same time, not with
EHYHQ (Figure S2 in the Supplementary Materials), we could assume that both histidine residues
placed side by side in a peptide sequence might be responsible for binding properties in the case of
that cation. On the other hand, the tyrosine residue placed between histidine residues in the EHYHQ
sequence has no influence on the interactions between that peptide and Cu2+ ions. A visualization of
predicted structure of complex between EHYHQ and Cu2+ (both cis and trans isomers) is presented in
Figure S5 in the Supplementary Materials.
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Figure 7. 1H NMR spectrum of 8 mM EHYHQ in the presence of Cu2+ ions in 2:1 molar ratio (upper
panel) and in the absence of Cu2+ ions (lower panel) along with selected signals identities: The most
significantly broadened signals are marked with blue.

In order to confirm the type of interactions and stoichiometry of the complex formed between
EHYHQ and Cu2+ ions, additional MS investigations were performed—EHYHQ in the absence of Cu2+

and in the presence of Cu2+ in ratio 1:5 (peptide to Cu2+) were analyzed using a 2 mM solution in water
(Figure 8, Figures S6–S8 in the Supplementary Materials, and Table S1 in the Supplementary Materials).
The spectrum of pure EHYHQ revealed singly and doubly charged molecular ions with m/z 713.9728
([M + H]+) and 357.5150 ([M + 2H]2+), respectively. Further, the analysis of the EHYHQ–Cu2+ solution
(molar ratio 1:5) showed additionally (apart from the signals of [M + H]+ and [M + 2H]2+) molecular
ions with m/z 775.9771 ([M + Cu]+), 744.4875 ([2M + Cu]2+), and 388.5192 ([M + Cu]2+), respectively.
This is in line with the results obtained from the UV and fluorescence spectroscopy measurements and
confirms the fact that EHYHQ under experimental conditions binds Cu2+ ions in 2:1 molar.
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Figure 8. The MS spectra of the 2 mM solutions of EHYHQ in the presence of 10 mM of Cu2+ ions (a)
and in the absence of Cu2+ ions (b). * Cu(II) can be reduced to Cu(I) in positive-ion mode electrospray
mass spectrometry [44,45].

The analytical performance of the proposed Cu2+ ion sensor was compared with some other
reported selective sensors in related literature, and the results are presented in Table 2. Our sensor
showed very good LOD (comparable or lower with some other recently reported fluorescent
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sensors), no interference by other competitive metal ions, instant response time, and wide pH
range. The analytical results indicate that proposed peptide is a simple and highly sensitive fluorescent
sensor for selective determination of Cu2+ ions in aqueous samples.

Table 2. Comparison of some recent fluorescent sensors for Cu2+ ions.

Reference LOD Operation System Reversibility pH

[17] 120 nM ON-OFF
(HEPES buffer) - 5.0–8.0

[46] 23.5 nM ON-OFF
(HEPES buffer) yes 6.0–12.0

[34] 10.9 nM ON-OFF
(PBS buffer) - 5.0–8.0

[47] 40.4 nM OFF-ON
(H2O:CH3CN, 1:9 v/v) - 5.0–7.0

[48] 15 nM ON-OFF
(HEPES buffer) yes 7.0–12.0

[49] 1 µM ON-OFF
(EtOH) - -

[50] 0.55–0.62 µM ON-OFF
(phosphate buffer) - 7.0–11.0

This work 26.6 nM ON-OFF
(MES buffer) yes 4.0–11.0

The symbol “-“ denotes that parameter was not tested or mentioned.

3. Materials and Methods

3.1. Materials

The chosen pentapeptides (EYHHQ, EHYHQ, EHHQY, and KYHHE) were synthesized using
a procedure described previously [51] and were then chromatographically purified using gradient
elution involving a water and a 10% to 100% (v/v) acetonitrile containing 0.1% (v/v) trifluoroacetic
acid mixture in a 3.5 µm, 3.0 mm × 100 mm XBridgeShield RP18 column (purchased from Waters,
Milford, MA, USA). The products were then characterized by mass spectrometry and an absorption
peak at 214 nm. Appropriate chromatograms and mass spectra confirming the purity and the
identity of the investigated peptides are presented in Figures S9–Figure S12 in the Supplementary
Materials. The concentration of the studied peptides was confirmed spectrophotometrically based on
the absorbance and the value of molar extinction coefficient of tyrosine determined at 280 nm (ε =

1280 M−1cm−1) [52]. 2-(N-Morpholino)ethanesulfonic acid (MES) and the nitrate and chloride salts
of the chosen metal cations (Cu2+, Mn2+, Co2+, Ni2+, Zn2+, Cr3+, Cd2+, Ag+, Pb2+, Sr2+, Ba2+, Ca2+,
Mg2+, Al3+, Fe2+, and Ga3+) were purchased from Sigma Aldrich (Poland; analytical grade or the
highest purity available) and used without further purification. The solutions were prepared using
ultra purified water (a conductivity not exceeding 0.18 µS/cm) deionized by a Milli-QSP reagent water
system (Merck Millipore, Burlington, MA, USA).

3.2. Methods

3.2.1. UV Absorption Spectroscopy

UV absorption spectra of EYHHQ, EHYHQ, EHHQY, and KYHHE (0.1 mM) with several 80 µM
metal cations (Cu2+, Mn2+, Co2+, Ni2+, Zn2+, Cr3+, Cd2+, Ag+, Pb2+, Sr2+, Ba2+, Ca2+, Mg2+, Al3+,
Fe2+, and Ga3+) were acquired at room temperature using a Perkin Elmer Lambda 650 UV/Vis
spectrophotometer (Waltham, MA, USA) with a 1.0 cm quartz cell. The measurements were conducted
in 5 mM MES buffer (pH 6.0). In performing UV absorption titration experiments, 2 mL of each 0.1 mM
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peptide solution was titrated with twenty 1 µL aliquots of Cu2+ solution at 8 mM to achieve 1:0.8
peptide to metal ion molar ratio. Absorbance was measured at 275 nm.

3.2.2. Steady-State and Time-Resolved Fluorescence Spectroscopy

Fluorescence emission spectra (λex = 275 nm) of EYHHQ, EHYHQ, EHHQY, and KYHHE (0.1 mM)
with several 80 µM metal cations (Cu2+, Mn2+, Co2+, Ni2+, Zn2+, Cr3+, Cd2+, Ag+, Pb2+, Sr2+, Ba2+,
Ca2+, Mg2+, Al3+, Fe2+, and Ga3+) as well as all steady-state fluorescence intensity measurements were
performed at room temperature on a Cary Eclipse Varian spectrofluorometer (Agilent, Santa Clara, CA,
USA) equipped with a 1.0 cm quartz cell. In performing fluorescence titration experiments, 2 mL of
each peptide solution at 0.1 mM was titrated with twenty 1 µL aliquots of Cu2+ solution at 8 mM to
achieve 1:0.8 peptide to metal ion molar ratio. Decreases in the fluorescence intensity were measured
at 305 nm, corresponding to the maximum of the peptide emission [53]. Possible absorption of light by
the added cations at the excitation and emission wavelengths of peptides was measured. The influence
of an inner filter effect was estimated on the basis of the following Equation (1):

Fcorr = Fobs × 10
Aex+Aem

2 (1)

where Fcorr and Fobs denote the corrected and observed fluorescence intensities, respectively, while Aex

+ Aem is the sum of the absorbance of the peptide and ion measured at the excitation and emission
wavelengths, respectively [54].

Time-resolved fluorescence experiments were conducted with a FluoTime 300 high-performance
fluorescence lifetime spectrometer (PicoQuant, Berlin, Germany) at 20 ◦C. The probes were excited
with the use of a pulsed LED of the PLS series (λex = 287 nm). The fluorescence lifetimes of all peptides
(0.1 mM) were determined in the absence and presence of increasing concentrations of Cu2+ ions up to
80 µM at the wavelength corresponding to the maximum of the peptide emission (λem = 305 nm).

Both steady-state and time-resolved experiments were conducted in 5 mM MES buffer (pH 6.0).

3.2.3. Analytical Procedure

The limit of quantification (LOQ) was evaluated as the lowest point of a linear calibration plot
(the plot of F0/F as a function of the concentration of Cu2+ ions) obtained with precision of <10% RSD
and accuracy between 90 and 110%, while limit of detection (LOD) was estimated as LOQ divided by
three [55].

3.2.4. NMR Spectroscopy

The 1H-NMR spectra of 8 mM EHYHQ alone and a mixture of 8 mM EHYHQ and 4 mM Cu2+ (a 2:1
peptide to Cu2+ ions stoichiometric molar ratio was obtained from absorbance and fluorescence intensity
measurements) were recorded at 25 ◦C on a Varian Unity Inova 500 (500 MHz) spectrometer (Agilent,
Crawley, UK) at the Intercollegiate NMR Laboratory at the Technical University of Gdańsk (Poland) and
analyzed with the SPARKY program [56]. The samples were dissolved in 90% H2O/10% D2O.

3.2.5. Liquid Chromatography Coupled with Mass Spectrometry (LC-MS)

Liquid chromatographic analyses were performed on an ultrahigh-performance liquid
chromatography system Nexera (Shimadzu, Kyoto, Japan). Chromatographic conditions were
as follows: a Kinetex column (Phenomenex, 1.7 µm, C18, 100 Å, 2.1 × 150 mm), a flow rate of 0.3 mL ·
min−1, and a gradient elution with 80% acetonitrile and water (from 0% to 40% acetonitrile). The column
temperature was maintained at 25 ◦C. The effluent was diverted to waste for 2 min after injection
during each analysis. The liquid chromatographic system was coupled directly to a TripleTOF 5600+

(SCIEX, Framingham, MA, USA) mass spectrometer. Mass spectrometry was operated in positive
mode at 200 ◦C with a needle voltage of 3000 V and with nitrogen as curtain gas and nebulizer gas.
The declustering potential was 30 V, and the collision energy was 7 V.
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4. Conclusions

We have investigated the influence of the position of a tyrosine residue in selected peptides
sequence on the binding properties with various transient metal ions. Among the four peptides studied,
EHYHQ can selectively and sensitively detect Cu2+ ions over other common metal cations (Mn2+,
Co2+, Ni2+, Zn2+, Cr3+, Cd2+, Ag+, Pb2+, Sr2+, Ba2+, Ca2+, Mg2+, Al3+, Fe2+, and Ga3+) in the MES
buffer, leading to a significant fluorescence quenching. The limit of detection of Cu2+ ions with the use
EHYHQ was found to be approximately 27 nM. The binding stoichiometry of the resulting complexes
with Cu2+ was evaluated, and their stability constant values were determined. Finally, the possible
mechanism of the interactions between EHYHQ and Cu2+ ions was proposed.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/21/3/743/s1.
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