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Abstract

The respiratory tract is known to harbor a microbial community including

bacteria, viruses, and fungi. New techniques contribute enormously to the

identification of unknown or culture‐independent species and reveal the

interaction of the community with the host immune system. The existing

respiratory microbiome and substantial equilibrium of the transplanted

microbiome from donor lung grafts provide an extreme bloom of dynamic

changes in the microenvironment in lung transplantation (LT) recipients.

Dysbiosis in grafts are not only related to the modified microbial components

but also involve the kinetics of the host‐graft “talk,” which signifies the

destination of graft allograft injury, acute rejection, infection, and chronic

allograft dysfunction development in short‐ and long‐term survival. Micro-

biome‐derived factors may contribute to lung xenograft survival when using

genetically multimodified pig‐derived organs. Here, we review the most

advanced knowledge of the dynamics and resilience of microbial communities

in transplanted lungs with various pretransplant indications. Conceptual and

analytical points of view have been illustrated along the time series, gaining

insight into the microbiome and lung grafts. Future endeavors on precise

tools, sophisticated models, and novel targeted regimens are needed to

improve the long‐term survival in these patients.
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1 | INTRODUCTION

Human populations can be clustered mainly by gut
microbiome into three “enterotypes” [1]. Bacteroides,
Prevotella, and Ruminococcus are symbolized species in
enterotypes. Emerging studies have been conducted on
the dynamics and resilience of enterotypes and patholog-
ical microbial dysbiosis [2, 3]. The gut and lungs are
anatomically distinct; however, the gut and lungs form
from the same embryonic tissue and bear commonalities
in structure and physiology. The gut–lung axis is a hub
for maintaining immune homeostasis [4]. Crosstalk
between the gut and lung is achieved by lymph
circulation and circulated metabolites produced by the
microbiota [5]. Chronic lung disorders exhibit a dysbiotic
airway and gut microbiota [6], which are further
associated with dysregulated lung immune status [7].

The lung microbiota has been defined as core constitu-
ents harbored in airways, which has changed the long‐term
concept of the sterile airway notion in pulmonary medicine
[8]. The lung microbiome varies at the lobe or segment
level, leading to significant spatial heterogeneity [9].
Bronchoalveolar lavage (BAL), lung biopsies or tissue
samples can yield varied results [10]. For transplanted
lungs, the condition for microbes dwelling has been further
altered due to the reconstruction of airway resulting in poor
airway secretion clearance, cough reflex or microaspiration,
posttransplantation immunosuppressive drugs, and anti-
biotics [11]. The microbiota in transplantation medicine has
unique characteristics involving both donors and recipients
[12]. The most important research tract for microbiota in
recent years has been from the demonstration of the
topography of the airway microbiota to discover the
interaction of the host and microbe in a functional and
therapeutic way [13]. To reach the goal of therapeutic
manipulation of pulmonary microbiota in lung transplant
(LT) patients, the causative link needs to be confirmed with
more details, as demonstrated in this review.

2 | MICROBIAL COMPOSITION
AND DIVERSITY IN LUNG
ALLOTRANSPLANTATION

Common knowledge of the airway microbiota has demon-
strated five representative bacterial phyla (Firmicutes,
Bacteroidetes, Proteobacteria, Actinobacteria, and Fusobac-
teria) (Figure 1). The first three were the predominant
components, while the latter two were the occasional
representation. The predominance of any single bacterial
phylum in the posttransplantation era was recognized to be
microbial dysbiosis [14]. Most observed phyla included
Bacteroidetes, Firmicutes, and Proteobacteria in lung

transplant recipients; however, in nontransplant subjects,
Prevotellaceae, Veillonellaceae, and Streptococcaceae were
detected frequently [15]. BAL from lung transplant
recipients was found to have increased levels of proin-
flammatory Pseudomonadaceae, Enterobacteriaceae, and
Staphylococcaceae and decreased levels of Prevotellaceae,
Veillonellaceae, and Streptococcaceae, aligned with remo-
deling gene expression [16].

The focus of microbiome research has transitioned
from solely descriptive cross‐sectional analysis of com-
position to a longitudinal scale study [17], permitting an
observation of the host response to study how the
interaction benefits or destroys diversity, as well as the
modulation of donor/recipient cells, alteration of the
alloimmune response and posttransplant complications
[18]. More precise tools, such as transcriptomics and
single‐cell sequencing, allow a more complementary
data profile [19]. The lung microbiota should be
considered together with the microbiota in the oral
cavity and nasopharyngeal and upper respiratory tracts.
Prevotella (Bacteroidetes) frequently dominated, while
Veillonella (Firmicutes) and Neisseria (Proteobacteria)
negatively correlated with typical lower airway infec-
tious pathogens such as Staphylococcus (Firmicutes),
Pseudomonas, and Klebsiella. The decreased diversity not
only resulted from lung disease with functional impair-
ment but also with antibiotic use [20]. Thus, a variety of
strategies to maintain the microbial ecosystem balance
have been established in the host respiratory tract in
microbe–host crosstalk [21, 22]. For posttransplant
patients, tracheobronchitis or lung microbiome coloni-
zation showed more diverse microbiome profiles, while
pneumonia was associated with elevated cytokine
responses and a higher rejection rate than colonization
[23]. Each individual had a “microbiome type” repre-
senting a core functional microbiome responsible for gut
diseases and extragastrointestinal tract pathological
conditions [24], including drug metabolism. A com-
monly used immunosuppressive drug, mycophenolate
mofetil (MMF), shifted the microbial cluster by increas-
ing Proteobacteria and decreasing Bacteroidetes phyla,
thus affecting drug toxicity, bioavailability, and bio-
availability [25]. The Escherichia/Shigella genus was
related to MMF‐induced symptoms, while Bacteroidetes
reduction and expansion of Actinobacteria were associ-
ated with obesity [26].

The microbiome composition in cystic fibrosis (CF)
patients who received transplantation has been compre-
hensively demonstrated. Higher bacterial richness was
found in the respiratory zone than in the conducting
zone, irrespective of the time post‐LT. The proportions of
the phyla Firmicutes and Proteobacteria were inversely
correlated in both zones. Pretransplantation colonized
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microbial communities included Staphylococcus
aureus, Haemophilus influenzae, and Pseudomonas aer-
uginosa [27]. After transplantation, bacteria that
remained in the sinuses, such as P. aeruginosa, seeded
the allograft, which occurred within the 1st day. Patient
follow‐up research has shown a predominance of
Prevotella and further Corynebacterium [28]. In post‐LT
recipients, the microbiota of the conducting zone might
be more closely related to the microbiota of the recipient,
whereas the microbiota of respiratory airways more
closely reflected the donor microbiota [29]. Interspecies
interactions have been known to occur between P.
aeruginosa and microbiome constituents in CF patients
[30], such as Streptococcus parasanguinis as an oral
commensal, interfering with P. aeruginosa pathogenesis
[31]. BAL from post‐LT graft infection patients showed
loss of bacterial diversity, with enrichment of

Burkholderia, Corynebacterium, and Staphylococcus and
reduction of anaerobes [32]. The association of P.
aeruginosa and P. fluorescens with acute infection and
the development of bronchiolitis obliterans syndrome
(BOS) has been investigated. The risk of BOS has been
found to be remarkably higher in patients with de novo
Pseudomonas acquisition [33]. Nontuberculous mycobac-
teria (NTM), such as the Mycobacterium abscessus
Complex and Mycobacterium avium Complex, are recog-
nized as insidious opportunists, leading to increased
morbidity in CF [34]. There is increasing concern about
NTM in the post lung transplantation period, especially
with BOS development. However, evidence is still
lacking. Apart from the knowledge gap on microbial
interactions with host immunity, interactions with viral,
and fungal communities are still not fully understood
and need to be addressed [35].

FIGURE 1 Interaction of microbiota and airway environment. Five main bacterial phyla (Fir‐micutes, Bacteroidetes, Proteobacteria,
Actinobacteria, and Fusobacteria) colonized in lung. BAL from lung transplant recipients contain increased levels of proinflammatory
Pseudomonadaceae, Enterobacteriaceae, and Staphylococcaceae; decreased levels of Prevotellaceae, Veillonellaceae, and Streptococcaceae
aligned with remodeling gene expression. When pneumonia was characterized in transplanted lung, Pseudomonas, Staphylococcus,

Streptococcus, and Corynebacterium were becoming dominant. Bacteroides fragilis and some Clostridium species promoted Treg
development, filamentous bacteria contributed to Th17 cells. Macrophages and fibroblasts with expression genes of matrix synthesis or
degradation were characterized the most distinct profiles post‐LT. In post‐LT early phase, pathogenic, and nonpathogenic pro‐remodeling
microbiota (including virus) profile enrichment and activation ensue a tissue remodeling and immune environment rebuilding.
BAL, bronchoalveolar lavage; LT, lung transplantation.
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Respiratory viruses (RVs) pose a constant risk for
transplanted‐lung function decline, with an incidence of
7.7%–64% [36], increasing opportunistic infections and
acute rejection (AR) [37]. Picornaviruses, coronaviruses,
and influenza were among the most reported viruses.
The presence of an RV in the previous 3 months was
associated with the appearance of AR, appearance of P.
aeruginosa and cytomegalovirus (CMV) replication or
diseases. CMV, EBV, and human herpesvirus have
attracted attention; however, the data seem to be
confounding [38]. Coinfection with CMV and Pneumo-
cystis jirovecii correlated with worse prognosis and lung
microbiota alteration in solid organ transplantation
recipients [39]. Murine gammaherpesvirus (MHV)
belongs to the family Herpesviridae and is related to
Epstein–Barr and Herpes Saimiri virus [40]. MHV might
alter the lung microbiota community composition,
mediating pulmonary inflammation, and fibrosis [41].
Early reports showed that pulmonary infection correlated
with influenza and lung function impairment was
associated with early graft dysfunction or chronic lung
allograft dysfunction [42]. The torque teno viral load
increased immediately in the postoperative period, as
detected in the oropharyngeal washes and BAL samples;
the magnitude of viral load was associated with primary
graft dysfunction development [43]. In most lung virome
studies published, the DNA virus community received
more attention than the RNA virus community [44].
Other viruses detected by next‐generation sequenc-
ing remain unnamed and uncharacterized, which calls
for further prospective longitudinal research to deter-
mine their roles.

The lung mycobiome is highly diversified in popula-
tions and conditions. Anaerobes were reported to be
isolated with P. aeruginosa, and the latter was found to
be more likely associated with Candida albicans than
with Aspergillus fumigatus or other oral mycobiomes
[45]. Candida, Aspergillus, and Cladosporium could be
found in oral wash and BAL post‐LT without excluding
antifungal drugs as the main confounding factor [46].
Most fungal species detected in sputum samples by
sequencing could not be cultured, but they remained
stable through antimicrobial therapy [47]. Colonization
with Aspergillus was found to be strongly associated with
the development of BOS and increased BOS‐related
mortality in recipients who had Pseudomonas‐dominated
microbiomes [48]. Colonization with Aspergillus should
be speculated to explain the fungi results after fully
speculating the possibility of contamination with sam-
pling techniques, environmental factors, microorganism
translocation, and microaspiration via orotracheal tubes.
Future mycobiota studies are suggested to reveal their
roles in the context of treatment with causation other

than just correlation [49]. The virome and mycobiome
are not silo mentality in the lung microenvironment and
should be treated as integral to lung transplantation
perioperative care.

3 | MICROBIAL KINETICS WITH
IMMUNE SYSTEM AND GRAFT
SURVIVAL IN LUNG
TRANSPLANTATION

General knowledge of the microbiota recognized that the
diversity of bacteria increased during the first 9 months
post‐LT. Immune phenotypes could be altered by
individual microbial taxa, such as Bacteroides fragilis,
and some Clostridium species promoted Treg develop-
ment [50], and filamentous bacteria contributed to Th17
cells. Macrophages and fibroblasts with expressed genes
of matrix synthesis or degradation were characterized as
having the most distinct profiles post‐LT [51]. The
microbiota could exert its immune modular effect
beyond colonization by the pathway of type I interfer-
ons and nuclear factor‐ΚB pathway activation as well as
induce IL‐10+B cells and suppress T‐cell activation
[52–54]. Lower airway microbiota could intrinsically
accommodate the local milieu and have been subjected
to altered interaction with the local innate immune
system [55]. Infection with S. aureus and Listeria
monocytogenes resulted in broken tolerance, and further
microbes could alter the intensity or kinetics of acute
rejection [56].

An increasing number of studies have linked
dysbiosis variations to recipient reactions [57]. Firmi-
cutes‐ or Proteobacteria‐dominated dysbiosis correlated
with altered inflammation‐regulated gene expression,
with decreased macrophage, and elevated neutrophil
percentages; Bacteroidetes‐driven dysbiosis was fre-
quently related to a pro‐remodeling context and high
macrophage percentage. Prevotella was believed to be
less stimulatory but had an undesirable influence of
promoting tissue remodeling if overrepresented [58].
This influence was almost limited to the first 12 months
post‐LT. A catabolic remodeling process peaked between
3 and 6 months, and then, an anabolic remodeling
process was revealed from 12 months onward [59]. A
catabolic remodeling background was described as
driven by elevated Firmicutes or Actinobacteria and
then decreased when Bacteroidetes predominated.
Driven factors of post‐LT dysbiosis included Firmicutes
and then Bacteroidetes, thus aligning with catabolic and
anabolic remodeling kinetics.

Infections as virulence factors, including S. aureus
and P. aeruginosa, were enriched in the communities
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associated with a catabolic remodeling profile. A so‐
called “master of genomic flexibility” S. pneumoniae with
various virulence genes helped to escape from host
innate immunity [60]. Early maximal catabolic remodel-
ing and dysbiosis between 3 and 6 months post‐LT linked
more to infection with highly stimulatory bacteria; later
anabolic remodeling profile and dysbiosis between 12
and 24 months, stimulated by bacteria with upregulated
matrix degradation products. The process was observed
not only in chronic lung allograft dysfunction (CLAD)
but also in stable patients or patients with other airway
complications [61, 62]. A high abundance of Pseudomo-
nas existed between days 3 and 25 post‐LT. On Day 95,
some of the commensal flora, such as Actinobacillus and
Bordetella, had efficiently outgrown Pseudomonas and
Staphylococcus in bronchial aspirate [63]. Two distinct
subpopulations were further identified in the whole
Pseudomonas population. The phenotypes and mutation
selection of the microbiota post‐LT reflected a different
adaptation process of the dominant population in the
grafts.

There was a systemic change in the microbiota in the
newly transplanted graft (Figure 2): on post‐LT Day 1,
the allograft reflected the microbiota composition of the
donor organ with high richness and diversity. Pseudomo-
nas and Staphylococcus gradually invaded the graft and
established a different microbiota composition with less
richness and diversity, which could be similar to the pre‐
LT composition at approximately 10 days post‐LT. There
would be another community shift 3 months post‐LT.
Actinobacillus became dominant, especially following
anti‐infection treatment with imipenem. Furthermore,
using bronchoalveolar lavage fluid samples to identify
bacterial load and community composition states by an
unsupervised machine learning approach, four “pneu-
motypes” were demonstrated: PneumotypeBalanced, Pneu-
motypeMD, PneumotypeStaphylococcus, and PneumotypeP-
seudomonas. PneumotypeMD was believed to contribute to
airway remodeling, while PneumotypeStaphylococcus and
PneumotypePseudomonas were linked to an inflammatory
status with immune dysregulation and rejection [22]. The

transplanted lung microbial ecosystem, transplanted
lung function, and post‐LT clinical course are believed
to be intimately linked [64].

Research on microbiota did not merely find invasive
pathogens as infection sources but looked into the
targeted restoration of the microbial environment as a
whole. The intestinal microbiome also influences the
immune cells circulating and accumulating in the lungs
after ischemia‐reperfusion injury [65]. Chronic rejection
events, such as BOS, have been the area of most focus in
microbiome research [66]. The initial description pre-
sented a negative association of Pseudomonas spp. [67]
and positive risk of P. aeruginosa with BOS [68].
Conflicting findings of microbiome diversity were due
to the lack of consideration of clinical parameters and
immune‐background of the recipients [69]. A high
abundance of P. aeruginosa was recognized to be
associated with acute infection and lower airway
colonization [70, 71]. Transplanted lungs frequently
acquired sinus pathogens before donation, thus reflected
by similar adaptive patterns by post‐transplant pulmo-
nary Pseudomonas strains [72].

The leading cause of death in adult lung transplant
recipients beyond 1 year is chronic lung allograft
dysfunction (CLAD) [55], which has been recognized as
the reason for poor long‐term outcomes. Respiratory
infections are a widely recognized risk factor for CLAD
development. The composition of the lung bacterial
community in patients with CLAD showed significant
differences from the composition of the lung bacterial
community in patients who survived or were CLAD‐free
[73, 74]. Recent research has focused on the altered lung
microbiota predicting post‐LT outcomes. Patients in-
fected with certain species in the Burkholderia cepacia
complex before transplant have been reported to have
significantly worse outcomes than patients without
infection [75]. In the early stage post‐LT, richness, and
diversity of the oropharyngeal microbiome were restored
to the level between healthy and pretransplant subjects.
However, if recipients suffered infection or advanced
lung disease, dysbiosis appeared [76]. Post‐LT invasive

FIGURE 2 Time series of post lung transplantation microbial kinetics and graft fate

HEALTH CARE SCIENCE | 123



pulmonary aspergilosis is among the leading causes of
infection and death. Differences in bacterial diversity at
the onset of invasive pulmonary aspergilosis have
predictive value for infected patients [77]. Posttransplan-
tation pulmonary grafts dominated by Proteobacteria
were found to be associated with high neutrophil and
proinflammatory status. Bacteroides‐dominated grafts
had low neutrophil and high macrophage counts with
an anti‐inflammatory profile [16]. Moreover, gram‐
positive environments correlated with a decreased risk
of CLAD and were dominated by Acinetobacter [78].
Thus, post lung transplantation microbial dysbiosis has
been recognized to be associated with the pretransplant
microbiome when studying its effect on CLAD.

4 | GUT MICROBIOTA IN LUNG
XENOTRANSPLANTATION:
PERSPECTIVE

Gut microbiota‐derived a1,3‐galactose (Gal) antigen
content has been reported to contribute to inflammation
in immune‐related disorders [79]. Humans have been
discovered to have high levels of Gal against circulating
antibodies [80]. The microbiota synthesizes the α1,3‐Gal
epitope and interacts with the human microbiome and
immune response. The identified gut bacteria bearing
α1,3‐GT genes mostly belonged to the Enterobacteriaceae
family, Haemophilus influenzae, Pasteurellaceae genera,
and Lactobacillus species. Anti‐Gal antibodies have also
been identified as the major components contributing to
hyperacute vascular xenograft rejection in xeno-
transplantation. Genome editing has revolutionized
genetically modified pigs [81]. Genetically multi‐
modified pig‐derived organs have been put into clinical
transplantation trials, which lack Gal and express human
membrane cofactor protein (CD46) and thrombomodulin
[82]. Nonhuman primates have been reported to survive
for over a year with kidneys [83] and for over 6 months
with heart xenografts [84]. However, prominent inflam-
mation and graft loss still beset lung xenotransplantation
practice. Rapid failure could be seen in Gal‐transferase
knockout pig lungs transplanted into baboons. Combined
Gal‐transferase knockout, with the expression of human
complement, coagulation regulatory proteins, anti‐
inflammatory enzymes, and self‐recognition receptors,
as well as blocking multiple proinflammatory innate and
adaptive immune mechanisms, has successfully extended
lung xenograft recipient survival to 1 month [85].
However, anti‐non‐Gal antibodies could not be elimi-
nated even upon immunosuppression. Whether these
antibodies are associated with the gut–lung axis and
microbe–host crosstalk warrants further investigation. To

date, there is no direct evidence from studies focusing on
the role of microbiota from xenografts. However, another
perspective could be to cope with complex posttrans-
plantation complications, other than new immuno-
suppression drugs and gene‐editing tools.

5 | LIMITATION AND FUTURE
DIRECTION

Currently, most studies have been performed in
relatively small numbers of lung transplant patients
but with highly innovative insights. Mostly, the
studies described the composition of microbial com-
munities and their distribution in airways. Genera-
tions of microbial identification techniques have
contributed to the analysis of microbe communities
in patients with airway diseases [86]. The most
significant problem related to the inadequacy of
techniques was contamination via the respiratory
tract during sampling. Modification of testing meth-
ods and analysis methods would overcome these
barriers to some extent. For the detection of lung‐
specific bacteria, it is important to identify oral
&QJ0;and nasal sampling, thus excluding the impact
of sedation‐related aspiration or bronchoscopy
carryover.

Moreover, how microbial species contribute to clinical
disease is still unknown. High‐throughput sequencing has
expanded the knowledge of microbes; moreover, it is
critical to move this field forward to investigate the
functional properties of these organisms and their
relationship to disease progression. Methodologies such
as transcriptomics, proteomics and metabolomics are
currently being used to understand how these organisms
affect and influence the immune response of the host [87,
88]. Based on clinical manifestations, comprehensive
evaluation tools have been used on the infection and
rejection risk by performing on‐site imprint cytology of
biopsy, sequencing, and histologic examination. However,
how this coinfection affects the long‐term prognosis of
patients remains to be observed. The follow‐up period was
relatively short, and it was difficult to determine whether
the patients were stable or had chronic rejection, which
may require further longitudinal observation.

While most studies have focused on single group of
microbes, the interaction of various infectious agents,
cross‐talk of microbial community, such as gut–lung axis,
together with fully understand resident and transient
species, when and how dysbiosis affecting the host
organism are more complex and fascinating questions
[89, 90]. Novel clinical trials of immune regulation
regimes rather than mixed probiotic supplementation in
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an uncontrollable way need to be explored with insight.
The eminent effect of probiotics in children or early in
life [91] will inspire their further development in
pediatric transplantation.
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