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Prostate cancer (PCa) is one of the most common malignancies for males, but very
little is known about its pathogenesis. This study aimed to identify novel biomarkers
associated with PCa prognosis and elucidate the underlying molecular mechanism.
First, The Cancer Genome Atlas (TCGA) RNA-sequencing data were utilized to identify
differentially expressed genes (DEGs) between tumor and normal samples. The DEGs
were then applied to construct a co-expression and mined using structure network
analysis. The magenta module that was highly related to the Gleason score (r = 0.46,
p = 3e–26) and tumor stage (r = 0.38, p = 2e–17) was screened. Subsequently, all
genes of the magenta module underwent function annotation. From the key module,
CCNA2, CKAP2L, NCAPG, and NUSAP1 were chosen as the four candidate genes.
Finally, internal (TCGA) and external data sets (GSE32571, GSE70770, and GSE141551)
were combined to validate and predict the value of real hub genes. The results show
that the above genes are up-regulated in PCa samples, and higher expression levels
show significant association with higher Gleason scores and tumor T stage. Moreover,
receiver operating characteristic curve and survival analysis validate the excellent value
of hub genes in PCa progression and prognosis. In addition, the protein levels of these
four genes also remain higher in tumor tissues when compared with normal tissues.
Gene set enrichment analysis and gene set variation analysis for a single gene reveal
the close relation with cell proliferation. Meanwhile, 11 small molecular drugs that have
the potential to treat PCa were also screened. In conclusion, our research identified four
potential prognostic genes and several candidate molecular drugs for treating PCa.

Keywords: prostate cancer, biomarker, weight co-expression network analysis, gene set enrichment analysis,
gene set variation analysis, small molecular drugs

INTRODUCTION

Prostate cancer (PCa) is the second most frequent malignancy and the fifth leading cause of death in
males throughout the world (Bray et al., 2018). Currently, prostate biopsy has become the standard
for diagnosing PCa worldwide. Meanwhile, prostate-specific antigens (PSA) are considered a
reliable prostate tumor marker, especially in the early stages of PCa. Despite the wide use of PSA
tests in screening for PCa, this approach has some restrictions. In several non-malignant cases, such
as those with prostatitis and benign prostatic hyperplasia, serum PSA frequently increases, affecting
the accuracy of the PSA test (McDonald et al., 2014). In addition, many patients with widespread
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metastases from PCa showed poor differentiation or have
neuroendocrinal differentiation on histology with typically low
PSA levels (Caram et al., 2016). Moreover, physicians and patients
often overestimate the abilities of PSA testing, which leads to
overdiagnosis and overtreatment of indolent PCa (Ciatto et al.,
2000; Dall’Era et al., 2008; Bryant et al., 2012). Furthermore,
there are no clear serum PSA levels that assist in assessing a
patient with PCa. On the other hand, it is well known that PCa
is a serious threat to the health of males, especially those with
advanced stage, drug resistance, neoplasm recurrence, and tumor
metastasis, always contributing to death even after combined
treatment. Therefore, a novel and specific biomarker for PCa
needs to be explored.

Since the advent of microarray and high-throughput
sequencing technology, bioinformatics has played a significant
role in many fields, especially in the medical field (Gu and
Chen, 2014; Li et al., 2014; Huang and Huang, 2015; Turei et al.,
2015). In recent years, more potential biomarkers have been
discovered. However, the vast majority of studies focus only
on the differences in expression between different samples, and
interactions among the genes have been largely neglected (Song
et al., 2018; Pudova et al., 2019; Zheng et al., 2019).

To further investigate the underlying connection and relative
importance of each gene, we applied structure network
algorithms, which identify function-specific modules based on
network topological importance (Bu et al., 2020). A weighted
gene correlation network analysis (WGCNA) was constructed,
and genes with similar expression profiles were clustered into
the same module. Then, the correlation between the module
and clinical phenotype was analyzed to choose the module that
is most significantly related to the clinical disease phenotype.
Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) analyses of genes within the key module were
conducted to explore the potential functions. After a series of
screenings, four hub genes (CCNA2, CKAP2L, NCAPG, and
NUSAP1) that could truly predict the progression and prognosis
of PCa were found in our study. Gene set enrichment analysis
(GSEA), and gene set variation analysis (GSVA) were used to
investigate potential biological functions. Meanwhile, a variety of
databases, such as Gene Expression Omnibus (GEO), The Cancer
Genome Atlas (TCGA), and HPA, were utilized to verify the
genes in different methods, such as survival analysis or receiver
operating characteristic (ROC) curve. Also, TIMER was applied
to explore the immune infiltration of the hub genes. In addition,
cBioPortal was used to assess genetic alterations of those four
genes. Finally, the Connectivity map (CMap) was used to further
screen the correlation of small molecule drug targets.

MATERIALS AND METHODS

Data Acquisition and Study Design
The RNA-sequencing (RNA-seq) and clinical information for
PCa were acquired from the TCGA database1, which included
498 PCa samples and 52 normal prostate samples. The data

1https://www.cancer.gov/

sets of TCGA were used to screen differentially expressed genes
(DEGs); perform WGCNA; verify the hub genes; and perform
GSEA, GSVA, and survival analysis in our study. Simultaneously,
all microarray data sets and other information were downloaded
from the GEO database of the NCBI databases2. The data set
GSE32571, which was obtained from the Affymetrix Human
Gene 1.0 ST, was used to verify the expression of hub genes
between normal and tumor samples. The GSE70770 was used for
expression profiling based on GPL10558 (Illumina HumanHT-
12 V4.0) and comprised 207 tumor samples. The data set
was utilized to explore the expression of hub genes with
different Gleason scores and stages. Finally, another data set of
GSE141551, which was obtained on the Illumina Human HT-
12 WG-DASL V4.0, was used as a testing set to further verify
our results. The cohorts that did not undergo WGCNA analysis
were selected as internal training validation sets, and the other
data sets that have undergone WGCNA analysis were used as
external validation data sets. Therefore, TCGA was chosen as
the training and internal validation data sets, whereas GSE32571,
GSE70770, and GSE141551 were used as external validation data
sets. Detailed information on these data sets is shown in Table 1,
and the workflow of our research is presented in Figure 1.

Data Preprocessing and DEG Screening
All microarray data of GEO data sets were subjected to quality
control, background correction, logarithmic conversion, and
removal of batch effects processing, using the R package “limma”
(Ritchie et al., 2015). The samples without clinical data were
then excluded from subsequent analysis. The RNA-seq data of
TCGA were normalized with the “DESeq2” R package. The three
R packages—DESeq2, analyzed based on a negative binomial
distribution method (Love et al., 2014); limma, based on linear
models and empirical Bayes methods (Ritchie et al., 2015); and
edgeR, based on an overdispersed Poisson model (Robinson et al.,
2009)—were then utilized to screen the DEGs between normal
and cancer samples. Finally, the overlapping DEGs by adjusting
P < 0.05 were considered as target genes and further analyzed.

WGCNA
The DEGs were constructed based on a weighted gene co-
expression using the R package “WGCNA” (Langfelder and
Horvath, 2008). First, the function “goodSamplesGenes” in the
“WGCNA” package was used in maintaining the RNA-seq data
from overlapping DEGs if they proved to be good samples. Then,
the outlier samples were removed to ensure that the results
of network construction are more reliable. Second, a matrix
of similarity was constructed by Pearson’s correlation analysis
of all pairs of genes. After that, the matrix was performed to
construct a scale-free co-expression network based on an optimal
soft threshold power β (Chen et al., 2018). A similar matrix was
then transformed into a topological overlap matrix (TOM). This
TOM could measure the network connectivity of a gene, which
was defined as the sum of its adjacency to all other network-
generated genes (Botia et al., 2017). At the same time, the average
linkage of hierarchical clustering was analyzed by the TOM-based

2https://www.ncbi.nlm.nih.gov/
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TABLE 1 | Information on data sets in our study.

Data sets TCGA GSE32571 GSE70770 GSE141551

Platform Training
validation
data sets

External
validation
data sets

Illumina
RNASeqV2

Affymetrix
Human gene

1.0 ST

Illumina
HumanHT
-12 V4.0

Illumina
HumanHT-12

WG-DASL V4.0

GPL ID – GPL6947 GPL10558 GPL14951

Summary

Total 550 98 207 503

Prostate cancer 498 59 207 503

Normal prostate 52 39 – –

Gleason score

4 – – – 10

5 – – 2 –

5∼6 – – – 229

6 45 – 35 –

7 249 – 142 –

7 = 3 + 4 – – – 184

7 = 4 + 3 – – – 40

8 59 – 13 –

9 133 – 10 –

10 4 – 1 –

8∼10 – – – 40

Unknown – – 4 –

T stage

T1 – – 103 –

T2 187 – 73 –

T3 286 – 25 –

T4 10 – – –

Unknown 15 – 6 –

dissimilarity measure with a minimum gene group size of 50 for
the gene dendrogram. The dissimilarity of module eigengenes
was calculated to further analyze the module.

Identify Significant Relevant Module and
Module Functional Annotation
The correlation between the modules and the clinical phenotypes
was analyzed by the module–trait relationship analysis of
WGCNA. Then, the module that is most relevant to the
clinical phenotype was found. Here, the magenta module that
significantly connects with the Gleason score of PCa was
chosen. The “clusterprofiler” (Yu et al., 2012) package in R was
used to perform GO function annotation and KEGG pathway
enrichment analysis and visualized by the R package “GOplot”
(Walter et al., 2015).

Screen and Validation of Hub Genes
After choosing the interesting module, gene significance (GS) of
>0.3 and module membership (MM) of >0.9 as the threshold
for screening hub genes in the magenta module were set. The
data sets TCGA were set as internal validation data sets, and
the data sets GSE70770 and GSE141551 were selected as external

validation data sets. All these were used to analyze the expression
differences of hub genes with different Gleason scores and tumor
stages. In addition, the expression of hub genes between PCa
and adjacent tissues were confirmed by the data set GSE32571.
One-way analysis of variance (ANOVA) or Student’s t-test was
applied to measure the statistical significance of the calculated
results. Furthermore, survival analysis was conducted for hub
genes using R packages “survminer” and “survival.” To assess the
diagnostic values of these genes, ROC curves were plotted and the
area under the ROC curve (AUC) with the “pROC” R package
was calculated (Robin et al., 2011).

GSEA and GSVA
The R package “clusterprofiler” (Yu et al., 2012) was utilized to
perform GSEA analysis of hub genes with TCGA-PRAD RNA-
seq data. Moreover, the “GSVA” (Hänzelmann and Guinney,
2013) R package was used to find the pathways that are mostly
associated with the hub genes. In this analysis, 498 PCa samples
were divided into two groups (high vs. low expression) based
on the median expression of each hub gene. P < 0.01 and
log fold change of >0.15 were considered significant. The
reference gene sets of GSEA and GSVA, which was called
as “c2.cp.kegg.v6.2.symbols.gmt,” were downloaded from the
Molecular Signatures Database3.

Analysis of Tumor-Infiltrating Immune
Cells
TIMER4 (Li et al., 2017) is an online tool that provides a
comprehensive resource for systematical analysis of immune
infiltrates across different types of cancers. We herein chose six
tumor-infiltrating immune cells (B cells, CD4+ T cells, CD8+ T
cells, macrophages, neutrophils, and dendritic cells) to investigate
their correlation with the expression of selected hub genes.

Genetic Alteration of Hub Genes
The cBioPortal for cancer genomics5, which is an open
cancer genomics platform, analyzes, visualizes, and provides
the service of downloading the data from multidimensional
cancer genomics data sets (Cerami et al., 2012). The users can
explore the genetic changes in different samples and genes.
Here, the cBioPortal was utilized to investigate genetic alterations
associated with hub genes.

Related Small Molecule Drugs Screening
The CMap6 is an open resource that utilizes a variety of gene
expression profiles for connecting small molecules, genes, and
diseases (Lamb et al., 2006; Subramanian et al., 2017). First,
small molecule drugs were used to process the human cells.
After that, differential expression of genes in the magenta
module was used to screen some molecule drugs that show high
correlation with the disease. Finally, the enrichment score of
each molecule drug was calculated, which ranged from –1 to 1.

3http://software.broadinstitute.org/gsea/msigdb/index.jsp
4https://cistrome.shinyapps.io/timer/
5http://www.cbioportal.org/
6http://www.broadinstitute.org/CMap/
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FIGURE 1 | Flow chart of our study. GEO, Gene Expression Omnibus; TCGA, The Cancer Genome Atlas; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes
and Genomes; WGCNA, Weighted Gene Co-expression Network Analysis; GS, gene significance; MM, module membership; TNM, Tumor Node Metastasis; GSEA,
Gene Set Enrichment Analysis; and GSVA, Gene Set Variation Analysis.

Also, a positive connective score suggests that a drug could
induce signaling biology in a specific disease. In contrast, a
negative connective score indicates that a drug could prevent
signaling biology. To further investigate the association between

small molecules and hub genes, a molecular docking simulation
was performed on each drug dock with hub genes using Sybyl-
X 2.1 software. It could help users to identify the molecule
drugs against PCa.
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FIGURE 2 | DEGs screened with limma, DESeq2, and edgeR algorithms. (A) Number of up-regulated DEGs identified with edgeR (light blue circle), limma (golden
circle), and DESeq2 (deep orange circle) and overlapping DEGs (orange). (B) Number of down-regulated DEGs identified with edgeR (light blue circle), limma (golden
circle), and DESeq2 (deep orange circle) and overlapping DEGs (orange).

RESULTS

Screening of DEGs
The RNA-seq data of 498 tumor samples and 52 normal samples
obtained from the TCGA data set underwent DEG analysis by
three algorithms: limma (Ritchie et al., 2015), DESeq2 (Love
et al., 2014), and edgeR (Robinson et al., 2009). Using the cutoff
criteria of adj.p.value of <0.05, 11,851 DEGs were identified by
limma, which included 6484 up-regulated DEGs and 5,367 down-
regulated DEGs; 12,248 DEGs were screened by DESeq2, in
which 6,548 were up-regulated and 5,700 were down-regulated;
and 11,898 DEGs were selected by degeR, in which 6,659 DGEs
were up-regulated and 5,239 DEGs were down-regulated. After
that, 10,455 overlapping DEGs were chosen for further analysis
by the above algorithms, which included 5,733 up-regulated
DEGs and 4,722 down-regulated DEGs. A Venn diagram of
DEGs is shown in Figure 2.

WGCNA Analysis and Identification of
Key Module
We herein constructed the weighted co-expression network by
the “WGCNA” R package. The height of the sample clustering was
defined as 108, when the 14 outlier samples were excluded from
further analysis (Supplementary Figure 1A). Clinical sample
information of data sets TCGA-PRAD, such as age, Gleason
score, and TNM stage, were added below the resulting tree
(Figure 3A). In the present study, the power of β was set as 8
[scale-free R2 = 0.87 (Supplementary Figure 1B)] to ensure a
scale-free network (Figure 3B). By cutting the height of clustering
of the module eigengenes as 0.25 (Supplementary Figure 1C)
and setting the minimum cluster size of the gene dendrogram as
30, the genes with similar expression profiles were then classified

into the same modules by the virtue of the DynamicTreeCut
algorithm. Finally, 14 modules were clustered (Figure 3C).
According to the heat map of module–trait correlations, the
magenta module showed the most significant association with
the clinical phenotypes, especially the Gleason score (r = 0.46,
p = 3e–26), and T stage (r = 0.38, p = 2e–17; Figures 3D,E). Under
the threshold of MM > 0.9 and GS > 0.3, 41 hub genes were
obtained from the magenta modules: ANLN, ASF1B, AURKA,
BUB1, CCNA2, CDC25C, CDCA5, CDCA8, CDK1, CDKN3,
CENPA, CENPF, CENPI, CEP55, CKAP2L, DLGAP5, ERCC6L,
ESPL1, EXO1, GTSE1, IQGAP3, KIF18B, KIF20A, KIF23, KIF2C,
KIF4A, KIFC1, MELK, NCAPG, NEIL3, NEK2, NUF2, NUSAP1,
PLK1, POLQ, RACGAP1, SGOL1, SKA3, SPAG5, TOP2A, and
TPX2 (Figure 3F). Therefore, the magenta module was selected
for further analysis.

Magenta Module Function Annotation
The “clusterprofiler” R package was used to conduct GO and
KEGG analyses to investigate the function of the magenta
module. The GO analysis demonstrated that the biological
process (BP) of the magenta module showed large correlation
with “chromosome segregation,” “nuclear division,” “organelle
fission,” “nuclear chromosome segregation,” and “mitotic nuclear
division” (Figure 4A). The cellular component (CC) of
the magenta module showed significant association with
“chromosomal region”; “chromosome, centromeric”; “condensed
chromosome, centromeric region”; “condensed chromosome”;
and “kinetochore” (Figure 4B). The molecular function (MF)
of the magenta module was mainly related to “catalytic activity,
acting on DNA”; “DNA helicase activity”; “DNA-dependent
ATPase activity”; “helicase activity”; and “single-stranded DNA-
dependent ATP-dependent DNA helicase activity” (Figure 4C).
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FIGURE 3 | Construction of co-expression network. (A) Clustering dendrograms of genes. The clustering was based on 471 samples of TCGA-PRAD RNA-seq
data. Color intensity varies positively with age, Gleason score, T stage, N stage, and M stage. (B) Analysis of the scale-free fit index (R2) and the mean connectivity
with different soft-thresholding powers. R2 > 0.8, and the mean connectivity close to zero was considered as an appropriate soft threshold. Here, when we choose
eight as our power, R2 = 0.87 (Supplementary Figure 1B). (C) Cluster dendrogram of all DEGs. Dendrograms are produced by average linkage hierarchical
clustering of genes based on the topological overlap (Methods). The modules of co-expressed genes were assigned colors and numbers as indicated by the
horizontal bar beneath each dendrogram (dynamic tree cut). In the clustering module of eigengenes, the module with height less than 0.25 was merged
(Supplementary Figure 1C), and the results displayed in the Merged dynamics. (D) Overview of the modules generated by the WCGNA and their relationship with
module eigengenes and clinical traits of PCa. The cells were color-coded by the correlation between module and clinical information according to the color legend on
the right with red representing a strong positive correlation and green representing a strong negative correlation. (E) Module significance of each module, which is
determined as the average absolute gene significance and errors measure for all genes in a given module associated with the Gleason score of PCa. (F) Scatterplot
for ME magenta reveals the correlation between module membership (MM) and gene significance (GS). The dot indicates all genes within the magenta module.
GS > 0.3 and MM > 0.9 are our criteria for selecting genes. The degree of association between MM and GS was assessed by Pearson correlation.
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FIGURE 4 | Functional enrichment analysis of the magenta module. Chord plot showing the relationship between all genes within the magenta module as identified
by the WGCNA and GO terms and KEGG pathways. Outer ring displays log2 fold change (left) and GO terms and KEGG pathways (right). Chords connect the gene
names with GO terms or KEGG pathway. (A) Top 5 significantly enriched biological process (BP) GO annotations. (B) Top 5 significantly enriched cellular component
(CC) GO annotations. (C) Top 5 significantly enriched molecular function (MF) GO annotations. (D) Top 5 significantly enriched KEGG pathways. GO, Gene Ontology;
KEGG, Kyoto Encyclopedia of Genes and Genomes.
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In addition, the KEGG analysis revealed that “cell cycle,”
“DNA replication,” “oocyte meiosis,” “fanconi anemia pathway,”
and “homologous recombination” were mainly enriched in the
magenta module (Figure 4D). This study illustrates that the genes
within the magenta module were mainly involved in “cell cycle,”
“DNA replication,” and “nuclear division.”

Validation of the Expression of Real Hub
Genes
Here, among the 41 hub genes screened above, four genes
(CCNA2, CKAP2L, NCAPG, and NUSAP1) were selected as our
target hub genes and were seldom reported in PCa. After that,
these genes were validated by the internal (TCGA) and external
validation data sets (GSE32571, GSE70770, and GSE141551),
respectively. First, the expression of these selected genes was
verified between PCa samples and normal samples. Based on the
TCGA data set, those four genes showed higher expression in
the PCa tissues than normal tissues (Figure 5A), and the result
is consistent with that in the validation data set (GSE32571;
Figure 5B). Second, these genes were part of the magenta
module, which showed significant association with the Gleason
scores and the T stages of PCa. Thus, CCNA2, CKAP2L,
NCAPG, and NUSAP1 were highly differentially expressed in
PCa samples with different Gleason scores and T stages no
matter whether in internal or external validation data sets.
These results indicate that higher expression of hub genes
showed correlation with higher Gleason scores and advanced
T stages (Figures 5C–G). ANOVA and Student’s t-test were
used to measure statistical significance of the calculated results.
As for the prognosis, the survival analysis in the TCGA-
PRAD data set was carried out to observe the disease-free
survival of those four genes. This demonstrates that higher
expression levels of those genes indicates poor disease-free
survival (Figure 6A). The results are also consistent with that
of the data set GSE70770 (Figure 6B). Furthermore, the ROC
curve exhibited the excellent diagnostic and prognostic value
of real hub genes in distinguishing between PCa and normal
tissues (Figure 6C). In addition, immunohistochemistry staining
based on the Human Protein Atlas database revealed that the
protein levels of these four genes were significantly higher in
tumor tissues compared with normal tissues. Similarly, compared
with high-grade prostate tissues, the protein levels of hub genes
were also significantly higher than low-grade prostate tissues
(Supplementary Figures 2A–L).

GSEA and GSVA Reveal the Function of
Hub Genes
Gene set enrichment analysis and GSVA analyses were conducted
to further explore the potential functions of CCNA2, CKAP2L,
NCAPG, and NUSAP1. As shown in Figures 7A–D, genes
in high expression groups of CCNA2, CKAP2L, NCAPG, and
NUSAP1 show enrichment in “cell cycle,” “DNA replication,”
“homologous recombination,” and “mismatch repair” pathways.
Subsequently, our analysis in the GSE32571 data set also
produced similar results (Supplementary Tables 1–8). This
evidence confirms that these real genes were highly connected

with carcinoma proliferation. Furthermore, by applying GSEA
analysis on the TCGA data, the previously reported “cell cycle,”
“DNA replication,” “homologous recombination,” and “mismatch
repair” pathways also exhibited a higher enrichment score in
the high expression groups of these genes, further indicating
their relationship with activation of proliferative processes
(Figures 7E–H).

Analysis of Tumor Purity and Immune
Infiltration
The TIMER was used to assess immune cell infiltration levels
of each sample based on the expression of hub genes. The
expression of CCNA2 and CKAP2L showed positive association
with infiltrating levels of B cells, CD8+ T cells, CD4+ T cells,
neutrophils, macrophages, and dendritic cells, but were weakly
positive with tumor purity (Figures 8A,B). Then, NCAPG
expression showed a positive correlation with tumor purity
and infiltration of B cells, neutrophils, and dendritic cells,
and then, no or weak associations were observed between
NCAPG and infiltration of CD8+ T cells, CD4+ T cells,
and macrophages (Figure 8C). After that, NUSAP1 showed a
positive relation with tumor purity and B cells, but the CD8+
T cells, neutrophils, macrophages, and dendritic cells showed
no correlation with CD4+ T cells (Figure 8D). These results
uncovered that these four genes were closely associated with the
immune infiltration process of PCa, which might be a reason
for them to become valid prognostic markers. Interestingly,
in most of the samples, the tumor purity of these real hub
genes was more than 0.5 (Figures 8A–D). This implies that
the genes were mainly expressed in the tumor cells, proving
the clinical diagnostic value of CCNA2, CKAP2L, NCAPG,
and NUSAP1 again.

Hub Genes Alterations in PCa
The PCa patient data in the TCGA database based on the
cBioPortal database were utilized to analyze the alteration of the
four key genes. As shown in Supplementary Figure 3A, CCNA2,
CKAP2L, NCAPG, and NUSAP1 showed alteration of 6, 4, 4,
and 6%, respectively, with mRNA high and deep deletion as
the main types. Furthermore, among all the selected patients
(499), four hub genes were altered in 60 (12%; Supplementary
Figures 3A,B).

Identification of Potentially Small
Molecules
To identify candidate small molecules of PCa, the CMap database
was used to screen out some small molecule drugs. According
to the analysis of DEGs in the magenta module between tumor
and normal samples, relevant small molecule drugs with high
connection were identified. We herein set the criteria as number
of instances (n > 10) and P value of <0.05, and then, 11 small
molecule drugs were filtered (listed in Table 2). Both of them
showed a negative correlation and had the potential to reverse
the status of PCa. This analysis provides new ideas for the
treatment of PCa.
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FIGURE 5 | Validation of the gene expression levels of CCNA2, CKAP2L, NCAPG, and NUSAP1 by different data sets in various aspects. (A) Gene expression levels
of CCNA2, CKAP2L, NCAPG, and NUSAP1 between PCa and normal samples in the TCGA-PRAD data set (internal validation data set). (B) CCNA2, CKAP2L,
NCAPG, and NUSAP1 gene expression differences between PCa and normal samples in the GSE32571 data set (external validation data set). (C) Correlation of
CCNA2, CKAP2L, NCAPG, and NUSAP1 with different Gleason scores (6, 7, 8, 9, and 10) in the TCGA-PRAD data set (internal validation data set). (D) Association
of CCNA2, CKAP2L, NCAPG, and NUSAP1 with different Gleason scores (6, 7, 8, and 9) in the GSE70770 data set (external validation data set). (E) Expression of
CCNA2, CKAP2L, NCAPG, and NUSAP1 in PCa samples with different Gleason scores (4, 5∼6, 7 = 3 + 4, 7 = 4 + 3, and 8∼10) in GSE141551 (external validation
dataset). (F) Association between CCNA2, CKAP2L, NCAPG, and NUSAP1 expression and different T stage (T2, T3, and T4) in the TCGA-PRAD data set (internal
validation data set). (G) Expression of CCNA2, CKAP2L, NCAPG, and NUSAP1 in PCa samples with diverse T stage (T1, T2, and T3) in GSE70770 (external
validation data set). One-way analysis of variance (ANOVA) and Student’s t-test were utilized to calculate statistical differences in these data sets.
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FIGURE 6 | Validation of CCNA2, CKAP2L, NCAPG, and NUSAP1 in survival analysis and ROC curve. (A) Correlation between CCNA2, CKAP2L, NCAPG, and
NUSAP1 expression and disease-free survival time based on the best separation in the TCGA-PRAD data set (internal validation data set). (B) Association between
CCNA2, CKAP2L, NCAPG, and NUSAP1 expression and disease-free survival time based on the best-separation in the GSE70770 data set (external validation data
set). Note: The yellow line denotes samples with highly expressed genes (above the best-separation value), and the green line represents samples with lowly
expressed genes (below best-separation value). (C) Receiver operating characteristic (ROC) curves and area under the curve (AUC) statistics were conducted to
evaluate the ability of hub genes to distinguish PCa from normal samples with specificity and sensitivity in the TCGA data set (left) and GSE32571 (right).

Correlation Between Hub Genes and
Compounds via Molecular Docking
A molecular docking study was carried out to investigate the
association between molecules and hub genes. Using the SYBYL-
X 2.1.1 software, the top 11 small molecule drugs identified by
CMap analysis were docked with hub genes to obtain docking
scores (Tables 3–6). Among the 11 top compounds, 15-delta
prostaglandin J2 had the highest binding affinity to the four hub
genes according to total score.

DISCUSSION

Prostate cancer is a highly malignant tumor with complex
pathogenesis. Recently, accumulated evidence has attempted to
identify hub genes that play a significant role in the development
and metastasis of PCa by virtue of microarray and RNA-seq
(Varambally et al., 2005; Xu et al., 2018; Laufer-Amorim et al.,
2019; Ma et al., 2019). However, to the best of our knowledge, few
studies address interactions between genetic data and interrelated

clinical information. In the current study, gene expression data
sets and clinical data from the TCGA and GEO databases were
used. Next, WGCNA was used to investigate gene co-expression
modules that are correlated with the progression of PCa. After
a range of rigorous screening, 41 hub genes (ANLN, ASF1B,
AURKA, BUB1, CCNA2, CDC25C, CDCA5, CDCA8, CDK1,
CDKN3, CENPA, CENPF, CENPI, CEP55, CKAP2L, DLGAP5,
ERCC6L, ESPL1, EXO1, GTSE1, IQGAP3, KIF18B, KIF20A,
KIF23, KIF2C, KIF4A, KIFC1, MELK, NCAPG, NEIL3, NEK2,
NUF2, NUSAP1, PLK1, POLQ, RACGAP1, SGOL1, SKA3,
SPAG5, TOP2A, and TPX2) that have a close relationship with
Gleason scores and T stage were ultimately obtained. Most of
these have been reported several times in PCa (Guo et al., 2006;
Tamura et al., 2007; Vainio et al., 2012; Huang et al., 2017; Wilson
et al., 2018). We herein selected four genes that are seldomly
noticed in PCa (CCNA2, CKAP2L, NCAPG, and NUSAP1) as
our target genes to further explore their function and value.

CCNA2, which is also known as cyclin A2, is a member
of the cyclin family. CCNA2 is reported to regulate the cell
cycle by binding to CDK or CDK2 to affect the G1/S phase
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FIGURE 7 | Gene set enrichment analysis (GSEA) and gene set variation analysis (GSVA) of hub genes. (A–D) The top 5 gene sets enriched in the high-expression
group of single hub genes according to GSEA enrichment score. Each small bar represents a gene within the top 5 gene sets. It demonstrates the degree of
correlation between genes in the top 5 gene sets and real hub genes. (A) CCNA2. (B) CKAP2L. (C) NCAPG. (D) NUSAP1. (E–H) Differentially expressed pathways
of single hub genes were displayed based on the cluster heat map of GSVA. Scale on the right represents GSVA enrichment scores for individual gene sets.
(A) CCNA2. (B) CKAP2L. (C) NCAPG. (D) NUSAP1. Signaling pathways with P < 0.01 and log fold change of >0.15 were considered significant.

and G2/M phase, respectively (Pagano et al., 1992). Published
literature indicates that CCNA2 is overexpressed in multiple
tumors, including breast, colorectal, gastric, pancreatic, and lung
cancers (Gao et al., 2014; Gan et al., 2018; Zhang et al., 2018;
Dong et al., 2019; Gao M. et al., 2020). As such, those cancers

also showed significant association with histological grade, tumor
stage, disease-free survival, and overall survival. In estrogen
receptor + breast cancer, Gao et al. (2014) also found high levels
of CCNA2, which showed correlation with tamoxifen treatment
failure, in which it not only can be used as an independent
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FIGURE 8 | Relevancy of hub gene expression with immune infiltration level. (A) CCNA2. (B) CKAP2L. (C) NCAPG. (D) NUSAP1. P < 0.05 means statistical
significance. Each dot represents a sample in the TCGA-PRAD data set.

prognostic factor, but also contributed to the monitoring of
tamoxifen efficacy. Our results reveal that CCNA2 is up-regulated
in PCa tissues when compared with normal tissues and that its
expression is closely connected with Gleason scores, tumor stage
in the TCGA database, and GEO data sets. Our study further
corroborated Yang et al. (2020)’s research. All these suggest that
CCNA2 plays an important role in PCa proliferation.

CKAP2L is a microtubule-associated protein that occurs
during the mitotic phase and is involved in neural progenitor
cell division (Yumoto et al., 2013). Specifically speaking, down-
regulation of CKAP2L gives rise to separation between the
multipolar spindles and the chromosome in the neural progenitor
cells. In addition, Jakobsen et al. (2011) identified CKAP2L
as part and parcel of the centrosome situated in the spindle,
i.e., in the midbody and the spindle pole. According to the
published literature, little is known about the role of CKAP2L
in tumor development and proliferation. A recent paper reports
high expression of CKAP2L, which induces the invasion of
lung adenocarcinoma by the MAPK signaling pathway, and
shows correlation with poor prognosis (Xiong et al., 2019).
Furthermore, CKAP2 acts as a significant paralog of CKAP2L,
and the oncogenic nature and overexpression of this gene is
revealed in PCa (Yu et al., 2015), ovarian cancer (Gao et al.,
2017), and glioma (Wang et al., 2018). In this regard, as a novel
mitotic spindle protein, we speculate that it might regulate cancer
progression by taking part in the polymerization of microtubules
and then affecting cell mitosis.

NCAPG is a key component of the condensin complex and
is highly correlated with the condensation and stabilization of

chromosomes during mitosis and meiosis (Murphy and Sarge,
2008). It is located on human chromosome band 4p15.32
and encoded by the NY-MEL-3 gene (Jäger et al., 2000). To
date, previous study shows the involvement of NCAPG in
hepatocellular carcinoma and breast, lung, and ovarian cancers
(Cao and Zhang, 2016; Cava et al., 2018). In hepatocellular
carcinoma, Wang (Wang et al., 2019) verifies that depletion
of NCAPG contributes to hepatocellular carcinoma cell cycle
arrest at the S phase and induces apoptosis. In addition, they
also find that NCAPG could serve as a promoter of invasion
and metastasis of liver cancer. In PCa, our study demonstrates
that the expression of NCAPG shows significant association with
tumor stage and disease-free survival, and this is in agreement
with the reports put forwarded by Arai (Arai et al., 2018) in
castration-resistant PCa clinical specimens.

As a cell-cycle related protein, NUSAP1 plays an important
role in mitotic progression, spindle formation, and stability.
In 2003, Raemaekers et al. (2003) first found it as a novel
55-kD vertebrate protein and showed selective expression in
proliferative cells. There is much evidence to indicate that
NUSAP1 is closely associated with apoptosis, proliferation, and
metastasis. For instance, in cervical cancer (Li et al., 2019),
NUSAP1 is shown to bound to the SUMO-E3 ligase Ran
binding protein 2 (RanBP2) to induce the sumoylation of TCF4,
thereby enhancing the Wnt/β signaling pathway and inducing
tumor metastasis. Similarly, a high NUSAP1 expression level
facilitated the development of bladder cancer by regulating
epithelial-mesenchymal transition of bladder cancer via the TGF-
β signaling pathway (Gao S. et al., 2020). In addition, Liu
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TABLE 2 | Results of CMap analysis.

CMap name Mean n Enrichment p Specificity

1 Tanespimycin −0.426 62 −0.347 0 0.2437

2 Trichostatin A −0.371 182 −0.333 0 0.4654

3 Tretinoin −0.46 22 −0.402 0.001 0.0735

4 LY-294002 −0.341 61 −0.219 0.00475 0.5828

5 15-delta prostaglandin J2 −0.406 15 −0.418 0.00677 0.2181

6 Prochlorperazine −0.428 16 −0.406 0.00678 0.1415

7 Vorinostat −0.412 12 −0.436 0.01319 0.4956

8 Trifluoperazine −0.342 16 −0.382 0.01322 0.2885

9 Sirolimus −0.248 44 −0.233 0.01406 0.5548

10 Alvespimycin −0.5 12 −0.416 0.02157 0.1884

11 Chlorpromazine −0.285 19 −0.333 0.02216 0.1026

TABLE 3 | Molecular docking of CCNA2.

Name Total_Score Crash Polar

15-delta-prostaglandin-J2 9.5388 −2.1552 3.5693

Tanespimycin 7.4511 −3.0228 1.6463

Trifluoperazine 7.2148 −2.2088 0.8992

Prochlorperazine 6.984 −2.1011 1.2045

Tretinoin 6.9321 −1.8675 1.2962

Vorinostat 6.7712 −1.3365 3.5723

Alvespimycin 6.2191 −3.8744 3.7333

Trichostatin-A 5.8515 −1.1437 2.2318

Chlorpromazine 5.7682 −0.8164 2.7998

LY-294002 5.5317 −0.7601 2.3055

Sirolimus 4.622 −2.7804 2.2177

(Liu et al., 2018) reports that the mRNA and protein levels of
NUSAP1 were more highly expressed in colon cancer than in
paired non-cancerous adjacent tissues. These results also support
the studies of Gordon et al. (2017).

We herein also provide substantial evidence in support of the
diagnostic and prognostic values of CCNA2, CKAP2L, NCAPG,
and NUSAP1, which range from internal to external validation
data sets. The genes CCNA2, CKAP2L, NCAPG, and NUSAP1
were not only significantly up-regulated in PCa tissues, but
also positively associated with higher Gleason score and tumor
stage, implicating significant contributions to the pathogenesis
of PCa. In addition, survival analysis shows that high expression
of hub genes is related to a shorter disease-free survival in PCa.
Furthermore, ROC curve analysis of the four hub genes was
conducted, and the protein expression levels were analyzed based
on the HPA database, which provides evidence that these four
genes have a high diagnostic and prognostic value in PCa.

It is well known that tumors are composed of not only
tumor cells, but also of stroma and immune cells. Hence,
several immune cells (B cells, CD4+ T cells, CD8+ T cells,
macrophages, neutrophils, and dendritic cells) were assessed in
TIMER. These hub genes show positive correlation with the
majority of the above immune cells. Unexpectedly, the tumor
purity of hub genes in most of the samples was more than
0.5. Based on these findings, we suspect that CCNA2, CKAP2L,
NCAPG, and NUSAP1 might be mainly expressed in PCa cells.

TABLE 4 | Molecular docking of CKAP2L.

Name Total_Score Crash Polar

delta-prostaglandin-J2 7.852 −1.5924 3.6404

Trifluoperazine 5.8955 −0.8018 1.7118

Vorinostat 5.2495 −1.185 2.2736

Prochlorperazine 4.8606 −0.732 1.483

Chlorpromazine 4.7681 −1.3495 1.7222

Alvespimycin 4.53 −1.6153 6.2844

Tretinoin 4.2592 −0.9624 1.4817

Trichostatin-A 3.7596 −1.3013 2.2535

LY-294002 3.6672 −0.858 0

Tanespimycin 2.5781 −1.3093 0.5352

Sirolimus 1.121 −1.8383 3.0711

TABLE 5 | Molecular docking of NCAPG.

Name Total_Score Crash Polar

Delta-prostaglandin-J2 6.7336 −1.3371 2.4941

Alvespimycin 5.1368 −1.699 0.9248

Tretinoin 4.9243 −1.004 2.6487

Vorinostat 4.747 −1.2161 4.1736

Trichostatin-A 4.6604 −1.0464 1.1727

Prochlorperazine 4.6098 −0.7403 1.6303

Trifluoperazine 4.408 −0.9068 1.7254

Chlorpromazine 3.6596 −0.6975 1.7134

Tanespimycin 3.2905 −0.9635 0.9676

LY-294002 3.2722 −1.0261 1.9495

Sirolimus 1.2984 −2.4359 1.1123

TABLE 6 | Molecular docking of NUSAP1.

Name Total_Score Crash Polar

Prochlorperazine 3.0117 −0.9845 0

Delta-prostaglandin-J2 2.8776 −0.9872 1.1538

Trichostatin-A 2.3572 −1.2679 0

Trifluoperazine 1.7683 −0.5994 0

Chlorpromazine 1.1286 −0.6207 0

Alvespimycin 1.0724 −0.9652 0

Tretinoin 0.8743 −0.7493 0

Vorinostat 0.6616 −0.838 0

LY-294002 0.2977 −1.2272 0

Tanespimycin −0.3478 −2.735 0.0012

Sirolimus −32.9961 −35.7588 0

GSEA and GSVA were further utilized to explore the biological
function. Cell cycle and cell cycle–related pathways, such as DNA
replication, mismatch repair, and recombination, were mainly
observed as enriched pathways, indicating that they can lead to
tumor proliferation.

In addition, the CMap database was utilized to identify some
small molecule drugs with potential therapeutic benefits against
PCa. Most of these have been previously documented to have
anticancer effects in various cancer types. Among the molecule
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drugs, vorinostat (Schneider et al., 2012), alvespimycin (Pacey
et al., 2011), and tretinoin (Ueda et al., 2020) have undergone
phase I clinical trials in cancer patients. In the early 1990s,
some experimental evidence revealed that tanespimycin had
antitumor activity in various human-derived tumor cell lines
(Erlichman, 2009). Trichostatin A, which is a histone deacetylase
inhibitor, had an underlying therapeutic effect in diverse cancer
cells when combined with radiotherapy or chemotherapy.
Trifluoperazine was originally an antipsychotic drug, whereas
some recent literature report that it could inhibit cancer
cell proliferation, such as hepatocellular carcinoma (Jiang
et al., 2017), lung cancer (Yeh et al., 2012), and glioblastoma
(Pinheiro et al., 2017). Moreover, the anticancer effects of
other small molecule drugs are also mentioned by the
researchers. Molecular docking analysis demonstrates that 15-
delta prostaglandin J2 had the highest binding affinity to
four hub genes in 11 small molecule drugs. Prostaglandin
J2, a potent activator of PPAR-γ (Kliewer et al., 1995),
is shown to inhibit serum-stimulated cell proliferation in
vascular smooth muscle cells. Thus, we speculated that 15-
delta prostaglandin J2 possessed the antitumor effects via
inhibited serum-stimulated cell proliferation. In brief, this
information remains to be beneficial for the development of
targeted therapy in PCa.

However, there are some deficiencies that should be
acknowledged. First, this was a retrospective study rather than a
prospective cohort study, and all data in this study were acquired
from the open available databases. In addition, further research,
including in vivo and in vitro experiments are needed to elucidate
the potential molecular mechanisms of how the four genes impact
on Gleason score and tumor stage.

Taken together, CCNA2, CKAP2L, NCAPG, and NUSAP1
were successfully identified as our candidate genes and small
molecular drugs with the potential to treat PCa. Of clinical
significance, the four genes might serve as potential biomarkers
for PCa, and these molecular drugs might provide a new avenue
for the treatment of PCa.
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