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Lysobacter enzymogenes is a ubiquitous, beneficial, plant-associated bacterium

emerging as a novel biological control agent. It has the potential to become a new source

of antimicrobial secondary metabolites such as the Heat-Stable Antifungal Factor (HSAF),

which is a broad-spectrum antimycotic with a novel mode of action. However, very little

information about how L. enzymogenes detects and responds to fungi or oomycetes has

been reported. An in vitro confrontation bioassay between the pathogenic oomycete

Pythium aphanidermatum and the biocontrol bacterial strain L. enzymogenes OH11

was used to analyze the transcriptional changes in the bacteria that were induced by

the oomycetes. Analysis was performed at three time points of the interaction, starting

before inhibition zone formation until inhibition zone formation. A L. enzymogenes OH11

DNA microarray was constructed for the analysis. Microarray analysis indicated that

a wide range of genes belonging to 14 diverse functions in L. enzymogenes were

affected by P. aphanidermatum as critical antagonistic effects occurred. L. enzymogenes

detected and responded to the presence of P. aphanidermatum early, but alteration

of gene expression typically occurred after inhibition zone formation. The presence

of P. aphanidermatum increased the twitching motility and HSAF production in L.

enzymogenes. We also performed a contact interaction between L. enzymogenes and

P. aphanidermatum, and found that HSAF played a critical role in the interaction.

Our experiments demonstrated that L. enzymogenes displayed transcriptional and

antagonistic responses to P. aphanidermatum in order to gain advantages in the

competition with this oomycete. This study revealed new insights into the interactions

between bacteria and oomycete.
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INTRODUCTION

Fungal-bacterial interactions are ubiquitous in complex
ecological niches. They often influence each other’s physiology
and metabolism, and their interactions vary from synergism to
mutualism to antagonism. For example, in a soil environment,
which contains a wide range of bacteria and fungi in close
proximity, the most documented interactions are those of the
antagonistic rhizobacteria (e.g., Pseudomonas spp.), which play
a role in preventing the establishment of plant pathogenic
fungi in the rhizosphere. Other examples of synergism include
bacteria helping symbiotic fungi to form tree mycorrhization or
promoting disease development by pathogenic fungi in plants
(Whipps, 2001; Frey-Klett et al., 2007; Barret et al., 2009).

The effects of bacteria on fungus on the molecular level have
been widely studied. The influence on fungi of living bacteria at
the gene expression level was reported by Deveau et al. (2007),
who demonstrated that the mycorrhiza helper Pseudomonas
fluorescens BBc6R8 induced growth and transcriptional changes
in the ectomycorrhizal fungus Laccaria bicolor S238N. Candidate
genes in the fungal defense response to biotic stress were revealed
by studying the genes of the rice blast pathogen, Magnaporthe
oryzae, when challenged with the bacterial antagonist L.
enzymogenes (Mathioni et al., 2013). In addition, metabolites
from bacteria can influence fungi at the transcriptional level.
For example, Schoonbeek et al. (2002) discovered that 2,4-
diacetylphloroglucinol, phenazine-1-carboxylic acid (PCA) and
phenazine-1-carboxamide (PCN) broad-spectrum antibiotics
produced by Pseudomonas spp., increased the expression
of several ATP-binding cassette (ABC) transporter genes in
Botrytis cinerea. A recent study reported that fungal innate
immunity was induced when Fusarium graminearum was
exposed to bacterial Microbe-Associated Molecular Patterns
(MAMPs); this induction included increases in mitochondrial
activity and iron sequestration, as well as the upregulation of
genes that encode proteins involved in defense (Ipcho et al.,
2016).

Though fungi respond to beneficial or antagonistic bacteria
in many ways, accumulated evidence has revealed that fungal
partners play important roles in influencing bacterial physiology,
metabolism, and global gene expression. Romano and Kolter
(2005) revealed that the yeast Saccharomyces cerevisiae had
a positive effect on Pseudomonas putida bacterial physiology
and survival, which was mediated by the yeast’s ability to
metabolize the available glucose, thereby altering the pH of
the medium. Furthermore, Barret et al. (2009) showed that the
plant pathogenic fungus Gaeumannomyces graminis significantly
improved the growth of P. fluorescens Pf29Arp and triggered gene
regulation in the early phases of their interaction. Others have
also reported that the production of antibiotic compounds could
be induced when antagonistic soil bacteria encountered other
microorganisms (Becker et al., 1997). Antibiosis is probably the
most widely studied interaction mechanism between fungi and
bacteria (Frey-Klett et al., 2011). It has been documented that
Collimonas fungivorans responds to the fungus Aspergillus niger
by activating gene expression for fungal-derived compounds
subsequently used in the production of a putative antifungal

compound (Mela et al., 2011). The biocontrol species Bacillus
amyloliquefaciens SQR9 regulated its gene expression and
production of various antifungal compounds in response to
different fungal pathogens (Li B. et al., 2014). For detrimental
interactions, previous groups showed that medium pretreated
with phytopathogenic oomycetes, P. aphanidermatum, decreased
the expression of genes associated with ecological fitness in
P. fluorescens, suggesting that a soluble fungal product may
decrease the fitness of a bacterium in the environment (Fedi
et al., 1997; Smith et al., 1999). It has been established that
the biosynthesis of the diacetyl phloroglucinol antibiotic of P.
fluorescens was inhibited by the production of a fusaric acid
toxin by the filamentous fungus Fusarium oxysporum (Notz et al.,
2002).

Despite the widespread occurrence of such bacterial-fungal
interactions in myriad environments, it is not yet understood
how biocontrol bacterial species detect and respond to other
microbes at transcriptional level and by secondary metabolite
production. The antagonistic activities of bacteria likely involve
the production of an antibiotic compound, but it is not clear
whether this provides an advantage to the bacteria over fungi
in the competition for limited nutrients or enables mycophagous
behavior (Mela et al., 2011).

L. enzymogenes belongs to the Xanthomodaceae family and
is a ubiquitous environmental bacterium that is emerging as
a potential biocontrol agent for the suppression of fungal and
oomycete diseases. It exhibits several important traits, such
as flagella-independent twitching motility, high G+C content,
and dissimilarity to other taxonomically and ecologically related
microbes (Christensen and Cook, 1978). The biocontrol ability
of this bacterium against fungal and oomycete pathogens
was originally attributed to the abundant production of lytic
enzymes (such as chitinases, proteases, and glucanases) and the
production of an antimicrobial secondary metabolite HSAF (Yu
et al., 2007). The chemical structure, novel mode of action against
filamentous fungi, and unique biosynthetic mechanism of HSAF
have been explored in L. enzymogenes (Li et al., 2006, 2008; Li Y.
Y. et al., 2014; Lou et al., 2011; Xu et al., 2015). There is no doubt
that L. enzymogenes can inhibit fungi or oomycetes growth due
to the actions of HSAF. However, very little information has been
reported about how these newly identified potential biocontrol
agents, such as L. enzymogenes, detect and respond to fungi, or
oomycetes.

In this study, we investigated the interaction between the
biocontrol agent L. enzymogenes and the plant pathogenic
oomycete P. aphanidermatum. P. aphanidermatum is an
important soil borne plant pathogen that causes damping-off
of seedlings as well as root and crown rot in older plants,
resulting in severe losses of many crops grown in closed
soilless systems. L. enzymogenes has been shown to consistently
suppress root and crown rot caused by P. aphanidermatum
in bioassays on 2-week-old plants (Folman et al., 2003).
L. enzymogenes strain 3.1T8 combined with chitosan can
effectively control P. aphanidermatum in cucumber (Postma
et al., 2009). Therefore, we investigated Pythium-Lysobacter
interactions which potentially represent a novel microbial cross-
talk system. The aim of the present work was to analyze the
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influence of P. aphanidermatum on the L. enzymogenes OH11
transcriptome and antibiotic production following non-contact
commensal interactions. For this purpose, we used an in vitro
confrontation assay to show that P. aphanidermatum exerted
effects on the expression of a wide range of Lysobacter genes
at three time points: before (24 h), during (48 h), and after
(96 h) inhibition zones formation. A cDNA microarray was
constructed and used to monitor Lysobacter transcriptional
changes during its co-culture with P. aphanidermatum. The
effects of P. aphanidermatum on HSAF production and the
twitching motility of L. enzymogenes OH11 were also assessed.
The results provide information to strengthen our understanding
of the ecological fitness of Lysobacter in response to microbes of
different niches.

MATERIALS AND METHODS

Strains and Growth Conditions Used in
This Study
L. enzymogenes strains were cultured on 10% TSA (Tryptic
Soy Agar) or in 10% TSB (Tryptic Soy Broth) at 28◦C. L.
enzymogenes strains used in this study include OH11, the wild-
type (Jiang et al., 2005; Qian et al., 2009); 5E4, a clp mutant
of L. enzymogenes C3 with inactive antifungal antagonism
and biological control activities (Kobayashi et al., 2005); and
K19, an HSAF-nonproducing mutant with a mutation in the
ketosynthase domain of the PKS module of the pks-nrps gene,
which is responsible for HSAF biosynthesis in L. enzymogenes C3
(Yu et al., 2007). The oomycete pathogen P. aphanidermatumwas
grown on 10% TSA at 26◦C.

L. enzymogenes and P. aphanidermatum

Confrontation Assay
A plate confrontation assay was developed to investigate the
effects of P. aphanidermatum on L. enzymogenes (Figure 1). In
the assay, a 5-mm diameter mycelial plug of P. aphanidermatum
was cut out from the margins of a colony grown on 10% TSA
medium and transferred to the center of a fresh 10% TSA plate.
Cells of strain OH11 were washed twice and resuspended in
sterile distilled water. Then, 5 µl droplets of bacterial suspension
(OD600 nm = 1.0) were dropped on the center of a 2.5-cm
diameter filter paper that surrounded the mycelial plug, and also
dropped on the medium without filter papers as control. Six filter
papers were placed in one dish, and two filter papers constituted
one treatment. There were three technical replicates in a dish
and three biological replicates (three different dishes). Under the
same conditions, strain OH11 was grown alone as a control.
Cultures were incubated at 28◦C for 24 h (before inhibition zone
formation), 48 h (during inhibition zone formation), and 96 h
(after inhibition zone formation). At these three designated time
points, the bacterial cells were collected from the filter papers
and used for OD600 nm determination and RNA extraction. HSAF
was extracted from the agar under the filter papers. The detailed
methods are further described below. Bacterial colonies on the
filter papers were washed with sterile distilled water; 2 ml of water
was used to wash two filter papers, and then the OD600 nm of the
suspension was detected by an Eppendorf BioPhotometer plus.

HSAF Extraction and Detection
The extraction of HSAF from L. enzymogenes was performed
as described previously (Yu et al., 2007; Lou et al., 2011),

FIGURE 1 | Co-cultivation of L. enzymogenes and P. aphanidermatum on agar plates. (A) Co-culture for 24 h (before inhibition zones formation); (B) Co-culture for

48 h (during inhibition zones formation); (C) Co-culture for 96 h (after inhibition zones formation). In each of these three sets, the left plate was L. enzymogenes and P.

aphanidermatum co-cultured and the right plate was L. enzymogenes alone. (D) Lysobacter-Pythium assay with or without filter papers. The left plate shows that the

filter paper alone does not block the oomycetes growth, and 1 indicates the hyphae grown area under the filter paper without OH11, while 2 indicates a clear inhibition

zone under filter paper with OH11; the right plate represents Lysobacter-Pythium assay without filter papers.
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with some modifications. After removing the filter paper, the
agar under the filter paper was collected and cut into small
pieces. Then, these pieces were suspended in 5ml of sterile
water that had been acidified with 37% hydrochloric acid [0.4%
(v/v)]. In the following steps, 5ml of 100% ethyl acetate was
added to the mixture for HSAF extraction. After gently shaking
for 5 h, 2ml of the ethyl acetate phase was collected and
fully evaporated. Finally, the residues (containing HSAF) were
dissolved in 100 µl of 100% methanol, the methanol extract was
collected by centrifugation (10,000 × g at 4◦C for 10min), and
the clear solution was directly used for high-performance liquid
chromatography (HPLC, Agilent SB-C18 column, 5 µm, 4.6 ×

250mm) analysis. The mobile phase was 5 to 40% CH3CN in
H2O from 0 to 10min, 40 to 60% CH3CN in H2O from 10 to
15min, 60 to 60% CH3CN in H2O from 15 to 20 min, 60 to 100%
CH3CN in H2O from 20 to 22min, 100% CH3CN from 22 to
24min, 100 to 5% CH3CN in H2O from 24 to 26min, and 5%
CH3CN in H2O from 26 to 30min (CH3CN and H2O containing
0.04% trifluoroacetic acid). The flow rate was 1.0 ml/min. The
retention time of HSAF was 18.30min. The yield of HSAF was
displayed as the ratio of HSAF peak area and the OD600 nm of the
bacterial suspension.

Twitching Motility Assays
The twitching motility assays were performed as follows: first, a
piece of 9× 9 cm filter paper was placed in a dish, and a glass slide
was put on the filter paper. Then, 2ml of sterile distilled water was
added to the filter to provide a moist environment, and then 1ml
of 5% TSA containing 1.7% agar was uniformly distributed on the
glass slide. A 5-mmdiametermycelial plug of P. aphanidermatum
from the margins of a colony grown on 10% TSA medium was
transferred to a culture dish containing 5% TSA. Then, a cover
glass with one edge dipped in a suspension of L. enzymogenes
cells (washed twice with sterile distilled water, OD600 nm =

1.0) was gently laid on the medium without introducing air
bubbles. L. enzymogenes derivatives were grown alone as a
control. The cultures were incubated at 28◦C for 24, 48, or 96 h.
The twitching motility was observed by a microscope with 640-
fold magnification. A classical phenomenon of twitching motility
is that bacterial cells surge to the edge of a bacterial colony.
Two replicates for each treatment were constructed, and the
experiments were performed two times.

RNA Extraction, Amplification and Labeling
The bacterial cells of strain OH11 cultured with or without
P. aphanidermatum were collected at the three designated
time points noted above and used for RNA extraction with
TRIzol reagent (Promega, USA) according to the manufacturer’s
instructions. The RNA was purified using the NucleoSpin R© RNA
clean-up kit (MACHEREY-NAGEL, Germany), and its purity
was further assessed by formaldehyde agarose gel electrophoresis.
RNA concentration was quantitatively determined by using a
spectrophotometer (Agilent NanoDrop, USA). cDNA labeled
with a fluorescent dye (Cy3-dCTP) was produced by Eberwine’s
linear RNA amplification method and subsequent enzymatic
reactions, as described previously (Guo et al., 2005). Specifically,
double-stranded cDNAs (containing the T7 RNA polymerase

promoter sequence) were synthesized from 1 µg of total RNA
using the CbcScript reverse transcriptase with cDNA synthesis
system according to the manufacturer’s protocol (CapitalBio,
China) with the T7 Oligo (dT). After completion of the double-
stranded cDNA (dsDNA) synthesis using DNA polymerase and
RNase H, the dsDNA products were purified using a PCR
NucleoSpin Extract II Kit (MN) and eluted with 30 µl of
elution buffer. The eluted double-stranded cDNA products were
evaporated in a vacuum to 16 µl and subjected to in vitro
transcription reactions at 37◦C for 4-14 h using T7 Enzyme Mix.
The amplified cRNA was purified using the RNA Clean-up Kit
(MN).

The Klenow enzyme labeling strategy was adopted after
reverse transcription using CbcScript II reverse transcriptase.
Briefly, 2 µg of amplified RNA was mixed with 4 µg of random
nanomers, denatured at 65◦C for 5min, and cooled on ice. Then,
5 µl of 4× first-strand buffer, 2 µl of 0.1 M DTT, and 1.5 µl of
CbcScript II reverse transcriptase were added. The mixtures were
incubated at 25◦C for 10min and then at 37◦C for 90min. The
cDNA products were purified using a PCR NucleoSpin Extract
II Kit (MN) and vacuum evaporated to a final volume of 14 µl.
The cDNA was mixed with 4 µg of random nanomers, heated
to 95◦C for 3min, and snap cooled on ice for 5min. Then, 5 µl
of Klenow buffer, dNTP, and Cy3-dCTP (GE Healthcare) were
added to final concentrations of 240 µM dATP, 240 µM dGTP,
240 µM dTTP, 120 µM dCTP, and 40 µM Cy-dCTP. Finally,
1.2 µl of Klenow enzyme was added and the reactions were
carried out at 37◦C for 90min. Labeled cDNAwas purified with a
PCR NucleoSpin Extract II Kit (MN) and resuspended in elution
buffer.

Microarray Hybridization, Scanning, and
Data Analysis
Based on the sequence and annotation data for L. enzymogenes
OH11 (data unpublished), microarrays were designed and
produced by Roche NimbleGen (NimbleGen Systems of Iceland).
The microarray slides contain specific oligonucleotides probes
for 5,240 open reading frames of L. enzymogenes OH11.
Briefly, the labeled samples were dried and dissolved in the
hybridization solutions. The DNA suspended in hybridization
solution was denatured at 95◦C for 3min prior to loading onto a
microarray. Hybridization was performed at 42◦C for 14 h with
the NimbleGen hybridization system. The arrays were washed
in the wash buffer I and II and III supplied by NimbleGen and
dried in a NimbleGenmicroarray dryer. The arrays were scanned
using an MS200 scanner (NimbleGen) with 2 µm resolution,
and NimbleScan software (NimbleGen) was used to extract raw
fluorescence intensity data from the scanned images. The probe
expression data were normalized using quantile normalization
(Bolstad et al., 2003), and the gene expression data were generated
using the Robust Multichip Average (RMA) algorithm (Irizarry
et al., 2003a,b). Microarray software (SAM, version 3.02) was
used to identify differentially expressed genes. Genes were
determined to be differentially expressed with false discovery
rate (FDR) <5% and 2.0-fold change in the SAM output
results.

Frontiers in Microbiology | www.frontiersin.org 4 June 2017 | Volume 8 | Article 1025

http://www.frontiersin.org/Microbiology
http://www.frontiersin.org
http://www.frontiersin.org/Microbiology/archive


Zhao et al. Transcriptional and Antagonistic Responses of Lysobacter to Pythium

Real-Time PCR
Quantitative real-time PCR (RT-qPCR) was carried out using
the SYBR Premix EX TagTM II kit (TaKaRa) in an ABI PRISM R©

7500 Real-Time PCR System (Applied Biosystems); 16S rRNA
was used as an endogenous control. The primer sequences
used in this assay are listed in Table S2. RNA was extracted
from various L. enzymogenes strains at different growth stages
using the RNAiso plus reagent (Promega, USA) following the
manufacturer’s instructions. To remove genomicDNA, the eluted
RNA samples were treated with RNase inhibitors and DNase I
(TaKaRa). RNA integrity was confirmed by electrophoresis using
1.2% agarose gels. Then, 2 µg of each RNA sample was used
to synthesize cDNA with a cDNA synthesis kit (TaKaRa). In
this study, 10 differentially expressed genes from the microarray
experiment were selected for validation with RT-qPCR at three
interaction time points, with three replicates per treatment.

Data Analysis
All analyses were conducted using SPSS 14.0 (SPSS Inc., Chicago,
IL, USA). The t-test (P = 0.05) was used to determine significant
differences in bacterial growth and gene expression.

Physical Interactions of L. enzymogenes

and P. aphanidermatum
The cultures of the L. enzymogenes wild-type strain OH11 and
mutants were grown overnight in 10%TSBmedium at 200 rpm at
28◦C. The cultures were centrifuged at 6,000 rpm for 3min. The
supernatant was discarded, and the cultures were rinsed twice
with sterile water. A spectrophotometer was used to measure
OD600 nm of the bacteria, and the cultures were resuspended
in sterile water to obtain a suspension at OD600 nm = 1.0. P.
aphanidermatum grown on polyamide filter (1 cm-diameter) on
10% TSA were immersed in the bacterial suspension in a 6-well
plate. The plate was placed in an incubator at 28◦Cuntil each time
point was reached (10, 30min, 2, 4, 6 h). After interacting for the
corresponding time, the polyamide filter containing bacteria and
oomycetes were fixed with 2% glutaraldehyde and then washed
with sterile water. The images were taken with a Hitachi S-3000N
scanning electron microscope.

RESULTS AND DISCUSSION

Effects of P. aphanidermatum on
L. enzymogenes Gene Expression
L. enzymogenes has shown strong in vitro antibiosis against
P. aphanidermatum (Folman et al., 2003). Folman et al.
(2004) also showed that L. enzymogenes was a potential
biocontrol agent of P. aphanidermatum in cucumbers. To
understand the genetic basis for these and other responses
of L. enzymogenes to P. aphanidermatum during non-contact
confrontation, we performed transcriptome analysis using
microarrays. The bacterial cells were collected at 24, 48,
and 96 h after inoculation in the presence or absence of P.
aphanidermatum and used for the extraction of RNA (Figure 1).
As shown in Figure 2A and Table S1, the expression levels
of 35, 92, and 795 genes were altered at the 24, 48, and
96 h time points, respectively. These differentially expressed

genes belong to 14 functional groups, including material
transport and metabolism; transcription; signal transduction;
general function predicted only; cell cycle, division, chromosome
partitioning; translation, ribosomal structure, and biogenesis;
replication, recombination, and repair; hypothetical protein;
cell wall/membrane/envelope biogenesis; defense mechanism;
posttranslational modification; functions unknown and no hit,
energy production and conversion protein; and cell motility.
Specifically, compared to the Lysobacter monoculture, 22 and
13 genes were up- and down-regulated, respectively, at time
point 24 h (before inhibition zone formation), with most of
them belonging to the following functional groups: “material
transport and metabolism” (13 genes; 37.14%); “general function
predicted only” (6 genes; 17.14%); “energy production and
conversion” (5 genes; 14.29%); and “hypothetical proteins” (6
genes; 17.14%). At time point 48 h (during inhibition zone
formation), 35 and 57 genes were up- and down-regulated,
respectively. These genes corresponded to the “material transport
andmetabolism” (17 genes; 18.48%); “General function predicted
only” (11 genes; 11.96%); “hypothetical proteins” (20 genes;
21.74%); and “functions unknown and no hit proteins” (17
genes; 18.48%) groups. At 96 h (after inhibition zone formation),
the number of differentially expressed genes was the largest of
the three time points, with 480 and 315 genes up- and down-
regulated, respectively. The top four groups corresponding to
these differentially expressed genes were: “material transport and
metabolism” (185 genes; 23.27%); “general function predicted
only” (97 genes; 12.20%); “hypothetical proteins” (178 genes;
22.39%); and “function unknown and no hit proteins” (142 genes;
17.86%). In addition, a set of 10 differentially expressed genes
among three time points were selected for validation with RT-
qPCR amplification. As shown in Table S3, though there were
some differences in the fold changes of several genes between
RT-qPCR and microarray, the general trends were consistent
between each other, suggesting that microarray data were valid.

As shown in Figure 2B and Table 1, only seven genes
exhibited significantly changed expression levels at all three
time points; they belong to energy production and conversion
(2 genes), signal transduction mechanisms (1 gene), putative
secreted protein (1 gene), hypothetical protein (2 genes),
and no hit (1 gene) groups. Interestingly, 6 (LysEGL005221-
LysEGL005226) of these seven genes are clustered together in
the genome of strain OH11 (Figure S1). The transcriptional
directions of five genes (LysEGL005221-LysEGL005225)
were predicted to be consistent, and sequence overlap
was also observed among LysEGL005221, LysEGL005222,
and LysEGL005223. These results indicated that these five
(LysEGL005221-LysEGL005225) genes may be co-transcribed.
LysEGL005221, LysEGL005222, and LysEGL005225 are
hypothetical proteins, LysEGL005223 and LysEGL005224 are
similar to cytochrome D ubiquinol oxidase, and LysEGL005223
belongs to the universal stress protein family. Additionally,
LysEGL005226 was the only significantly down-regulated gene
identified at all three time points. This gene is annotated
encoding a universal stress protein whcih contains the UspA
domain. The universal stress protein A (UspA) of Escherichia
coli K-12 has been well characterized and is highly expressed in
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FIGURE 2 | Identification and functional classification of differentially expressed genes of L. enzymognes influenced by the presence of P. aphanidermatum

determined by DNA microarray. (A) The numbers of differentially expressed genes distributed in each functional class. Compared to L. enzymogenes OH11

monoculture, the black and white area in each bar showed the up and down expressed genes of L. enzymogenes in the presence of P. aphanidermatum, respectively.

(B) The common differentially expressed genes at three or two interaction time points. Details were provided in Table 1 and Table S1.

response to heat, substrate starvation, exposure to antimicrobial
agents, and oxidative stress (Kvint et al., 2003). However,
gene LysEGL005226 was down-regulated in the presence of P.
aphanidermatum, which may be due to the oomycetes inducing
the bacteria to adopt a “relaxed” status in order to survive in
the adverse environment. No differentially expressed genes
were shared between the 24 and 48 h time points, whereas 10
differentially regulated genes overlapped between the 24 and 96 h
time points, and 20 genes were present in both the 48 and 96 h
time points.

HSAF Biosynthetic Genes Alteration and
HSAF Production
The antagonistic activity of L. enzymogenes against fungi
or oomycetes was due to HSAF which is produced by L.
enzymogenes and exhibits strong antimycotic activity against a
wide range of fungi and oomycetes (Folman et al., 2004; Yu et al.,
2007; Li et al., 2008). In the confrontation assay, L. enzymogenes
inhibited the growth of P. aphanidermatum, and formed a clear
inhibition zone on the nutrient-limiting medium (10% TSA;
Figure 1D).
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TABLE 1 | Common genes differentially expressed in L. enzymogenes when interaction with P. aphanidermatum at three or two time points.

Functional class Gene ID Predicted product 24ha 48ha 96ha

(Material transport and

metabolism)

LysEGL001192 3-isopropylmalate dehydratase, large subunit [Stenotrophomonas

maltophilia R551-3]

2.1472 0.3341

LysEGL004694 Homoserine dehydrogenase [Stenotrophomonas maltophilia R551-3] 2.1263 30.2053

LysEGL005055 threonine dehydratase [Xanthomonas oryzae pv. oryzae MAFF 311018] 2.5976 5.0192

LysEGL005056 2-isopropylmalate synthase [Xanthomonas campestris pv.

musacearum NCPPB4381]

2.5174 2.2174

LysEGL005057 glucose-methanol-choline oxidoreductase [Shewanella baltica OS185] 3.1632 3.4588

LysEGL005058 probable 3-isopropylmalate dehydratase small subunit protein

[Xanthomonas albilineans]

3.305 2.3477

LysEGL005060 probable 3-isopropylmalate dehydrogenase protein [Xanthomonas

albilineans]

3.4322 3.2653

LysEGL003463 MprA [uncultured bacterium pTW2] 0.4839 0.1612

LysEGL003465 MprA [uncultured bacterium pTW2] 0.3175 0.2088

LysEGL003920 histidinol dehydrogenase [Xanthomonas campestris pv. campestris str.

ATCC 33913]

0.4333 14.0833

LysEGL000904 hypothetical glycosidase protein [Xanthomonas albilineans] 2.0746 0.4041

LysEGL003025 Beta-N-acetylhexosaminidase [Flavobacterium johnsoniae UW101] 2.5844 0.1912

LysEGL003267 beta-1,3-glucanase A [Lysobacter enzymogenes] 2.17 0.192

LysEGL004434 beta-1,3-glucanase 2.6574 0.4161

LysEGL004595 siroheme synthase [Bordetella petrii DSM 12804] 0.4034 9.7748

LysEGL002652 sterol desaturase-like protein [Lysobacter enzymogenes] 0.4566 0.3319

LysEGL002649

(ox1)

Ox1 [Lysobacter enzymogenes] 2.3545 0.1852

LysEGL002651

(pks-nrps)

hybrid polyketide synthase and nonribosomal peptide synthetase

[Lysobacter enzymogenes]

3.1719 0.2333

(Signal transduction) LysEGL005226 Universal stress protein family [Brevundimonas sp. BAL3] 0.4774 0.4931 0.3729

(General function

predicted only)

LysEGL000447 Putative secreted protein 2.0648 2.0113 0.2671

LysEGL001346 R body protein RebB-like protein [Burkholderia sp. CCGE1003] 2.1517 0.2081

LysEGL001347 R body protein RebB-like protein [Burkholderia sp. CCGE1003] 2.2947 0.1672

LysEGL002784 lipase family protein [Cellvibrio japonicus Ueda107] 2.2209 0.4031

(Hypothetical protein) LysEGL005221 hypothetical protein Avin_19860 [Azotobacter vinelandii DJ] 0.331 0.415 0.265

LysEGL005222 hypothetical protein Bpet0458 [Bordetella petrii DSM 12804] 0.3243 0.4165 0.1208

LysEGL000784 conserved hypothetical protein [Xanthomonas oryzae pv. oryzae

KACC10331]

0.3873 4.7785

LysEGL003151 hypothetical protein Swit_3175 [Sphingomonas wittichii RW1] 0.2422 2.7647

LysEGL003233 hypothetical protein Bphyt_1886 [Burkholderia phytofirmans PsJN] 5.7147 2.1411

(Cell

wall/membrane/envelope

biogenesis)

LysEGL004924 OmpW family outer membrane protein [Xanthomonas campestris pv.

vesicatoria str. 85-10]

2.2362 0.2816

(Defense mechanisms) LysEGL003010 polysaccharide biosynthesis protein [Prevotella melaninogenica ATCC

25845]

2.4973 0.2803

(Function unknown and

no hit)

LysEGL004918 0.3603 0.3502

LysEGL005225 0.4782 0.385 0.0989

LysEGL000217 2.3147 0.4931

(Continued)
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TABLE 1 | Continued

Functional class Gene ID Predicted product 24ha 48ha 96ha

LysEGL002605 2.6681 0.3409

LysEGL002606 2.3923 0.34

(Energy production and

conversion)

LysEGL005223 Cytochrome d ubiquinol oxidase, subunit II [Rhodoferax ferrireducens

T118]

0.3095 0.3939 0.1493

LysEGL005224 Cytochrome D ubiquinol oxidase, subunit I [Legionella pneumophila str.

Corby]

0.3998 0.4066 0.1112

aRed colors show up-regulated genes in L. enzymogenes caused by the presence of Pythium aphanidermatum, while green colors indicate down-regulated genes (Fold change ≥2 or

≤0.5).

HSAF-deficient mutants lack antagonism activity against
fungi and oomycetes; therefore, HSAF is a key factor for L.
enzymogenes antagonism of fungi and oomycetes (Li et al., 2008).
The HSAF biosynthetic gene cluster contains a pks-nrps gene
encoding a single-module polyketide synthase/nonribosomal
peptide synthetase and four genes (ox1-ox4) which encode
a cascade of NADP/FAD-dependent oxidoreductases, all of
which are involved in HSAF biosynthesis (Li et al., 2008; Lou
et al., 2011). In this study, we showed that pks-nrps and ox1
genes were up-regulated in L. enzymogenes after co-culture
with P. aphanidermatum for 24 h, whereas the expression
of all five genes decreased at the 48 and 96 h time points
(Tables S1, S3). The results possibly indicate that at 24 h, before
inhibition zone formation, L. enzymogenes sensed the presence
of P. aphanidermatum and increased the expression of HSAF
biosynthetic genes to produce and accumulate HSAF to inhibit
the growth of the oomycetes. At the 48 and 96 h time points,
inhibition zones were formed and stabilized, P. aphanidermatum
may have sensed that danger from the bacterial enemy had
diminished and subsequently inhibited the expression of genes
related to HSAF biosynthesis.

To further investigate the effect of P. aphanidermatum on L.
enzymogenes, we studied the variation of HSAF production in
the bacteria at the three interaction time points. To calibrate the
cell density of different cultures with HSAF yield, we used the
ratio of peak area/OD600 nm to quantitatively evaluate the HSAF
production in L. enzymogenes. Here, the peak area of HSAF was
determined by HPLC. We used the OD600 nm to represent the
cell density of the tested strains at the corresponding time point.
We observed that the HSAF yield was increased significantly
after 48 and 96 h of interaction whereas not changed at 24 h in
the presence of P. aphanidermatum compared to L. enzymogenes
monoculture (Figure 3). Antibiosis may be a common defensive
or offensive strategy in microbial interactions (Garbeva et al.,
2011). The mechanism used by L. enzymogenes regulating HSAF
production in the presence of oomycetes is not clear.

OH11-Responsive Genes Involved in
Material Transport and Metabolism
At all three time points in the non-contact interaction
experiments, a large percentage of differentially expressed L.
enzymogenes genes were involved in material transport and
metabolism. The predicted functions of these genes were linked

to the transport and metabolism of amino acids, nucleotides,
carbohydrates, coenzymes, lipids and ions. Of these, most genes
(117 genes, 63.24%) were up-regulated (Table S1). It must be
noted that the genes corresponding to nucleotide, coenzyme,
lipid, and ion transport and metabolism were mostly observed
to be differentially expressed at the late-interaction stage (96 h).
Expression levels of ten tonB-dependent receptors related to iron
transport and metabolism were significantly changed at 96 h.

TonB-dependent receptors (TBDRs) are bacterial outer
membrane proteins in gram-negative bacteria responsible for
the uptake of scarce resources from competitive environments.
TBDRs were characterized as importers of Fe3+-siderophore
complexes (Hantke, 1983), and some TBDRs were shown
to be involved in the import of non-Fe compounds, such
as vitamin B12, sugars, and non-Fe cations (Schauer et al.,
2008). The possible cross-talk event between L. enzymogenes
and P. aphanidermatum resulted in the differential expression
of ten genes related to TBDRs, which were all significantly
down-regulated at 96 h, although their expression levels were
unchanged at both 24 and 48 h. It has been reported that a TBDR
played a key role in regulating antibiotic (HSAF) biosynthesis in
L. enzymogenes (Wang et al., 2016), but the transcription level
of this TBDR encoding gene was not changed in the Lysbacter-
Pythium interaction. These results suggested that silencing TBDR
gene expression during the late-interaction stage might be a
strategy used by P. aphanidermatum to obtain an advantage in
limited nutrition conditions. The function of these ten regulated
TBDRs genes in Lysbacter-Pythium interaction will be further
studied.

OH11-Responsive Genes Associated with
Signal Transduction
At the 24 h time point, only one locus associated with
signal transduction, encoding a universal stress protein, was
differentially expressed (down-regulated); 28 signal transduction
genes were found to be differentially expressed at the 48 and 96 h
time points. Of these, 25 genes were up-regulated at the 96 h time
point, and eight genes belonged to the two-component signal
transduction systems (Table S1).

Two-component signal transduction systems (TCSTSs),
composed of a membrane-bound histidine kinase sensor (HK),
and a response regulator (RR), are the main sense-response
mechanisms that regulate the wide range of physiological
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pathways (Stock et al., 2000) that respond to environmental
stimuli in different bacterial species, such as Xanthomonas
campestris pv. campestris (Qian et al., 2008; Wang et al., 2010),
Pseudomonas syringae (Lavin et al., 2007), and Erwinia amylovora
(Zhao et al., 2009). To date, the diverse functions of TCSTSs in
bacteria are linked to cell-cell signaling, chemotaxis, sporulation,
osmolarity, nutrient assimilation, antibiotics production, and
virulence (Stock and Guhaniyogi, 2006). The ability of L.
enzymogenes to attach to and infect fungal hypha was reported
to be dependent on the production of type IV pilus (T4P),
which is a thin, hair-like appendage formed from pilin, or PilA,
subunits (Patel et al., 2011). Two response regulator PilG and
PilR belonging to TCSTSs involved in T4P biosynthesis have been

shown that they activated twitching motility and downregulated
HSAF production in L. enzymogenes (Zhou et al., 2015; Chen
et al., 2017). However, the expression of pilG and pilR were
not regulated in this interaction. The results suggested that
pilG and pilR didn’t play important roles in bacteria-oomycetes
interaction, and the eight altered TCSTSs related genes above
may involve in the interaction but not through affecting HSAF
production and twitching motility in L. enzymogenes.

Alteration of Twitching Motility
Twitching motility is a typical phenotypic characteristic for the
flagella-less L. enzymogenes species (Mattick, 2002; Sullivan et al.,
2003). Twitching motility occurs by the extension, tethering,

FIGURE 3 | Determination of HSAF yield produced by L. enzymogenes in the presence or absence of P. aphanidermatum at 24, 48, 96 h. OH11, monoculture of the

wild-type strain of L. enzymogenes. OH11-Pa, OH11 was co-cultured with P. aphanidermatum, as shown in Figure 1. HSAF production of OH11 was illustrated in

Peak area/OD600 nm as means of three biological replicates, each containing two or three technical replicates. Peak area indicated the area of HSAF determined by

HPLC method, while OD600 nm represents the growth status of tested strains at the time points used for the extraction of HSAF. Vertical bars indicated standard

errors of three biological replicates. Significant difference in HSAF production between OH11 monoculture and co-cultured with P. aphanidermatum according to a

t-test (*p < 0.05, **p < 0.01).

FIGURE 4 | Detection of twitching motility of L. enzymogenes OH11 in the presence or absence of P. aphanidermatum. L. enzymogenes monoculture (up), co-culture

with P. aphanidermatum (down). (A,B), co-culture for 24 h; (C,D), co-culture for 48 h; (E,F), co-culture for 96 h. When L. enzymogenes monoculture (up), there were a

small number of cells moving out, whereas more motile cells at the leading edge of the moving zone when co-culture with P. aphanidermatum (down). Red arrows

indicate the colony edge, and black arrows indicate the motile cells. In (E,F), colony edge can’t be seen clearly because of too many cells moving away from the edge.

The areas photographed represent the outermost end of cell growth (magnification, ca. ×640).
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and retraction of polar type IV pili (T4P), which is controlled
by a large number of genes and a range of signal transduction
systems, including two-component sensor-regulators and a
complex chemosensory system (Mattick, 2002). However, we find
that T4P-related genes were not regulated in L. enzymogenes
OH11 in the presence of P. aphanidermatum. Although the
importance of twitching motility for L. enzymogenes biological
control activity has not been investigated, twitching motility
is considered to be crucial for the spread and colonization
of bacteria inside host xylem vessels (Burdman et al., 2011).
Therefore, we observed the changes in twitching motility of L.
enzymogenes when co-cultured with P. aphanidermatum. When
strain OH11 grew alone, individual or small clusters of cells
separated from the mass of cells at the colony margin. After 24
h of interaction, the increase in bacteria motility in the presence
of P. aphanidermatum was not obvious. Whereas, scattered cells
moved out of the leading edge of the colony when co-cultured
with P. aphanidermatum for 48 h, after 96 h interaction, an
abundance of bacteria aggregated toward the mycelia (Figure 4).

The twitching motility of L. enzymogenes was strengthened
when co-cultured with P. aphanidermatum, which suggested
that more L. enzymogenes cells might be trying to move toward

the mycelia to effectively inhibit the oomycetes or colonize the
mycelia. This may be an antagonistic response employed by a
biocontrol agent in adaptation to the threat from the external
environment.

Physical Interactions of
Lysobacter-Pythium
To achieve a better understanding of the interactions between
L. enzymogenes and P. aphanidermatum, we developed a contact
experiment. We immersed a small block of freshly grown hyphae
of P. aphanidermatum into OH11 suspension for 10, 30 min,
2, 4, and 6 h, and then used SEM to examine the changes
occurred to the oomycete and bacterium. SEM revealed a
process of attachment, invasion and degradation of bacteria to
the hyphae (Figure 5). During the first 10 min, the bacterial
cells started to attach to the hyphae (Figure 5B); after 30 min,
more bacterial cells aggregated on the mycelia (Figure 5C).
The OH11 cells appeared to invade into the mycelia after 2 h
(Figure 5D); between 4 and 6 h, more bacteria were observed in
or on the oomycetes hyphae (Figure 5E), and finally the hyphae
were degraded (Figure 5F). To investigate the role of HSAF in
the interactions of Lysobacter-Pythium, we also conducted the

FIGURE 5 | SEM examination of the Pythium hyphae and Lysobacter cells during oomycete-bacterium physical interactions. (A) Control, P. aphanidermatum alone;

(B) Interaction for 10min, showing that Lysobacter cells started to attach to the hyphae; (C) Interaction for 30min, showing that more Lysobacter cells attached to the

hyphae; (D) Interaction for 2 h, showing that Lysobacter cells invaded into the mycelium, red arrow indicates the invading bacterium; (E) Interaction for 4 h, showing

that more Lysobacter cells into the Pythium hyphae, red arrow indicates bacteria into hyphae; (F) Interaction for 6 h, showing that Pythium hyphae were almost totally

disintegrated.
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FIGURE 6 | SEM examination of the Pythium hyphae and HSAF non-producer Lysobacter mutants during oomycete-bacterium physical interactions. (A) Control, P.

aphanidermatum alone; (B) L. enzymogenes OH11 wild-type with P. aphanidermatum for 4 h, arrows show OH11 cells into the hyphae; (C) L. enzymogenes mutant

K19 with P. aphanidermatum for 4 h; (D) L. enzymogenes mutant 5E4 with P. aphanidermatum for 4 h.

experiments with HSAF-nonproducing L. enzymogenes strains
K19 and 5E4 interacting with P. aphanidermatum for 4 h, using
OH11 wild-type with P. aphanidermatum as a positive control
(Figure 6B), P. aphanidermatum cultured alone served as a
negative control (Figure 6A). Strain K19 could not adhere onto
hyphae (Figure 6C), whereas strain 5E4 aggregated together but
could not invade or lyse the mycelia (Figure 6D). The phenotype
that strain 5E4 aggregated together was consistent with the
previous study (Kobayashi et al., 2005). This result suggests
that HSAF may be a key factor for the observed adhesion and
invasion.

It has been revealed that L. enzymogenes SB-K88
perpendicularly attach to and densely colonize on the surface
of Aphanomyces cochlioides hyphae (Islam et al., 2005), but it is
unknown whether Lysobacter spp. can penetrate the hyphae of
fungi using their lytic antibiotics or enzymes. Our study showed
that the L. enzymogenes strain OH11 could attach, penetrate and
lyse the hyphae of P. aphanidermatum. Additionally, we revealed
that the antimycotic factor HSAF might play a crucial role in the
interactions between L. enzymogenes and P. aphanidermatum.
However, whether HSAF is solely as an antimycotic factor or also
a signaling molecule is unclear. In future studies, we can further
investigate the molecular mechanisms involved in contact
interactions between L. enzymogenes and P. aphanidermatum.

CONCLUSION

In this study, we investigated the potential effects of P.
aphanidermatum on L. enzymogenes. Our data showed that
the presence of P. aphanidermatum affected the expression of
a wide range of genes spanning many functional groups and
improvedHSAF production and twitchingmotility of Lysobacter.

Our data also demonstrated that L. enzymogenes detected and
responded to the presence of oomycetes early (at 24 h), but the
alteration of gene expression mainly occurred when bacteria
were closer to the oomycetes (at 96 h). In summary, our results
demonstrated that the biocontrol bacterium, L. enzymogenes
OH11, showed transcriptional and antagonistic responses to
a plant-pathogenic oomycete, P. aphanidermatum, and the
antimycotic compound HSAF from L. enzymogenes may be
involved in the responses. This work may provide new insights
into the antagonistic strategies and genes involved in microbial
interactions.
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