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Abstract

Predicting drug-target interactions is important for the development of novel drugs and the

repositioning of drugs. To predict such interactions, there are a number of methods based

on drug and target protein similarity. Although these methods, such as the bipartite local

model (BLM), show promise, they often categorize unknown interactions as negative inter-

action. Therefore, these methods are not ideal for finding potential drug-target interactions

that have not yet been validated as positive interactions. Thus, here we propose a method

that integrates machine learning techniques, such as self-training support vector machine

(SVM) and BLM, to develop a self-training bipartite local model (SELF-BLM) that facilitates

the identification of potential interactions. The method first categorizes unlabeled interac-

tions and negative interactions among unknown interactions using a clustering method.

Then, using the BLM method and self-training SVM, the unlabeled interactions are self-

trained and final local classification models are constructed. When applied to four classes of

proteins that include enzymes, G-protein coupled receptors (GPCRs), ion channels, and

nuclear receptors, SELF-BLM showed the best performance for predicting not only known

interactions but also potential interactions in three protein classes compare to other related

studies. The implemented software and supporting data are available at https://github.com/

GIST-CSBL/SELF-BLM.

Introduction

In recent years, interest in identifying drug-target interactions has dramatically increased not

only for drug development but also for understanding the mechanisms of action of various

drugs. However, time and cost requirements associated with experimental verification of

drug-target interactions cannot be disregarded. Many drug databases, such as DrugBank,

KEGG BRITE, and SuperTarget, contain information about relatively few experimentally

identified drug-target interactions [1–3]. Therefore, other approaches for identifying drug-tar-

get interactions are needed to reduce the time and cost of drug development. In this regard, in
silico methods for predicting drug-target interactions can provide important information for

drug development in a reasonable amount of time.
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Various in silico screening methods have been developed to predict drug-target interac-

tions. Among these methods, machine learning-based approaches such as bipartite local

model (BLM) and MI-DRAGON which utilize support vector machine (SVM), random forest

and artificial neural network (ANN) as part of their prediction model are widely used because

of their sufficient performance and the ability to use large-scale drug-target data [4–9]. For

these reasons, many machine learning based prediction tools and web-servers have been devel-

oped [10–13]. Especially, similarity-based machine learning methods which assume that simi-

lar drugs are likely to target similar proteins, have shown promising results [8, 9]. Although

molecular docking methods also showed very good predictive performance, very few 3D struc-

tures of proteins are known, rendering docking methods unsuitable for large-scale screening

[14, 15]. As such, a precise similarity-based method must be developed to predict interactions

on a large-scale using the low-level features of compounds and proteins.

Previous similarity-based methods, such as the bipartite local model (BLM), Gaussian inter-

action profile (GIP), and kernelized Bayesian matrix factorization with twin kernel

(KBMF2K), provide efficient ways to predict drug-target interactions and have shown very

good performance [4, 16, 17]. BLM, which uses a supervised learning approach, has recently

shown promising results using only similarities from each compound and each protein in the

form of a kernel function. In the BLM method, the model for a protein of interest (POI) or

compound of interest (COI) is learned from local information, which means that the model

uses its own interactions of the COI or POI. This local-approach concept has been used in

other methods, such as GIP, BLM-NII and others [17, 18].

Although such methods show very good performance, certain problems remain. Most previ-

ously developed methods categorize validated interactions between drugs and target proteins

as positive, while unknown interactions are categorized as negative when constructing a predic-

tive model. However, unknown interactions are not truly negative interactions, as they include

potential interactions that have not yet been validated as positive interactions. To address this

problem, Xia et al. developed a semi-supervised learning method (LapRLS) that regards known

interactions as positive and unknown interactions as unlabeled data [19]. Chen et al. developed

an algorithm using a network-based random walk with restart approach (RWRH) [20]. How-

ever, these methods demonstrate good performance in a limited set of conditions, where the

drugs or targets use a drug-target network-based similarity score (NetLapRLS and NRWRH).

Because these approaches are limited in predicting the interactions of novel compounds or pro-

teins that do not have any known target or drug information (e.g., newly synthesized com-

pounds or mutated protein sequences), other approaches are needed.

In this paper, we propose a drug-target interaction prediction method to predict potential

interactions by using a modified BLM method. To classify unknown interactions into negative

and unlabeled data, a clustering method was used before the training step [21]. Then, modified

bipartite local models, termed self-training bipartite local models (SELF-BLMs), were con-

structed using a semi-supervised learning approach (self-training SVM) to improve a model’s

ability to find potential interactions [22]. Fig 1 shows the overall process of the method.

Finally, to train the model, we used a previous dataset for humans involving enzymes, G-pro-

tein coupled receptors (GPCRs), ion channels, and nuclear receptors from previous studies

[23]. We then constructed another drug-target interaction data set that contained recently

updated interaction information for performance validation. As a result, the number of drug-

target interactions increased by approximately 60% for each type of protein. Our model

showed good performance based on the area under the ROC curve (AUC) and the area under

the precision-recall curve (AUPR) values of the updated dataset. In addition, our proposed

method found the highest number of potential drug-target interactions compared to other

related methods in most cases.

SELF-BLM: Self-training BLM
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Fig 1. Overview of the proposed method. (A) From known information, drug-target interactions are classified into positive and unknown

interactions (matrix A). Using similarity scores of drugs (matrix Sd) and targets (matrix St), we performed k-medoids clustering. If any of the

drugs in a cluster do not interact with the cluster of the target protein, we considered the drugs in the cluster as having a negative interaction

with the protein. Finally, drug-target interactions are classified into positive, negative and unknown interactions (matrix An). Yellow rectangle:

target protein, blue circle: drugs having positive interactions with the target protein, red circle: drugs having negative interactions with the

target protein, gray circle: drugs having unknown interactions with the target protein. (B) A self-training SVM repeatedly trains the unlabeled

data (unknown) as positive or negative. Finally, local classification models that can find potential interactions are constructed.

doi:10.1371/journal.pone.0171839.g001

SELF-BLM: Self-training BLM
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Materials and Methods

Drug-target interaction dataset for training

To train the model and cross-validate its performance, we used four types of drug-target data-

sets from humans, including enzymes, ion channels, GPCRs and nuclear receptors [23]. The

data about the drugs, target proteins and drug-target interactions were derived from the

KEGG BRITE, BRENDA, SuperTarget, and DrugBank databases [1–3, 24]. Table 1 shows

details about the dataset information that was used.

Drug-target interaction dataset for validation

Because the previous dataset was constructed in 2007, many newly identified drug-target inter-

actions have since been discovered. To validate the performance power of predicting potential

drug-target interactions, we updated newly identified interactions among drugs and target

proteins that belonged to the previous dataset using the DrugBank, KEGG BRITE, and DsigDB

databases [1, 2, 25]. The drug-target interactions obtained from DrugBank and KEGG BRITE

databases were credible [1, 2], but the DsigDB database provided manually curated data and

text mining data [25]. Because text mining data are massive and not credible, we selectively

took manually curated data from the DsigDB database [25]. For this update, the numbers of

updated interactions for each interaction type were 4,449, 2,029, 1,268, and 168, respectively.

The number of drug-target interactions increased by approximately 60% for each type of pro-

tein. Using the updated dataset, we compared the performance and potential identification

capability of each method. Table 1 shows a summary of the previous and updated dataset.

Similarity metrics

The chemical similarities between drugs were calculated with the SIMCOMP method [26],

which computes a global similarity score on the basis of common substructures between drugs

using a graph alignment algorithm with the Eq (1)

Sdðd; d
0Þ ¼
jd \ d0j
jd [ d0j

ð1Þ

where d and d’ are substructures of drugs

The structural information for the drugs was taken from the KEGG DRUG and KEGG

COMPOUND sections of the KEGG LIGAND database [2].

The similarity between the proteins was calculated using a normalized version of the

Smith-Waterman alignment score [27]. The normalized Smith-Waterman score between the

proteins PA and PB was computed by the Eq (2)

SpðPA; PBÞ ¼
SWðPA; PBÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

SWðPA; PAÞ
p

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SWðPB; PBÞ

p ð2Þ

where SW is the Smith-Waterman alignment score

Table 1. The number of drugs, target proteins, interactions and updated interactions of each type.

Enzyme Ion channels GPCRs Nuclear receptors

No. of drugs 445 210 223 54

No. of target proteins 664 204 95 26

No. of drug-target interactions (previous) 2,926 1,476 635 90

No. of drug-target interactions (updated) 4,449 2,029 1,268 168

doi:10.1371/journal.pone.0171839.t001

SELF-BLM: Self-training BLM
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The amino acid sequences of the target proteins were derived from the KEGG GENES data-

base [2].

Generating negative interactions

To categorize unknown interactions as negative or unlabeled interactions, first, for each target

protein, if a compound interacted with the target protein, we considered the interaction to be

positive. We then clustered drugs and proteins by means of k-medoids clustering [21]. If any

of the compounds in a cluster do not interact with the cluster of the target protein, we consid-

ered the compounds in the cluster as having a negative interaction with the proteins (Fig 1A).

The remaining unknown interactions were considered to be unlabeled interactions, which are

potentially positive interactions. These unlabeled interactions may later be classified as nega-

tive or positive interactions using the semi-supervised learning method (Fig 1B).

Because we used a k-medoids clustering method, an appropriate and consistent number

of clusters was needed to train various datasets. In this study, we allowed to find one or two

new positive interactions for each known positive interaction. Therefore, we set the number

of unlabeled interactions to be no more than double the number of positive interactions.

For example, if a protein has two known positive interactions, we set the maximum number

of unlabeled interactions for the protein as four. The reason why we set the stringent limit

for the number of unlabeled interactions is that too many unlabeled interactions could gen-

erate a decreased number of negative interactions, thereby resulting in a loss of negative

data information for model construction. Therefore, we defined the number of clusters of

drugs and targets as the resulting number when the overall number was divided by an inte-

ger, and we calculated the ratio of unlabeled interactions to positive interactions for the fol-

lowing integers N (one to ten). Table 2 shows that the ratio was between one and two when

the number of clusters was the number of drug and target proteins divided by two for each

protein type. Therefore, we finally set k to be the number of drugs and target proteins

divided by two. The detail steps of generating negative interactions are described in Algo-

rithm 1

Bipartite local model

Bleakley et al. proposed a method called BLM to predict the interaction between a drug i and

a target j [4]. BLM is described as follows. First, a local model for drug i is trained using an

interaction profile of drug i and a similarity matrix of target proteins. Known interactions

are regarded as positive, and unknown interactions are regarded as negative. Next, SVM con-

structs a classifier that distinguishes known interactions (positive) from unknown interac-

tions (negative) using target similarity as a kernel. The model predicts the probability pd (i,j)

that a drug i and a query target j have an interaction by using the similarities between target j
and the trained targets. Similarly, a local model for target j is trained using an interaction

profile of target j and drug similarity. The model predicts the probability pt (i,j) that a target j

Table 2. The number of drugs, target proteins, interactions and updated interactions of each type.

N 1 2 3 4 5 6 7 8 9 10

Enzymes 0 1.3 4.1 7.7 12.6 17.8 20.3 24 28.6 30.9

Ion channels 0 1.6 2.9 4 6.4 7.5 10.7 11.8 13.8 15.9

GPCRs 0 1.9 3.8 5.9 8 9.9 11.6 14.2 16.1 17.2

Nuclear receptors 0 1.5 3.7 5 7.6 9.4 9.6 11.9 11.8 12.7

doi:10.1371/journal.pone.0171839.t002

SELF-BLM: Self-training BLM
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and a query drug i will have an interaction using the similarities between drug i and training

drugs. Finally, we determine the predicted interaction value P(i,j) between drug i and target j
with max(pd (i,j), pt (i,j)) or 0.5(pd (i,j) + pt (i,j)).

Algorithm 1: Generating negative interactions

1 Generatingnegativeinteractions(A, Sd, St);
Input : Drug-targetinteractionmatrixA,

Drug similaritymatrixSd,
TargetsimilaritymatrixSt

Output:Negativelabeleddrug-targetinteractionmatrixAn
2 kd≔ |D|) / 2; // D: set of drugs,kd: the numberof drug cluster
3 kt≔ |T| / 2; // T: set of targets,kt: the numberof targetcluster
4 Cd≔ k-medodids(kd, S

d); //theset of drug clustersCd
5 Ct≔ k-medodids(kt, S

t); //theset of targetclustersCt
6 for i 1 to |D| do
7 for j 1 to |T| do
8 if A(i, j) = 1 then
9 An(i, j)≔ 1; //positive
10 else
11 SDdi≔ set of drugs in the clustercontainingdi;
12 STtj≔ set of targetsin the clustercontainingtj;
13 if SCt is not relatedSCd then
14 An(i, j)≔ -1; //negative
15 else
16 An(i, j)≔ 0; //unlabeled
17 end
18 end
19 end
20 end
21 returnAn;

Self-training support vector machine

To classify the unlabeled data, a self-training SVM was used [22]. In a local prediction step, the

SVM model was constructed as a BLM using only labeled data. The unlabeled data were then

classified by this model. If the unlabeled data passed the threshold, the unlabeled data were

classified as positive or negative. The next step was to iterate this process until no unlabeled

data failed to pass the threshold. Finally, the model used all labeled data as a local classification

model to predict whether a compound targets proteins of interest and whether a protein is tar-

geted by a compound of interest. The detail steps of constructing SELF-BLM models Mt for

prediction of drug are described in Algorithm 2. In similar manner, SELF-BLM models Md for

prediction of target proteins are constructed.

Algorithm 2: SELF-BLM

1 SELF-BLM(A, Sd, St);
Input : Drug-targetinteractionmatrixA,

Drug similaritymatrixSd,
TargetsimilaritymatrixSt

Output:predictionmodel of targetMt
2 An≔ Generatingnegativeinteractions((A, Sd, St));
3 It(i)≔ An(:, i); //A interactionvectorof targetti
4 set It

LðiÞ; //interactionvectorof labeleddata
5 set It

UðiÞ; //interactionvectorof unlabeleddata
6 set Sd

L; //Similaritymatrixof labeleddata
7 Mt≔ trainðSd

L; I
t
LðiÞÞ; //Traina localmodelfor ti

8 do

SELF-BLM: Self-training BLM
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9 set Sd
U XL; //Similaritymatrixof unlabeleddata by labeleddata

10 PU≔ testðMt; Sd
U XL); //Predictunlabeledinteractions

11 if |PU| > threshholdthen
12 changethe unlabeleddata to labeleddata
13 set It

LðiÞ;
14 set It

UðiÞ;
15 set Sd

L;
16 Mt≔ trainðSd

L; I
t
LðiÞÞ

17 end
18 whileany unlabeleddata is changed;
19 returnMt;

Results

We trained the model using a previous dataset constructed by Yamanishi et al and validated

the model using a previous dataset and an updated dataset [23]. Because some unknown inter-

actions in the previous dataset turned out to be positive in the updated dataset, we can measure

the potential identification capability of models by comparing the performance results.

First, we compared the performance of SELF-BLM with that of BLM [4], BLM-RBF, which

includes drug-target network-based similarity using an RBF kernel, such as GIP or BLM-NII,

and semi-supervised learning approaches, such as LapRLS, and NetLapRLS, which include

network-based similarity [17–19]. For BLM and BLM-RBF, we used the modified source code

that was originally given by the authors. We used the LIBSVM (v.3.21) to use SVM implemen-

tation [28]. When implementing SVM, the similarity matrices were used as a kernel without

any modification. For parameters of SVM, values of C and gamma were assigned as 1 and 1

over number of features, respectively. For LapRLS and NetLapRLS, we implemented the meth-

ods based on the original paper. In the papers reporting these methods, BLM takes the maxi-

mum value between a drug-predicted value calculated using drug similarity and target

predicted value calculated using target similarity, whereas LapRLS and NetLapRLS take an

average value between the drug-predicted value and the target-predicted value; hence, we fol-

lowed such approaches when we implemented these methods in the present study. SELF-BLM

also takes the maximum value between the drug-predicted value and the target-predicted

value.

Because the all compared models are local models, the models are repeatedly constructed

using associated interactions for a given drug or protein. If the methods are evaluated in k-fold

cross-validation, positive interactions are frequently not included in the training step. For

example, in case of epinephrine drug, the drug has three positive interactions with 95 target

proteins in the GPCRs dataset. Because of the small number of positive interactions, positive

labels are often not included in the training set when the data is segmented into k-sets. Thus,

we evaluated the performance of the models using leave-one-out cross-validation (LOOCV).

However, in order to confirm robustness of our model, we also evaluated the performance

using 10-fold cross-validation (S1 Table).

Prediction performance

We calculated the performance of the interaction prediction in terms of the area under the

ROC curve (AUC) value and the area under the precision-recall curve (AUPR) value. The

AUC value is a common evaluation approach for binary classification problems. However, the

large bias between the negative and positive training data sets often weakens the power of

AUC values. Meanwhile, because it is important to classify the positive labels with high accu-

racy, the AUPR value may be a more appropriate indicator than the AUC value.

SELF-BLM: Self-training BLM
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Table 3 shows the AUC and AUPR values of the five methods for the four type of proteins

in each data set (previous and updated datasets). As the results show, the AUPR values of

BLM-RBF were high in most cases when we used the previous dataset for validation. However,

with the updated dataset, the AUC and AUPR values of SELF-BLM were the highest for most

protein types, except for enzymes (Fig 2, S1 Fig). In Table 3, it is noticeable that the AUC and

AUPR values tend to be decreased in the updated data. The main reason for this result is that

some negatively labeled interactions changed into positive interactions when the dataset was

updated. Therefore, there are previously predicted a fair number of interactions as negative,

the AUC and AUPR values decreased in the updated data. For instance, to predict the interac-

tion between target HTR1E and drug Olanzapine according to type of GPCR, HTR1E was con-

sidered similar to HTR2A (0.23) and HTR2C (0.23), which bind to Olanzapine (positive);

however, HTR1E is more similar to HTR1B (0.43), HTR1D (0.44), and HTR1F (0.55), which

do not bind to Olanzapine (negative) in the training dataset. Thus, BLM does not receive a

high indication that HTR1E will bind to Olanzapine. On the other hand, with the SELF-BLM

methods, these negative targets were regarded as potential targets, and some targets were con-

sidered unlabeled as a result. Thus, SELF-BLM yields high marks using unlabeled data gener-

ated by clustering and the self-training SVM method (Fig 3). Moreover, in the case of the

previous dataset, because the interaction between HTR1E and Olanzapine is regarded as nega-

tive, SELF-BLM seems incorrectly predicting the interaction. This is the main reason why

SELF-BLM shows decreased performance in some cases using the previous dataset. However,

in the updated dataset, the interaction is now regarded as positive, and the performance of

SELF-BLM thus increased.

In addition, SELF-BLM could increase the prediction performance with the previous

dataset by self-training unknown information. Because potential interactions are regarded as

negative in the previous dataset, this approach makes it difficult for a model to be trained

accurately. For example, in the case of predicting the positive interaction between target

CHRM1 and drug Clozapine among GPCRs, the conditions are as follows. Target CHRM2

binds to Clozapine, and CHRM3, CHRM4, and CHRM5 do not bind to Clozapine (however,

these targets actually do bind to Clozapine in the updated dataset). In similarity-based mod-

els, the CHRM1 model will choose a similar protein among targets. BLM does not indicate

that CHRM1 will bind to Clozapine as CHRM1 is more similar to CHRM3 (0.45), CHRM4

(0.42), and CHRM5 (0.47) than to CHRM2 (0.42). In contrast, because SELF-BLM neither

considers CHRM3, CHRM4, and CHRM5 as training data nor changes these targets to posi-

tive data beforehand, it predicts that CHRM1 will bind to Clozapine (S2 Fig). Therefore,

Table 3. The AUC and AUPR values of the five methods for the four types of proteins in each validation set (previous and updated dataset).

Enzymes Ion channels GPCRs Nuclear receptors

Previous Updated Previous Updated Previous Updated Previous Updated

SELF-BLM AUC 0.974 0.859 0.977 0.941 0.952 0.914 0.890 0.799

BLM 0.968 0.846 0.972 0.923 0.94 0.893 0.869 0.767

BLM-RBF 0.974 0.880 0.975 0.903 0.930 0.880 0.909 0.792

LapRLS 0.954 0.883 0.960 0.915 0.894 0.872 0.816 0.778

NetLapRLS 0.960 0.869 0.958 0.928 0.926 0.917 0.867 0.789

SELF-BLM AUPR 0.846 0.637 0.805 0.762 0.566 0.614 0.625 0.573

BLM 0.862 0.629 0.842 0.745 0.676 0.610 0.599 0.534

BLM-RBF 0.891 0.652 0.922 0.758 0.709 0.590 0.609 0.514

LapRLS 0.704 0.538 0.744 0.658 0.400 0.401 0.387 0.452

NetLapRLS 0.806 0.609 0.827 0.735 0.637 0.596 0.456 0.458

doi:10.1371/journal.pone.0171839.t003

SELF-BLM: Self-training BLM
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SELF-BLM can yield high performance not only for the updated dataset but also for the pre-

vious validation dataset. Furthermore, additional experiment was conducted using up-to-

dated drug-target information to show that the results are consistent in other dataset (see S1

File).

Prediction performance for new interactions

Next, we evaluated the performance of models regarding potential interaction identification.

We compared the number of potential interactions at each percentage of positive interactions

from the top 1% to 100% of the ranked score. For example, the targets of GPCRs have 635

Fig 2. Rankings of AUPR trends by the different methods according to the updated dataset. In each panel, y-axis shows the rank

representation of the AUPR value. A) the ranking in type of enzymes, B) the ranking in type of ion channels, C) the ranking in type of GPCRs,

D) the ranking in type of nuclear receptor.

doi:10.1371/journal.pone.0171839.g002

SELF-BLM: Self-training BLM
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known interactions, so we set the positive as the top six (1%) to 635 (100%) from a total of

21,185 interactions, and the number of potential interactions were compared within the per-

centage range. As shown in Fig 4, SELF-BLM finds the most number of potential interactions

than other methods for all of the protein types, except for nuclear receptors (see S2 File for

details).

Furthermore, we calculated the potential AUPRs of the four methods for the four types of

proteins. In the potential precision-recall curve, positive labels were the potential interactions

that were identified in the updated dataset, and negative labels were unknown interactions in

the updated dataset. Therefore, we confirmed how the methods found the potential interac-

tions simply by drawing a plot of the potential precision-recall curve (S3 Fig). The curves show

that SELF-BLM finds many potential interactions with high accuracy. Thus, the AUPR of

SELF-BLM was the greatest among the methods for all of the protein types, except for the

nuclear receptor type. Fig 5 shows the potential AUPRs of the five methods for the four types

of proteins.

Fig 3. An example of SELF-BLM predicting the targets of a drug. In the previous dataset, it was known that proteins (HTR2A and

HTR2C) bind to a drug (Olanzapine), but it was not known that other proteins (HTR1B, HTR1D, and HTR1F) also bind to the drug. Thus, in

BLM, HTR2A and HTR2C are labeled as positive, and HTR1B, HTR1D and HTR1F are labeled as negative. Because the protein (HTR1E) is

more similar to negatively labeled proteins than to positively labeled proteins, the protein is predicted to be negative. However, in

SELF-BLM, these proteins (HTR1B, HTR1D, and HTR1F) are unlabeled. Therefore, the protein (HTR1E) is predicted as positive. There was

no information suggesting that the protein (HTR1E) binds to the drug (Olanzapine) in the previous data, but it was later revealed that the

protein indeed binds to the drug.

doi:10.1371/journal.pone.0171839.g003
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In our results, BLM-RBF found few potential interactions and had low values of potential

AUPR; also, the performance of BLM-RBF showed a greater drop than the other methods in

most cases. Because BLM-RBF uses network-based similarities as an important factor for

identifying a drug-target interaction, if a COI or POI had few interactions with the training

set, the interaction similarities made it difficult to predict potential interactions of a COI or

Fig 4. The number of potential interactions found by each method. X-axis represents the accumulated percentage of positively predicted interactions

in each method, y-axis represents the number of correctly predicted potential interactions. A) The number of potential interactions according to type of

enzyme. B) The number of potential interactions according to type of ion channel. C) The number of potential interactions according to type of GPCR. D)

The number of potential interactions according to type of nuclear receptor.

doi:10.1371/journal.pone.0171839.g004
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POI. This result shows that network-based similarity helps to find the interaction of a COI or

POI that has a large amount of interaction information, but it is unsuitable for finding inter-

actions of compounds or proteins for which little information about interactions is available.

Although LapRLS and NetLapRLS are semi-supervised learning methods, we can confirm

that these methods do not show good performance or a strong ability to identify potential

interactions.

Conclusion

In this study, we proposed a modified BLM, termed SELF-BLM, to accurately predict potential

drug-target interactions. SELF-BLM uses k-medoids clustering and a self-training SVM algo-

rithm to identify potential interactions among unknown interactions. To validate the perfor-

mance of the method, we used benchmark datasets and updated recently verified interactions

as potential interactions to the dataset using the DrugBank, KEGG, and DsigDB databases.

Finally, we demonstrated the capability of SELF-BLM to predict potential interactions between

drugs and target proteins. Notably, in most cases, SELF-BLM showed best validation

Fig 5. The potential AUPRs of the five methods for the four types of proteins.

doi:10.1371/journal.pone.0171839.g005
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performance with respect to AUC and AUPR for the updated dataset and found more poten-

tial interactions with high confidence prediction score compared to other methods.

In our study, we used a benchmark dataset for training to compare SELF-BLM with other

methods and to validate its capability to identify interactions. However, as the research pro-

ceeded, various other similarity methods were developed. Like other similarity based-methods,

SELF-BLM majorly depends on drug similarity and target similarity. Therefore, the perfor-

mance of the model may be improved by using more-effective similarity methods such as ker-

nel fusion method for various data fusion and/or efficient novel similarity features [29–31].

We emphasize that our SELF-BLM could show the best performance in the field of novel

drugs or novel targets identification researches because our method does not require any

known drug-target interaction information that is hardly known in novel molecules. Further-

more, in addition to drug-target protein interaction, it is important to deal with data imbal-

ance problems or unlabeled data in many other areas so that, our method as well as the

methods used in these areas can help to deal the problems [32, 33].
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