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A B S T R A C T

The assessment of the sensitivity of statistical methods has received little attention in cluster randomized trials
(CRTs), especially for stratified CRT when the outcome of interest is continuous. We empirically examined the
sensitivity of five methods for analyzing the continuous outcome from a stratified CRT - aimed to investigate the
efficacy of the Classroom Communication Resource (CCR) compared to usual care to improve the peer attitude
towards children who stutter among grade 7 students. Schools – the clusters, were divided into quintile based on
their socio-political resources, and then stratified by quintile. The schools were then randomized to CCR and
usual care groups in each stratum. The primary outcome was Stuttering Resource Outcomes Measure. Five
methods, including the primary method, were used in this study to examine the effect of CCR. The individual-
level methods were: (i) linear regression; (ii) mixed-effects method; (iii) GEE with exchangeable correlation
structure (primary method of analysis). And the cluster-level methods were: (iv) cluster-level linear regression;
and (v) meta-regression. These methods were also compared with or without adjustment for stratification. Ten
schools were stratified by quintile, and then randomized to CCR (223 students) and usual care (231 students)
groups. The direction of the estimated differences was same for all the methods except meta-regression. The
widths of the 95% confidence intervals were narrower when adjusted for stratification. The overall conclusion
from all the methods was similar but slightly differed in terms of effect estimate and widths of confidence
intervals.
Trialregistration: Clinicaltrials.gov, NCT03111524. Registered on 9 March 2017.

1. Background

Randomization of intact groups, namely clusters, into intervention
groups are known as cluster randomized trials (CRT) [1]. Over the
years, the number of adopting CRTs is increasing [2]. Diverse types of
clusters can be allocated in CRTs including: geographical areas [3];
health care districts [4]; and schools [5]. Like trials on individuals’,
most CRTs use one of the following three experimental design strategy
such as: (a) completely randomized; (b) matched-pair; or (c) stratified.
A completely randomized design is satisfactory with substantial number
of clusters while stratified design is suitable for small number of clusters
[6]. In stratified designs, clusters are randomly allocated to the

intervention and control groups within each stratum. For example,
Mallick et al. [5] conducted a school-based CRT to investigate the effect
of the Classroom Communication Resource (CCR), vs Usual Care, to
improve the peer attitude towards children who stutter (CWS). In this
trial, schools were first divided into quintile (1–3: lower and 4–5:
higher) and stratified as a high vs low school based on the socio-eco-
nomic resources [5].

Due to the randomization of intact clusters, the outcome from the
same cluster may be similar. The intra-cluster correlation coefficient
(ICC) is used to measure the degree of similarity [1]. The variance of
the estimated intervention effect is inflated due to this correlation and
may produce spurious statistically significant results [1,7]. This
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inflation can be quantified by the design effect, given by
+ −m ICC1 ( ‾ 1) , where m‾ is the average cluster size [1]. Thus, the

statistical methods should take into account the potential correlation
among the outcomes from the same cluster. Further, the methodologies
need to be adjusted for stratification due to stratified design. Re-
searchers have recommended several approaches to analyze the con-
tinuous data from completely randomized CRT, which can be extended
to stratified designs [1]. The methodologies are broadly classified into
two categories: individual- and cluster-level methods. Individual-level
methods use the individual-level data such as mixed-model [8] or
generalized estimating equation (GEE) [9]. Similarly, we can employ
the meta-analytic approach (cluster-level method), which commonly
used to combine the results from different studies [10]. This approach
helps to aggregate the treatment effects over multiple stratum, like
multicentre trials [11–13].

In addition, it is vital to assess the robustness of the results obtained
from the randomized controlled trials [14]. The sensitivity analysis
helps us to assess the robustness of the results [14]. For CRTs, we can
perform several sensitivity analyses. First, we can conduct sensitivity
analyses with or without considering the clustering. Secondly, results
are compared using different correlation structures [14]. For stratified
designs, we can also assess robustness by comparing the methods with
or without adjusted for stratification. The GEE with exchangeable
correlation structure was used as the primary method of analysis in the
Mallick et al. [5] study.

In this study, we empirically examined the sensitivity of methods for
analyzing continuous outcome from the stratified CRT using the data
from the Mallick et al. [5] study, which in turn demonstrated the ro-
bustness of the results obtained using the primary GEE method.

2. Methods

2.1. Overview of the mallick et al. study

The details about the Mallick et al. study can be found elsewhere
[5,15]. In brief, this was a cluster randomized trial aimed at examining
the effect of Classroom Communication Resource (CCR) on peer atti-
tude towards Children Who Stutter (CWS) in South African schools in
the Western Cape. Schools were the unit of randomization and the
participants of this trial were the grade 7 students. The selected schools
were first stratified to high or low quintile groups and then randomized
to CCR or usual care groups. The grade 7 teachers in the intervention
group received training on CCR and administered the intervention
(including a social story, role-play and facilitated discussion) while
participants in the control group received usual curriculum. The par-
ticipants were assessed 6-month post intervention. The primary out-
come was Stuttering Resource Outcomes Measure (SROM) completed at
baseline and 6-month post intervention. The study flow chart is pre-
sented in Fig. 1.

2.2. Statistical methods

Both individual-level and cluster-level methods were used to ana-
lyze the data from the Mallick et al. [5] study. The cluster-and in-
dividual-level methods can be adjusted for cluster-level covariates,
while individual-level methods can be adjusted for individual-level
covariates. The adjustment for stratification covariate, quintile, was
applicable for cluster- and individual-level methods, since this was a
cluster-level covariate. The results from the analyses were reported in
terms of difference (Intervention - Control) along with 95% confidence
interval (CI) and associated p-value. All statistical tests were two-sided
at the significance level of 0.05. The p-value less than 0.001 were re-
ported as< 0.001 The reporting of the results follows the CONSORT
(Consolidated Standards for Reporting Trials) guidelines for reporting
cluster-randomized trials [16].

Data were analyzed using both intention-to-treat (ITT) and per-

protocol principles. Missing data were imputed using multiple im-
putation technique assuming missing data follows a missing at random
(MAR) pattern. Overall, five datasets were generated, and pooled esti-
mates were reported. All analyses were performed using statistical
software R [17].

2.2.1. Individual-level methods

2.2.1.1. Linear regression
The linear regression can be expressed as

= + +Y β β X eijkl ijkl ijkl0 1

Where Yijkl is the outcome of the l-th subject in the k-th cluster, j-th
intervention group and i-th stratum. Xijkl represents the intervention
assignment (Xijkl=1 for the treatment group; Xijkl =0 for the control),
and eijkl is the random error assumed to follow a normal distribution
with mean 0 and variance σe

2. The intercept (β0) represents the mean
outcome for the control group in all clusters, while the slope (β1) re-
presents the effect of the treatment on the mean outcome.

The linear regression model assumes that data from the participants
are independent. This model was implemented using R package lm().

2.2.1.2. Mixed-effects regression model
The mixed-effects regression model is given by

= + + + +Y β β X β S C eijkl ijkl ijkl ijk ijkl0 1 2

In this model, β1 and β2 represents the treatment and stratum effect,
respectively, which are fixed. Random cluster effect is represented by
Cijk, which follows a normal distribution with mean 0 and variance σb

2.
The intra-cluster correlation that measures the correlation among the

outcomes within cluster is given by
+

σ

σ σ
b

b e

2

2 2 , assumed equal for all clus-

ters. We fitted this model using lme4() package in R with restricted
maximum likelihood (REML) method [18,19].

2.2.1.3. Generalized estimating equation (GEE)
The generalized estimating equation (GEE) [9] has the advantage of

taking into account the correlation of the outcomes through specifica-
tion of working correlation structure. The estimated treatment effect
from the GEE model reflects the both within- and between – cluster
relationship [20]. The sandwich covariance estimator yields a robust
estimate of treatment effect in the case when the correlation structure is
misspecified [21]. Also, small number of clusters leads to an under-
estimate of variance [22].

For the primary GEE analysis, the exchangeable correlation struc-
ture, which based on the assumption that the individuals within the
same cluster are equally correlated, was used. Also, this analysis was
performed using sandwich method for standard error estimation. This
analysis was performed using geepack () package in R.

2.2.2. Cluster-level methods

2.2.2.1. Cluster-level linear regression
This method consists of first estimating a summary measure by

cluster such as mean, and then fitting a linear regression based on these
summary measures [1].

2.2.2.2. Meta-regression
This is a meta-analytic approach where cluster-level summary is

used [10]. This can be extended to perform a stratified analysis on the
mean difference in outcome between intervention and control arms
within stratum. The overall treatment effect is estimated by a weighted
average of individual mean differences across all strata. The principle of
inverse-variance weighting is often used [10]. We implemented this
method using the metacont() package in R.
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3. Results

In total, the selected 10 schools were stratified into two groups:
higher quintile (6 schools) and lower quintile (4 schools). The schools
were then randomized into the intervention CCR group and control
usual care group. The average cluster size was 45 (range: 30–54) and 46
(range: 18–68) in the CCR and usual care groups, respectively. Overall,
454 students (223 in the CCR group and 231 in the usual care group)
participated in this study. The average age was 13 years for both
groups.

We used the methods discussed above (see statistical methods sec-
tion) to evaluate the effect of intervention. The results of the estimated
intervention effect, using ITT, are provided in Fig. 2 with and without
adjustment for stratification. Results from all the methods, for the
outcome SROM, indicated that the intervention CCR had no statistically
significant effect as all the p-values were greater than the nominal level
of 0.05 (Fig. 2). The estimated mean differences (MDs) were negative
for all the methods except meta regression approach when adjusted for
stratification (MD=0.01[-0.48, 0.50]) (Fig. 2). The p-values for all the
methods were similar or lower when adjusted for stratification com-
pared to the same method when not adjusted for stratification, while
cluster-level linear regression yielded the lowest p-value (Fig. 2). The
magnitude of the widths of the confidence intervals were narrower for
cluster-level linear regression (1.06 (when adjusted for stratification);
1.36 (when not adjusted for stratification)) and meta regression (0.98
(when adjusted for stratification); 1.07 (when not adjusted for stratifi-
cation)) compared to other methods. The widths of the confidence in-
tervals were wider when the methods were not adjusted for stratifica-
tion compared to the same method adjusted for stratification.

The estimated results of the intervention effect using per-protocol

principle are provided in Fig. 3 with and without adjusted for stratifi-
cation. Similar to ITT analyses, results from per-protocol analyses
yielded that the intervention CCR had no statistically significant effect
on the outcome SROM as all the p-values were greater than the nominal
level of 0.05 for both with and without adjustment for stratification
(Fig. 3). The p-values were lower for all the methods when adjusted for
stratification (Fig. 3). Also, like ITT, the estimated mean difference was
positive (MD=0.08 [-0.99, 1.15]) for the meta regression method in
case of per-protocol analysis. The magnitude of the effect size was
higher in the per-protocol analyses compared to ITT analyses except
GEE with exchangeable correlation structure (when not adjusted for
stratification) (Fig. 3).

For both ITT and per-protocol approaches, the standard errors (SEs)
were lower for methods when adjusted for stratification compared to
the same method when not adjusted for stratification (results are not
presented here).

4. Discussion

In this study, we had empirically investigated the sensitivity of
several methods for analyzing continuous outcome from the stratified
cluster randomized trial using data from the Mallick et al. [5] study. We
used five methods in a frequentist framework to assess the effect of the
intervention CCR on SROM compared to usual care. These methods can
be differentiated by whether they account the clustering effect or adjust
for stratification or both. The overall conclusion, based on intention-to-
treat and per-protocol analyses, from all the methods was similar to the
primary method (GEE with exchangeable correlation structure) i.e.
there was no significant difference between the intervention groups –
Classroom Communication Resources (CCR), and the control group –

Fig. 1. Study flow chart of the Mallick et al. study.
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usual care, in improving the peer attitude towards CWS.
The conclusion from the linear regression method was matched with

other methods, but this method is not appropriate for analyzing data
from CRT, as this method does not account the potential correlation
among the outcomes from the same cluster. The meta-regression
method yielded the narrowest 95% confidence intervals compared to
other methods. There is very little variation among the summary
measure, mean, of control and intervention groups in low and high
stratum i.e. very low heterogeneity, which might lead to yield nar-
rowest confidence interval for meta-regression since the width of the
confidence interval decreases as the heterogeneity decreases [23].
Further, the direction of the estimated difference was opposite (posi-
tive) for this method compared to other methods when adjusted for
stratification. The cluster-level linear regression yielded the widest
confidence intervals for per-protocol approach, which are similar to the
findings of Walter et al. [22]. However, for ITT approach, the cluster-
level methods yielded narrower 95% confidence interval compared to
individual-level methods. These results support the findings of Ukou-
munne et al. [24] as the authors reported that the cluster-level method
performed well, in case of binary data, when ICC is small.

The magnitudes of the estimated differences were similar among the
methods with or without adjusted for stratification. However, the

widths of the 95% confidence intervals were narrower for adjustment of
stratification compared to without adjustment for stratification. These
findings matched with the findings of Ma et al. [25] and Kahan et al.
[26], where the authors compared several methods for analyzing binary
data from stratified CRT and continuous data from stratified rando-
mized controlled trial on individual, respectively. The p-values for all
the methods were lower or similar when adjusted for stratification
compared to the same method when not adjusted for stratification,
which is in line with the findings of Kahan et al. [26].

The failure to adjust for clustering or centre in a multicentre trial
results in inflated standard error and wider confidence interval [22,27].
Walters et al. [22] recommended to use cluster-level methods for
number of cluster less than 15 per group as individual-level methods
may not be reliable in this situation [28,29]. The estimates from the
GEE and mixed-effect methods are connected through ICC [30] and in
our case the estimates were similar due to the smaller ICC of 0.01.

We compared the results of five methods in several scenarios in-
cluding: ITT and per-protocol analyses; with and without stratification;
and account for potential correlation among the outcomes from the
same cluster, which were pertaining to analyze continuous data from
stratified CRTs. Moreover, we compared methods based on both in-
dividual-level and cluster-level summary data. Sensitivity analyses

Fig. 2. Results of ITT analyses from different methods with and without adjustment for stratification.

Fig. 3. Results of per-protocol analyses from different methods with and without adjustment for stratification.
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might help researchers to make informed decisions, since there is very
limited guidance on which method is the best [14]. Furthermore, these
analyses help to assess the sensitivity to conclusions to different sce-
narios such as, with or without clustering. However, we need to be
cautious that, like binary data, the interpretation of the treatment effect
using the marginal model and the mixed-effect model are may be dif-
ferent [31]. We only considered the multiple imputation technique to
impute the missing data. Further investigation using other missing data
imputation techniques are warranted.

Based on a simulation study on binary data it has been showed that,
the statistical power of GEE is the highest compared to t-test, Wilcoxon
rank sum test, permutation test, adjusted chi-square test and logistic
random-effects model for the analysis of CRTs [32]. However, the es-
timated variance of from GEE is biased when the number of clusters is
small for both binary and continuous data [33–35]. Researchers have
reported the need for large number of clusters, 30–40 for mixed models
and 40–50 for GEEs, in CRTs [1,36]. Also, some corrections have sug-
gested - for mixed models corrections on degrees-of-freedom and for
GEEs corrections to standard error estimations, for analyzing CRTs with
small number of clusters [37–41]. Further studies are warranted to
investigate how these corrections perform in the case of stratified
cluster randomized trials.

5. Conclusion

We have empirically examined the sensitivity of five statistical
methods for analyzing continuous outcome from stratified CRTs. The
overall conclusions from all methods were similar i.e. no significant
effect of the CCR intervention on improving the attitude of peers to-
wards children who stutter. The adjustment for stratification yielded
narrower standard errors and confidence intervals, thus it is important
to adjust for stratification. Similarly, cluster-level methods yielded
narrower confidence intervals compared to individual-level methods.
However, further studies are warranted to assess the performance of
these methods in wide ranging scenarios.
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