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With the success of antiretroviral therapy (ART), a dramatic decrease in viral burden

and opportunistic infections and an increase in life expectancy has been observed

in human immunodeficiency virus (HIV) infected individuals. However, it is now clear

that HIV- infected individuals have enhanced susceptibility to non-AIDS (Acquired

immunodeficiency syndrome)-related complications such as cardiovascular disease

(CVD). CVDs such as atherosclerosis have become a significant cause of morbidity

and mortality in individuals with HIV infection. Though studies indicate that ART itself

may increase the risk to develop CVD, recent studies suggest a more important role

for HIV infection in contributing to CVD independently of the traditional risk factors.

Endothelial dysfunction triggered by HIV infection has been identified as a critical link

between infection, inflammation/immune activation, and atherosclerosis. Considering

the inability of HIV to actively replicate in endothelial cells, endothelial dysfunction

depends on both HIV-encoded proteins as well as inflammatory mediators released in

the microenvironment by HIV-infected cells. Indeed, the HIV proteins, gp120 (envelope

glycoprotein) and Tat (transactivator of transcription), are actively secreted into the

endothelial cell micro-environment during HIV infection, while Nef can be actively

transferred onto endothelial cells during HIV infection. These proteins can have significant

direct effects on the endothelium. These include a range of responses that contribute to

endothelial dysfunction, including enhanced adhesiveness, permeability, cell proliferation,

apoptosis, oxidative stress as well as activation of cytokine secretion. This review

summarizes the current understanding of the interactions of HIV, specifically its proteins

with endothelial cells and its implications in cardiovascular disease. We analyze recent in

vitro and in vivo studies examining endothelial dysfunction in response to HIV proteins.

Furthermore, we discuss the multiple mechanisms by which these viral proteins damage

the vascular endothelium in HIV patients. A better understanding of the molecular

mechanisms of HIV protein associated endothelial dysfunction leading to cardiovascular

disease is likely to be pivotal in devising new strategies to treat and prevent cardiovascular

disease in HIV-infected patients.
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INTRODUCTION

The introduction of highly active antiretroviral therapy has
lead to a drastic reduction in viral burden and opportunistic
infections, resulting in a remarkable improvement in the
life expectancy of HIV-infected individuals. However, it is
now evident that HIV-infected individuals have an enhanced
susceptibility to non-AIDS (Acquired Immunodeficiency
syndrome)-related comorbidities such as cardio-vascular
diseases (CVDs), which have emerged as prominent
causes of morbidity and mortality in this population
(1–9). Atherosclerotic CVD rates and risk of myocardial
infarction are significantly elevated in HIV-infected individuals
than the general population (1, 10, 11). Studies further
indicate that both clinical cardiovascular events such as
coronary heart disease (11–13), peripheral artery disease
(14), as well as subclinical cardiovascular damage such
as elevation of intima-media thickness (15, 16), coronary
calcification (17), abnormal ankle-brachial index (18) and silent
myocardial ischemia (19) are much higher in HIV-infected
individuals (20).

ETIOPATHOGENESIS OF
CARDIOVASCULAR DISEASE IN PATIENTS
WITH HIV INFECTION

The increased cardiovascular risk in HIV-infected individuals
is attributable to a combination of multiple factors, including
higher prevalence of traditional risk factors, inherent effects
of the HIV infection, effects of antiretroviral therapy and the
presence of other co-morbidities seen frequently in HIV-positive
patients (such as hepatitis C virus and herpes family virus co-
infections). Though initial studies indicated a predominance
of traditional CVD risk factors (21, 22) and effect of ART
(23) as major causes for CVD among HIV-positive individuals
(10, 24, 25), evidence from experimental and observational
studies (26, 27) in recent years have redirected attention
more toward the consequences of HIV infection itself. Hsue
et al demonstrated a correlation between HIV infection and
premature atherosclerosis even in the absence of detectable
viremia, immunodeficiency, and ART exposure, with the
atherosclerosis being independent of traditional cardiovascular
risk factors (28).

Among multiple pathogenic effects that contribute to
atherosclerosis and ultimately CVD, HIV-induced endothelial
dysfunction is now established as a major contributing factor.
Higher plasma HIV RNA levels have been shown to correlate
with endothelial dysfunction in HIV-infected patients (29). A
transgenic mouse model expressing HIV viral proteins env,
tat, nef, vpu, vpr, and rev demonstrated aortic endothelial
dysfunction and increased arterial stiffness (30). HIV-infected
patients had significantly impaired endothelial function, as
demonstrated by reduced flow-mediated dilation, a measure
of endothelial vasomotor function in comparison to the HIV-
negative group (31).

ENDOTHELIAL DYSFUNCTION AND
CARDIOVASCULAR DISEASE

Endothelial dysfunction as a precursor of atherosclerosis
and future cardiovascular events has been demonstrated in
multiple population studies (32, 33). The development of
atherosclerosis resulting from dysfunctional endothelium is
highly complex and regulated by several factors. Endothelial
dysfunction is characterized by decreased anti-oxidant, anti-
inflammatory and anti-thrombotic properties (due to reduced
NO bioavailability) and increased endothelial permeability, pro-
inflammatory cytokine levels, and adhesion molecule expression.
Leukocyte recruitment and adhesion represent the initial events
in development of atherosclerosis. Leukocyte recruitment is
mediated by several chemoattractants such as IL-6, IL-8,
and MCP-1 and adherence of leukocytes to the endothelium
is mediated by cell adhesion molecules (CAM). Leukocytes,
especially monocytes traverse the endothelium, and migrate
into the intima (34). Transmigration of leukocytes, as well as
infiltration of plasma contents into the vascular wall is facilitated
by an increase in endothelial permeability. These infiltrated
plasma contents such as modified low-density lipoprotein (LDL),
along with substances produced by infiltrated leukocytes, such
as cytokines and chemokines, alter smooth muscle function and
contribute to the development of atherosclerosis (35). Further,
in the intima, the monocytes differentiate into macrophages,
expressing receptors that facilitate lipid uptake. On lipid uptake
and accumulation, macrophages transform into foam cells.
These foam cells initiate atherosclerotic lesions, which are later
characterized by plaque formation (34). Studies suggest that
HIV impairs several of these processes that maintain vascular
homeostasis, potentially leading to atherosclerosis (Table 1).
Several mechanisms have been suggested to explain how HIV
infection induces endothelial dysfunction leading to CVD,
including direct HIV infection of endothelial cells (ECs),
inflammation and effect of HIV proteins HIV proteins released
in the endothelial microenvironment or directly transferred to
ECs by HIV and HIV-infected cells represent critical mediators
of endothelial dysfunction. This article reviews the current
understanding of the mechanisms by which HIV, in particular,
the different HIV proteins drive EC dysregulation, potentially
leading to CVD.

HIV ENCODED PROTEINS AND
ENDOTHELIAL DYSFUNCTION

HIV is a retrovirus with a glycoprotein-rich envelope
surrounding a nucleocapsid. The HIV structural and
regulatory/accessory proteins are designed for the virus to
adapt efficiently to the human host, thereby promoting its
replication and transmission. The HIV viral genome contains
9 principal genes, gag, pol, env, tat, rev, vpu, vpr, vif, and nef.
The Gag-Pol precursor protein undergoes proteolytic cleavage
to generate the matrix p17, capsid p24, nucleocapsids p9
and p6, reverse transcriptase, protease, and integrase, all of
which are major structural components of the viral core. The
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TABLE 1 | Summary of the potential mechanisms by which HIV protein-induced endothelial dysfunction contribute directly or indirectly to the development of

atherosclerosis and CVD.

HIV protein Endothelial dysfunctiona Association with cardiovascular disease

Gp120

Tat

Nef

↑Apoptosis

(36–43)

Promotes atherosclerotic plaque formation and plaque instability

Gp120

Tat

Nef

↑IL-6

(44–46)

Increases intima media thickness

Monocyte/macrophage recruitment

Stimulates synthesis of acute phase proteins (CRP)

Gp120 ↑IL-8

(47)

Leukocyte recruitment

Mediates release of MCP-1

Tat ↑IL-1β

(48)

Induces macrophage/foam cell apoptosis,

Increased expression of pro-inflammatory cytokines

Increased expression of adhesion molecules

Migration of vascular smooth muscle cells and ECs

Tat

Nef

↑MCP-1

(49, 50)

Increases monocyte recruitment

Gp120 ↑ET-1

(51)

Increased smooth muscle proliferation and migration

Gp120

Tat

Nef

↑ICAM-1

(52–54)

Adherence and transmigration of leukocytes into the vessel wall

Tat ↑VCAM-1

(48, 55)

Adherence and transmigration of leukocytes into the vessel wall

Tat ↑E-selectin

(48)

Initial rolling of leukocytes on ECs

Gp120

Tat

↑ Endothelial permeability

(47, 51, 56–59)

Facilitates infiltration of leukocytes and plasma contents into

vessel wall

Gp120 ↑ MMP-2, ↑ MMP-9

(60)

Facilitates endothelial damage leading to unstable plaque

formation

Gp120 ↓ NO levels

(61, 62)

Abnormal vascular tone regulation and enhanced platelet

adhesion and aggregation

Gp120

Tat

↑ROS

(55, 56, 63, 64)

Increased foam cell formation leading to plaque growth

aReferences are in parenthesis.

Env undergoes proteolytic cleavage to generate the envelope
glycoproteins gp120 and gp41. Tat and Rev are the regulatory
proteins, while Vpu, Vpr, Vif, and Nef are the accessory proteins
(65). Among these viral proteins, gp120, Tat and Nef play a
major role in the pathogenesis of endothelial dysfunction. The
experimental evidence supporting a functional role for the HIV
viral proteins in the disruption of EC cell biology is outlined in
the following sections.

HIV gp120
HIV envelope glycoprotein is synthesized as a precursor
glycoprotein, gp160, which is then processed into an amino
terminus subunit, gp120, and a carboxyl transmembrane subunit,

gp41. The envelope glycoprotein, gp120 is expressed on the
outer layer of the virus, as well as on the surface of infected
cells. Gp120 is critical for virus infection, as the protein is
necessary for binding to specific cell surface receptors on target
cells and facilitating virus entry. The primary receptor for gp120
is the CD4 receptor, while the main co-receptors are CXCR4
and CCR5. Gp120 is found both in the free form in the body
fluids of HIV-positive patients (66, 67) and bound form on the
surface of apoptotic CD4 positive T-cells (68). In fact, gp120
has been shown in the germinal center of lymph nodes in
HIV-infected individuals under ART with no detectable viral
replication (69). Multiple studies have confirmed that gp120,
both in soluble and surface bound form, has an important role in
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viral pathogenesis on diverse uninfected bystander cells (70–74),
including ECs.

Gp120 is associated with apoptosis, adhesion molecule
expression, pro-inflammatory cytokine production and EC
permeability. Gp120 present either on viral particles, surface
of infected cells, or as free soluble protein causes endothelial
apoptosis predominantly by direct interaction with the co-
receptor, CXCR4. Gp120 induces apoptosis in human coronary
ECs (36), human umbilical vein ECs (HUVECs) (37, 38), lung
microvascular ECs (LMVECs) (39), and brain microvascular
ECs (BMVECs) (40, 41). EC apoptosis is an important process,
initially in atherosclerotic plaque formation, and later in the
progression to an advanced stage of atherosclerosis, when
the plaques become vulnerable to rupture (42, 75, 76). The
molecular mechanism by which gp120 exerts its endothelial
toxicity, may involve caspase-3 activation (38), Bax upregulation
(38), protein kinase C (PKC) activation (77) and p38 mitogen-
activated protein (MAP) kinase signaling (41). Gp120 also
induces an increase in reactive oxygen species (ROS), signaling
oxidative stress to the ECs (56, 63). Oxidative stress induced
by generation of excess reactive oxygen species is a critical
process in the development of atherosclerosis (78). HIV-
induced ROS likely contributes to endothelial dysfunction
through direct effects on the endothelium and/or indirectly
through monocytes /macrophages contacting the vessel wall.
The viral glycoptotein is also able to increase endothelin-
1 (ET-1) secretion (51) and promote surface expression of
Endothelial monocyte activating polypeptide II (EMAPII) (79).
ET-1 mediates the reduction of vascular nitric oxide production
by ECs, leading to the smooth muscle proliferation and
migration, which in turn leads to arterial vasoconstriction (80),
whereas EMAPII is released in response to stress such as
hypoxia, mechanical strain and apoptosis (81) and acts as a
pro-apoptotic factor. In addition, a recent study has shown
that HIV gp120 (X4 and R5) promotes EC senescence and
impairs the regulation of senescence-associated microRNAs (82).
Senescent ECs develop a dysfunctional phenotype acquiring pro-
inflammatory, pro-oxidant, vasoconstrictor, and prothrombotic
properties (83).

Gp120 is directly involved in upregulation of pro-
inflammatory cytokines such as IL-6 and IL-8 in primary
ECs (44). IL-6 and IL-8 play a major role in recruitment
of leukocytes, especially of the monocyte/macrophage and
neutrophil lineage, respectively. IL-6 can also actively promote
atherogenesis, both directly by inducing vascular endothelial
dysfunction, extracellular matrix degradation and indirectly
by stimulating hepatocytes synthesis of acute phase proteins
involved in inflammation, such as C-reactive protein (84).
Gp120 also facilitates monocyte (52) and T-cell adherence (85)
to the vascular endothelium through upregulation of CAMs.
Among the CAMs, E-selectin is involved in the initial rolling of
leukocytes on the endothelial cells, while ICAM-1 and VCAM-1
induce firm adhesion and transmigration of leukocytes across the
endothelium (86). Gp120 augments expression of ICAM-1, but
not VCAM-1 or E-selectin, in ECs of multiple origins, including
human coronary artery, lung, brain, umbilical vein, and dermal
microvascular ECs (52).

Gp120 also increases endothelial permeability by various
mechanisms including cytoskeletal rearrangement (56), down-
regulation of tight junction proteins (51) and PKC activation
(47). An increase in endothelial permeability was observed
in brain endothelial cultures of HIV gp120 transgenic mice
(87), compared to non-transgenic mice. Gp120 also induces
expression of the matrix metalloproteases (MMPs), MMP-
2 and MMP-9, that mediate endothelial damage with the
formation of an unstable atherosclerotic plaquemorphology (60).
Additionally, gp120 reduces the EC-derived nitric oxide (NO)
synthesized by the NO synthase, thus affecting endothelium-
dependent vasorelaxation and enhancing platelet adhesion and
aggregation (61, 62).

HIV Tat
HIV Tat (trans-activator of transcription) is a regulatory protein
encoded by the tat gene that enhances viral transcription
(88). Tat has been detected in the sera of HIV patients (89),
even during complete ART (cART) (90). Tat is secreted into
the extracellular microenvironment by HIV-infected T-cells
and monocyte/macrophages (89, 91). In the circulation, Tat is
suggested to act as a proto-cytokine, modulating the functions
of several cells including ECs (92). Thus, Tat is involved in
the pathogenesis of several HIV-associated disease conditions
ranging from pulmonary hypertension to cognitive abnormalities
(36, 48, 93–95). Tat protein possesses both transcription
promotion and membrane transduction properties. Tat has five
discrete domains, the N-terminal, cysteine-rich, core, basic, and
C-terminal domain. Tat interacts with three known receptors
to trigger endothelial dysfunction. The C-terminal domain,
containing an Arg-Gly-Asp (RGD) sequence, binds with high
affinity to the integrins alphaVbeta1 and alphaVbeta3 receptors
(96). The basic domain binds to the integrin alphaVbeta5
receptor (97) as well as the Flk-1/KDR receptor (98). Tat activates
these receptors to initiate endothelial signaling pathways that
affect diverse processes such as endothelial permeability (57, 58),
cytokine production (59), adhesion (48), angiogenesis (99–102),
and apoptosis (43).

Tat exhibits a dual function with regard to survival regulation,
exhibiting either EC proliferation or apoptosis, depending on
the micro-environment conditions (103). One of the prominent
properties of Tat is that of a direct angiogenic factor (92).
Endothelial proliferation is enhanced by factors such as FGF-
2 (fibroblast growth factor) (104). Tat activates Rac1 through a
signaling cascade involving RhoA, Ras, and extracellular signal-
regulated kinase (ERK), which in turn, induces EC proliferation
and survival (105). Tat mediates Rac1 activation through PAK-
1, phosphorylates c-Jun N-terminal kinase (JNK), activates
endothelial NADPH oxidase and regulates actin cytoskeletal
dynamics (106). Tat has been suggested to play a role in HIV-
related Kaposi sarcoma by promoting EC proliferation and
tumor angiogenesis, where Tat binds specifically and activates
the Flk-1/kinase insert domain receptor (Flk- 1/KDR), a VEGF-
A tyrosine kinase receptor, and promotes angiogenesis (98).
Contrary to its role in angiogenesis, Tat also induces the apoptosis
of primary microvascular ECs via either TNF-alpha secretion or
through activation of the Fas-dependent pathway (43). Fiala et al.
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(36) analyzed the pathogenesis of HIV-related cardiomyopathy,
and found that exogenous Tat protein was capable of activating
apoptosis of both ECs or cardiomyocytes. A recent report
indicates that HIV Tat along with morphine induces autophagy
in pulmonary ECs, suggesting a role for Tat in HIV-related
pulmonary arterial hypertension in the presence of opioids (107).
In addition, Tat also promotes EC senescence and dysregulation
of senescence-associated microRNAs (82).

Tat stimulates the release of pro-inflammatory cytokines and
induces expression of CAMs (45, 48, 55, 108, 109) in ECs
of diverse origin (i.e., pulmonary artery, umbilical vein, aorta,
and brain). In human vascular ECs (HUVECs), Tat stimulates
the upregulation of inflammatory mediators, including IL-1β,
MCP-1, VCAM-1 and E-selectin through nuclear factor-kappa
B (NF-κB) (48, 108). IL-1β can induce macrophage and foam
cell apoptosis, causing the release of their lipid content into the
intima of the artery and contributing toward the lipid core in the
plaque (110). IL-1β can also induce the expression of cytokines,
adhesion molecules and the migration and mitogenesis of
vascular smooth muscle and endothelial cells (111). MCP-1 is
a major chemokine involved in monocyte recruitment during
atherosclerosis development (35). Expression of IL-6 and MCP-
1 is dependent upon the activity of the kinases, PKC (45) and
cAMP-dependent protein kinase A (49). Tat stimulated ICAM-
1 expression in HUVECs by suppressing miR-221/-222 via an
NF-κB-dependent pathway (53), while Tat stimulated VCAM-
1 expression through p38 MAP kinase and NF-kB activation
(55). Upregulation of these adhesion molecules resulted in
monocyte (45, 108, 112) and T-cell (113) adhesion to the
endothelium. Furthermore, Matzen et al showed that Tat in
combination with TNF-alpha, a cytokine increased in sera and
tissues of HIV-infected patients, acts synergistically to increase
the adhesion of leukocytes to ECs, suggesting that both these
proteins act in co-operation to contribute to the vascular damage
during HIV infection (113). Finally, Tat induces endothelial
oxidative stress through activation of NADPH oxidase and
through decreased antioxidant capacity. Tat-induced MAPK
signaling requires upstream superoxide production by various
NADPH oxidase subunits. Moreover, Tat-induced ROS activates
the NF-kB pathway (55) and decreases GSH levels (64). Tat
also attenuates the expression of the mitochondrial superoxide
scavenger, Manganese-superoxide dismutase (Mn-SOD) (46,
114).

HIV Nef
HIV Nef is a 27-kD, n-myristoylated accessory protein that
lacks enzymatic activity. It is an adaptor molecule containing
multiple domains essential for interaction with host cell
signaling molecules (115, 116). Nef is involved in modulation
of several intracellular functions that include regulation of
protein trafficking and cell signaling pathways, attenuation of
antibody maturation in B cells (117), and increase in HIV
infectivity (118). The presence of Nef has been shown in the
endothelium of coronary and pulmonary arteries of SIV-HIV-
Nef-infected macaques (50). Sowinski et al (119) demonstrated
that Nef induces the formation of conduit-like nanotubes,
connecting HIV-positive cells to bystander cells. Further, Wang

et al. (50) showed that Nef transfer from HIV-infected cells
to ECs promotes endothelial dysfunction (50, 120). Nef is
also delivered to bystander cells through exosomes (121). ECs,
especially those present in developing atherosclerotic plaques,
would therefore be in a prime physical position to receive Nef
transfer from circulating monocytes and T cells. Transgenic
mice that express CD4-promoter-driven Nef develop multiple
pathologies including vasospasm in the heart (122). Studies show
that Rhesus macaques demonstrate pulmonary hypertension
(PH)-like pulmonary vascular remodeling, when infected with
chimeric SHIVnef virions, but not with SIV, indicating a role of
HIV-Nef in PH, with certain Nef gene variants showing a higher
propensity to develop PH (123, 124).

Similar to gp120 and Tat, Nef has been associated with several
aspects of HIV-induced endothelial dysfunction. Acheampong
et al. (42) showed that Nef, when expressed both extracellularly
and endogenously, induces apoptosis in primary human brain
microvascular ECs (HB-MVECs) by activation of caspases. A
microarray analysis of apoptosis genes in Nef-transduced HB-
MVECs demonstrated that the up-regulated genes belong to both
mitochondrial and Fas/FasL apoptotic pathways, indicating that
Nef may utilize multiple pathways to induce apoptosis in ECs.
In contrast, in the context of Kaposi’s sarcoma, Nef and KSHV
oncogene K1 synergistically promote angiogenesis by inducing
cellular miR-718 to regulate the PTEN/AKT/mTOR signaling
pathway. However, in Kaposi’s sarcoma, Nef in combination
with KSHV oncogene K1 synergistically induces cellular miR-718
to regulate the PTEN/AKT/mTOR signaling pathway and thus
promotes angiogenesis. This pathway is an important factor in
aberrant neovascularization caused by KS-associated herpesvirus
(KSHV) (125).

Nef-expressing T cells demonstrate enhanced adherence to
ECs as observed by their impaired diapedesis and migration
into the subendothelial space (126). Fan et al have shown ERK
kinase-mediated ICAM-1 upregulation in vascular ECs stably
expressing Nef (54). Furthermore, Nef increases endothelial
MCP-1 production through activation of the NF-kB signaling
pathway (50). In a recent study, Nef was shown to be
involved in the alteration of EC cholesterol homeostasis
through phosphorylation of Caveolin-1 (Cav-1), leading to Cav-
1 redistribution and impairment of HDL-mediated cholesterol
efflux in ECs (127). In addition to its direct effects on ECs,
Nef activates macrophages and produces foam cells (128). The
interactions of these foam cells with ECs could also contribute
to EC dysfunction, and potentially facilitate the development of
atherosclerosis.

CONCLUSION AND FUTURE
PERSPECTIVES

In summary, the present review underscores the role of HIV-
encoded proteins, specifically Gp120, Tat and Nef, in the
pathogenesis of endothelial dysfunction, a precursor for the
development of CVD (Figure 1). Our understanding of the
complex interaction of traditional factors, inflammation and
immune activation, cART and HIV in the progression of CVD
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FIGURE 1 | HIV proteins and their effects on endothelial dysfunction.
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has grown rapidly over the past decade. However, a more detailed
exploration into the mechanisms of HIV-induced endothelial
dysfunction is needed to formulate targeted approaches to
prevent and treat HIV-related vascular diseases. Presently,
large prospective studies such as REPRIEVE (NCT02344290), a
randomized trial to prevent vascular events in HIV, are being
carried out that will provide valuable data on the relation between
inflammation, CVD and HIV infection (129). Research efforts
will also need to focus on identifying HIV-specific markers that
could predict the risk of developing CVD and facilitate the early
detection of CVD in HIV patients. An accurate assessment of
patients based on such biomarkers could be incorporated in
guidelines such as the European AIDS Clinical Society guidelines
(130) on the joint management and prevention of CVD in HIV
patients, thereby providing vital information to guide clinicians
on the most appropriate approach to prevent and treat CVD in
this high-risk population.
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