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RNAi strategies present promising antiviral strategies against HBV. RNAi strategies require base pairing between short RNAi
effectors and targets in the HBV pregenome or other RNAs. Natural variation in HBV genotypes, quasispecies variation, or
mutations selected by the RNAi strategy could potentially make these strategies less effective. However, current and proposed
antiviral strategies against HBV are being, or could be, designed to avoid this. This would involve simultaneous targeting of
multiple regions of the genome, or regions in which variation or mutation is not tolerated. RNAi strategies against single genotypes
or against variable regions of the genome would need to have significant other advantages to be part of robust therapies.

1. RNA Interference as an Antiviral Strategy

RNA interference (RNAi) is a sequence-specific mechanism
to downregulate gene expression. Several pioneering studies
have demonstrated the effectiveness of using siRNAs for
treating viral diseases caused by HIV, hepatitis C virus
(HCV), and HBV [1–5].

Clinical trials with RNAi have now begun for several
disorders, but challenges such as off-target effects, toxicity,
and safe and efficient delivery methods have to be overcome
before the widespread use of RNAi as a gene-based therapy
[6, 7]. For hepatitis B virus (HBV) several approaches have
been taken using various design and delivery strategies with
good initial success (reviewed in [4, 5, 8, 9]) and some
limitations [10–12].

Several studies have tested the effect of variability in HBV
viral genomes on effectiveness of this antiviral strategy; see
[7, 13, 14] and references therein. This paper will outline
the RNAi pathway, current delivery methods, current RNAi
design strategies, and the effects of variation on these
strategies.

2. The Mechanism of RNAi

RNAi is initiated by short double-stranded RNAs (dsRNAs)
that lead to the sequence-specific inhibition of their homol-

ogous RNAs [15–17]. In the case of HBV, this includes the
3.6 kb pregenomic RNA (pgRNA), although some targets are
within multiple overlapping viral RNAs.

Two major types of RNA have been channeled into
the RNAi pathway small interfering RNAs (siRNAs) and
microRNAs (miRNAs) by using synthetic dsRNAs or DNA
vectors (Figure 1). The siRNAs have a characteristic two-
nucleotide 3′ overhang, which are processed from larger
dsRNAs by Dicer. They are incorporated into RISC, and the
sense strand of the siRNA is removed [18–20]. Some studies
using HBV have designed siRNAs (and miRNAs) to promote
this asymmetric loading of the RISC complex. The antisense
strand of the siRNA base pairs with its target RNA, with exact
complementarity, and then RISC mediates cleavage and sub-
sequent degradation of the target RNA [21–23] (Figure 1).
Perfect base pairing between the siRNA and HBV RNA is
a hallmark of siRNA effects, and single base substitutions
in the target, due to genome variability, would disrupt this
mode of action [4, 8, 17, 24].

Strategies based on miRNAs require engineering genes
encoding longer primary transcripts (pri-miRNA based on
miRNA genes) that are then processed into 60–70 base paired
precursor miRNAs (pre-miRNAs) by the microprocessor
complex [25, 26]. Following processing, the pre-miRNA is
exported to the cytoplasm by the Ran-GTP-dependent cargo
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Figure 1: RNAi pathways in HBV research. Flow diagram of the miRNA pathway (i) is shown using red arrows, whereas the siRNA pathway
is indicated using green arrows. Current RNAi strategies including delivery approaches (ii)–(v) are demonstrated.

transporter Exportin-5 [27]. In the cytoplasm pre-miRNA
is processed by Dicer into the mature miRNA, which is
incorporated into RISC [4, 8, 17, 24] which targets the viral
RNA [28]. Typical cellular miRNAs are not perfectly matched
to their mRNA targets, and studies have indicated that
they mainly exert silencing through translational repression,
rather than degradation [29, 30] (Figure 1). However, later
studies indicate that mismatched miRNA-mRNA duplexes
can also trigger degradation [31, 32]. This may indicate that
miRNAs targeted against the HBV pgRNA could also reduce
levels of that RNA, rather than just its translation.

3. RNAi Delivery Mechanisms

In order to use RNAi-based systems to target viral mRNAs,
several delivery strategies have been developed. The two

main current strategies are chemically synthesized siRNA du-
plexes and DNA-based expression cassettes that subsequently
generate functional siRNAs in cells. These RNAs are usually
short hairpin RNAs (shRNAs) or primary miRNAs (pri-
miRNAs).

Synthetic siRNA duplexes are usually delivered into cells
via the endosomal pathway by cationic liposomes, whereas
DNA-based expression cassettes require facilitating carriers
such as liposomes or viral vectors (Figure 1). Synthetic
siRNA duplexes have some limitations in vivo—rapid liver
clearance, lack of target specificity, and expense [33–35]. To
improve in vivo stability of siRNA duplexes, the backbone of
siRNA may be chemically modified and linked to molecules
such as 2′F, 2′O-Me, and 2H [36, 37].

DNA-based viral expression cassettes may provide cost-
effective approaches for HBV treatment. Presently, there are
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a number of viral vectors under development. Each type
of viral vector has specific characteristics that need to be
determined for the specific target. The adenovirus- and
adeno-associated virus- (AAV-) derived vectors provide an
efficient delivery vehicle for transient shRNA expression [8].
Particularly, the Ad-gutless vector is used for liver-directed
systemic delivery with prolonged silencing effects [38] while
a conditionally replicating adenovirus (CRAd) is designed to
replicate and kill tumour cells specifically [8]. Retroviruses
on the other hand provide major advantage of incorporating
the transgenic siRNA genes into the host cell genome for
longer-term therapy [39]; other viral vectors have been used
[40, 41].

4. Design of RNAi against HBV

To improve the efficiency of RNAi strategies and limit off-
target effects, several research groups have improved the
design of RNAi target sites. Certain characteristics of RNAi
target sites contribute to siRNA efficiency; these have been
utilised in some rational design approaches, whereas other
studies have focused more on conservation of sites in HBV
genomes. Specific features that should improve the efficiency
of target sites include a UU overhang at the 3′-end [42, 43], a
30–50% GC content, which is effective for the unwinding of
the duplex but sufficient for stabilizing interactions between
siRNAs and their targets, and the nucleotide at the position
19 should preferentially be an adenine (A) base, as it is
naturally found in miRNAs [8, 19, 20, 44]. Sun et al. report

that there are about 170 sites in the HBV genome that meet
simpler minimal criteria for RNAi design-target length 19,
GC 35–60 and lack of homopolymer runs [7].

Other considerations relating specifically to RNA poly-
merase III (Pol III) transcription are that there should be
no 4–6 base T tracts within the DNA sequence, because
this could act as a termination signal [19]. Importantly,
siRNAs must be specific to their target HBV mRNAs and have
minimal similarity to cellular mRNA sequences, at least for
RNAs expressed in the targeted cells (hepatocytes) to avoid
off-target effects.

Results from McCaffrey and Ely et al. indicate that
miRNA-based RNAi effectors against HBV pregenomic RNA
were more effective than shRNA-based RNAi effectors for
the same target sites [8, 24]. Grimm et al. [11] found that
the RNAi toxicity may be caused by competition between
the exogenous expressed shRNA and endogenous miRNA
for the RNAi machinery (Figure 1). Therefore, features of
RNAi effectors are proposed to be similar to cellular miRNAs
but not compete detrimentally with it [12]. This might be
avoided by strategies using tissue-specific RNA Pol II [45] or
weaker Pol III promoters [12].

A complementary rational design is currently proposed
to target conserved regions of the HBV genome. This should
minimize viral escape that may occur due to selection pres-
sure of RNAi on the target site to mutate [7, 10, 13,
14]. Surprisingly, these include several highly conserved
HBV genomic regions that have been demonstrated to be
effective target sites for shRNAs despite the presence of
known secondary structures (Epsilon, PRE, Figure 2). These
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structures were predicted to reduce the effectiveness of RNAi
[7, 14].

5. HBV Genomes to Be Targeted

The HBV genome contains multiple overlapping DNA,
RNA, and protein coding features, meaning that any par-
ticular RNAi target sequence is likely to be in more than
one transcript. The genome is a partially double-stranded
circular DNA of 3.2 kb that contains four primary open
reading frames (ORFs): the core (C), polymerase (P), surface
(S), and X, although there may be other protein products
[41, 46]. These ORFs partially overlap each other and are
all encoded on the positive strand [47]. Transcription of
HBV RNA is initiated by four major promoters—the basal
core promoter (BCP), pre S1, preS2/S, and X (Figure 2).
These promoters give rise to transcripts that are synthesised
in the same direction by host RNA polymerase II. Five
major HBV transcripts are known, all are translated. Two
sets of C transcripts are initiated at different sites of the
BCP promoter. The longest transcript is the 3.6 kb precore
mRNA (pcRNA). The shorter C transcript is a pregenomic
mRNA (pgRNA) which encodes the C protein (nucleocapsid
protein) and the P protein. The other three transcripts
are preS1, preS2/S, and X, encoding for S proteins (large
surface proteins or preS1), and shorter S proteins (middle
and small S proteins or preS2 and S) and the X protein
(a transcriptional transactivator), respectively (Figure 2).
Therefore, the HBV genome is highly compact and HBV
genes are arranged in such a way that many sequences have
multiple roles.

Although this compact arrangement restricts plasticity
and limits the ability of the virus to mutate, HBV has
significant diversity among HBV genotypes [48, 49] and
HBV genomes exist as quasispecies in cells. With drugs
targeting HBV polymerase (such as lamivudine, adefovir,
and an acyclic nucleoside phosphonate), emergence of HBV-
resistant mutants develops during treatment [50]. An escape
mutant was also selected for during shRNA treatment,
discussed later [10].

6. Successful RNAi Strategies against HBV

Several RNAi effectors successfully downregulate HBV gene
expression and replication in differing assay systems. A
“very highly active” benchmark of >95% reduction of
extracellular viral particles from plasmid encoded HBV has
been suggested for shRNAs warranting further development
[7]. However, different experimental approaches and assays
make quantitative comparison difficult. Assays for RNAi
inhibition commonly used are (i) reporter gene assays, for
example luciferase [14], (ii) reduction of viral RNAs from
HBV derived from a plasmid in cultured cells [7], (iii)
HBV-expressing transgenic mice or cells [12, 51], and (iv)
hydrodynamically HBV-infected mice [9].

Analysis of characteristics of successful targets revealed
different strategies of rational design for RNAi effectors,
RNAi approaches, and mechanism of delivery. Nevertheless,

these could be classified into 3 main groups: Group I:
sequence conservation-based rational design-shRNA expres-
sion vectors (Pol II/III promoter) using a liposome delivery
method; Group II: sequence conservation-based rational
design-miRNA expression vectors (Pol II promoter) using
a liposome delivery method; Group III: single siRNA pro-
gramme prediction-shRNA expression vectors (Pol III pro-
moter) using viral vector delivery methods (reviewed in [8,
9]). Successful target sequences and RNAi inhibitory effects
of these 3 groups are indicated in Table 1. A summary of the
effective target positions is shown in Figure 2.

7. Variation in HBV Genotypes

The 3.2 kb HBV genome is classified into eight main
genotypes (A–H) with over 8% sequence diversity, with
genotypes A–D the most prevalent [13, 48, 49]. I is newly
discovered but not ratified [54]. Therefore it is not surprising
that there are few regions conserved across all genotypes
[7, 13]. These regions are often in sites of functional
conservation in the RNAs or DNA, including the epsilon
RNA and enhancer DNA elements (Figure 2). Some are
in sites of overlapping genes, where the two open reading
frames constrain sequence. Sun et al. [7] identified only
one sequence of 17 bases conserved across representatives
of all genotypes (1181–1897). They therefore used lesser
stringency criteria of ≥98% or ≥95% identity for ≥15 or
more bases across genotypes A–D as a practical limit to
identify likely RNAi targets, this being about ∼300–500
bases of the genome. They targeted 19 conserved sites in
genotype D (ayw) with part of a panel of 21 shRNAs.
Many of these were effective (Table 1), including some within
the structured RNA epsilon element. The most effective
target site in genotype D from that series (sh10) overlaps
a conserved block but is not the most conserved target (1
variation in A, B, E; 2 in G, H). However, sh6, another
very highly active shRNA, targets a block with no variation
in genotypes A–H (Table 1). In other reported studies that
included conservation in design, some target better genotype
A–C [14].

Zhang et al. identified 40 shRNA targets with conser-
vation between genotypes A–I using an alignment of 327
representative sequences from Genbank as a guide [13].
They tested the shRNA against genotypes A–D, and I. The
most effective four (B245, B376, B1581, and B1789) were
able to reduce HBV production by up to 90% in both in
vitro transfection and in vivo hydrodynamic model systems
(Table 1).

As there was some dissimilarity in target design, there
is not good concordance between the targets chosen in the
studies of Zhang et al. [13] and Sun et al. [7]. However, some
of the best sites had similar sites in the complementary study,
but for these there was not good concordance in degree of
inhibition. For example B245 (245–265), the best target from
Zhang et al., is similar to sh4 (247–257) one of the weakest in
Sun et al. Conversely the effective sh6 (416–434) is similar to
B415 (415–435) but B415 had only a weak inhibitory effect.
This may reflect subtle differences in targets, the vectors or
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assays used, and supports a need for common standards
within experiments as suggested by Sun et al.

8. Rare Variants—Could These Be
Selected for by RNAi?

HBV polymerase has a high error rate producing many
mutants—most of these with lower replication fitness. There
are over 2,500 full-length HBV genomes in the Genbank
database, and other databases contain rare sequence varia-
tions and mutations [50, 55, 56]. These may represent true
replication competent variants, rare nonfunctional RNAs in
the infected cells, or PCR or sequencing errors. As it is diffi-
cult to distinguish between these possibilities, redesigning an
RNAi strategy to avoid them would be difficult.

In the recent study by Sun et al. they also tested the
several shRNAs designed for HBV against Wooley monkey
HBV (WMHBV). In WMHBV target sites differed in 1–
4 positions. Some single variations retained partial activity
(e.g., sh6 still inhibited to 14%), but most abolished it, as did
single mutations in the shRNA [7]. This is consistent with the
idea that there must be an exact match between shRNA and
target. However, it might be expected that variation in the 5′

end of the target, as was the case with sh6, would be more
tolerated based on other RNAi studies, but this has not been
systematically tested for HBV targets.

One study has found a resistant mutation that could be
selected for following shRNA treatment in cell culture [10].
The shRNA used was designed to target a conserved site
in all except genotype H (456–476) and was found to be
effective in A–C. However a rare mutation in genotype C
could be selected for by shRNA treatment in cultured cells.
This mutation was silent with respect to both S and Pol
overlapping protein coding and found in only one chronic
carrier. Emergence of this type of shRNA-induced resistance
has been seen for other viruses, notably HIV [57, 58]. In
some cases like this a redundant pool of shRNAs containing
a mix at a single position might be effective, for example,
where a single position was changed, T472C or T472G in
genotype H [10]. To our knowledge this approach has not
been used for HBV variants.

Deep sequencing using next (or new) generation (NGS)
sequencing technologies allows the sequencing of many
members of the HBV quasispecies infecting a single human.
For HBV several studies have been done to investigate the
emergence of mutations due to drugs targeting proteins
[59–61]. Low prevalence drug resistance mutations could be
detected by NGS with a greater sensitivity than PCR in both
naı̈ve and treated patients. These initial studies focused on
mutations that change one of 288 RT amino acids. Many
novel changes were detected—71 present in over 1% of
the 2,800–18,000 sequences from each patient. Data from
such deep sequencing studies would also be useful in design
of RNAi against conserved sites, if possible rare tolerated
mutations or polymorphisms should be avoided in target
sites.

9. Conclusion and Directions for
Further Studies

Most current assays for HBV replication more closely mimic
acute HBV infection, with a single infecting genotype. In
chronic infection the system where the virus is represented
by a quasispecies in the infected individual selection due to
the RNAi might be different [13].

It is possible that the rare genotypes, for example H,
would require a genotype-specific RNAi combination. High-
ly effective RNAi that does not target conserved blocks would
still be useful if the genotype of the target is known.

Rationally designed RNAs, targeted in combinations [40,
62–64], delivered by “state-of-the-art” vectors could be an
effective anti-HBV treatment [4, 5, 8, 9]. Such design strat-
egies would need to take into account conservation in the
HBV genome. Several groups have identified effective target
sites that are beginning to fulfill these criteria, and these will
provide tools for further development.
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