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Abstract
Background: In structural genomics, an important goal is the detection and classification of
protein–protein interactions, given the structures of the interacting partners. We have developed
empirical energy functions to identify native structures of protein–protein complexes among sets
of decoy structures. To understand the role of amino acid diversity, we parameterized a series of
functions, using a hierarchy of amino acid alphabets of increasing complexity, with 2, 3, 4, 6, and 20
amino acid groups. Compared to previous work, we used the simplest possible functional form,
with residue–residue interactions and a stepwise distance-dependence. We used increased
computational ressources, however, constructing 290,000 decoys for 219 protein–protein
complexes, with a realistic docking protocol where the protein partners are flexible and interact
through a molecular mechanics energy function. The energy parameters were optimized to
correctly assign as many native complexes as possible. To resolve the multiple minimum problem
in parameter space, over 64000 starting parameter guesses were tried for each energy function.
The optimized functions were tested by cross validation on subsets of our native and decoy
structures, by blind tests on series of native and decoy structures available on the Web, and on
models for 13 complexes submitted to the CAPRI structure prediction experiment.

Results: Performance is similar to several other statistical potentials of the same complexity. For
example, the CAPRI target structure is correctly ranked ahead of 90% of its decoys in 6 cases out
of 13. The hierarchy of amino acid alphabets leads to a coherent hierarchy of energy functions, with
qualitatively similar parameters for similar amino acid types at all levels. Most remarkably, the
performance with six amino acid classes is equivalent to that of the most detailed, 20-class energy
function.

Conclusion: This suggests that six carefully chosen amino acid classes are sufficient to encode
specificity in protein–protein interactions, and provide a starting point to develop more
complicated energy functions.
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Background
An important goal of modern genomics is to identify
interacting proteins and characterize the structure and
function of the corresponding complexes [1-3]. There are
many complexes in even a simple organism; for example
several hundred have been identified in yeast [4]. Experi-
mental structure determination for all of them is imprac-
tical, although determining a representative set should
eventually be possible [5]. Therefore, methods for struc-
ture prediction are useful [6]. The most tractable situation
occurs when the structures of the two partners are known
separately. Indeed, in many (though not all) protein–pro-
tein complexes, the three-dimensional structure of each
partner is very close to its structure when alone. In this
case, the prediction amounts to positioning one protein
with respect to the other. The problem can be divided fur-
ther into two parts: generating a number of reasonable,
putative, complex structures (the "docking" problem),
and identifying the correct one [7-9]. The second prob-
lem, recognizing the biologically correct complex among
a possibly-large set of candidate structures, is referred to as
the "scoring" or "interface recognition" problem.

In this work, we develop a series of energy functions for
interface recognition. To handle many proteins on a
genomic scale, the computational model should be sim-
ple and efficient [10]. Therefore, following many previous
workers, we take a coarse-grained view of the protein
structures, with interactions described at the amino acid
level, and parameterize the model empirically. Protein
quaternary structure analysis is an active field [11-17], and
several protein–protein interaction potentials have
already been developed. Information on protein struc-
tures has been used, as well as sequence conservation and
covariance between interacting partners [7,18-23].
Sequence conservation and three-dimensional structures
give different information and should be combined to
provide the maximum predictive power. Here, we take the
view that sequence conservation can be used in a separate
step to filter possible models, and we parameterize our
model using structural information only.

We pursue two main goals. First, with increased comput-
ing power, we can employ larger numbers of structures
and more realistic decoys than in previous work, which
should lead to improved parameterization. Second and
more importantly, we consider a series of models of
increasing complexity. The simplest one distinguishes just
two types of amino acids: hydrophobic and polar. The
most complex one distinguishes all twenty amino acid
types. The intermediate ones distinguish three, four, and
six amino acid types. By deriving a hierarchy of energy
functions, we can determine what model complexity is
needed to solve the interface recognition problem.

A third goal is to help clarify an important biological
problem: what amount of chemical diversity is needed to
construct specific protein–protein interfaces. Indeed, the
structures and interactions of natural proteins are (almost
always) encoded in their amino acid sequences. However,
chemically similar amino acids in a protein can often be
interchanged without altering noticeably the structure,
and protein engineers have already reproduced naturally
occuring protein folds using reduced sets of amino acids
[24]. Very early stages in evolution may have made use of
such reduced sets of amino acids.

The energy function tested in this work relies on pairwise
amino acid potentials with the simplest possible, step-
wise, distance-dependence: the interaction energy
between two amino acids is zero above a certain distance
threshold and constant below it. Potentials with a more
complex distance-dependence are known to give superior
results [21,25,26]. Nevertheless, we focused on the
present, stepwise potentials in order to analyse the effect
of reduced amino acid alphabets in a simple context.

To parameterize the energy functions, we use an optimiza-
tion method introduced earlier for fold recognition [20].
The goal is to obtain interresidue interaction parameters
that assign a low energy to the correct, native complex
structure, and a higher energy to alternate, incorrect struc-
tures. A dataset of 219 protein–protein complexes of
known structure are used to train and test the models. For
each one, about 1300 decoy structures are generated using
a realistic docking procedure, in which the protein part-
ners are flexible and interact through a molecular
mechanics energy function. The decoy sets will be
described in detail elsewhere. Half of the structures form
an "Optimization Set"; the others form a "Test Set". As an
additional restraint on the energy function, we include in
the optimization criterion its performance for fold recog-
nition, using an analogous dataset of 800 monomeric
protein structures with associated decoys.

The energy functions are subjected to a series of blind
tests. These involve our own Test Set of native and decoy
structures, sets of native and decoy structures made avail-
able by Sternberg, Vakser and coworkers through the
World Wide Web [27,28], and 13 target structures submit-
ted to the CAPRI experiment for protein–protein complex
structure prediction (rounds 2–5). Results are comparable
to two other, recent, empirical models due to Bastolla, Lu
et al [19,20]. For example, the CAPRI target structure is
correctly ranked ahead of 90% of its decoys in 6 cases out
of 13. However, our hierarchical approach yields valuable
additional insights. Thus, the hierarchy of amino acid
alphabets leads to a coherent hierarchy of energy func-
tions, with qualitatively similar parameters for similar
amino acid types at all levels. Remarkably, the perform-
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ance with six amino acid classes is equivalent to that of the
most detailed. 20-class energy function, and the perform-
ance with four classes is only slightly worse. This indicates
that six or even four carefully chosen amino acid classes
are sufficient to encode the true complexity of the resi-
due–residue interaction model. It suggests that six amino
acid types are also sufficient to provide interface specifi-
city for many protein–protein complexes.

Results
We first describe briefly the optimization of energy func-
tions for fold recognition of monomeric proteins [29] and
their behavior with amino acid alphabets of increasing
complexity. Then we consider the recognition of protein–
protein interfaces. Finally, we describe the application to
a series of blind tests. In Supplementary Material, we ana-
lyze the convergence and robustness of the parameter
optimization procedure (see additional file 1: Supp1.ps).

Fold recognition for monomeric structures

The energy function is a sum over pairs of residues less
than 4.5 Å apart. Each pair of residue types has its own
interaction parameter. Several parameter optimizations
were conducted, using the amino acid alphabets in Fig. 1.
which contain 2, 3, 4, 6, and 20 amino acid types, respec-
tively. We considered 810 native protein structures, along
with sets of decoys constructed by threading each
sequence onto unrelated structures. The structures and
their decoys were split into an Optimization set (615
structures) and a Test set (200 structures). The energy

parameters were chosen to maximize the  parameter

(Eq. 7), summed over the proteins of the Optimization
set. The quality of each energy function can be measured

by the final, optimized  value, which ranges from 0 to

100% and reflects the ability of the energy function to
group near-native structures in the low-energy range. A
second quality measure is the "discrimination percentage"
D: the percentage of native structures in the Optimization

set that are successfully predicted to be of lower energy
than all their decoys. The quality measures are obtained

by cross validation; i.e., we compute  and D for the

structures of the Test set, which are not used for parameter
optimization. The quality of the predictions are summa-
rized in Table 1.

The simplest amino acid alphabet is a binary one, with an
approximate separation into hydrophobic and
hydrophilic amino acids (Fig. 1). The corresponding opti-
mal parameters are given in Table 2. They assign favorable
energies to intraclass contacts and an unfavorable energy
to interclass (hydrophobic-hydrophilic) contacts. This
very simple model already gives a respectable discrimina-

tion, (D = 70%,  = 74%), partly due to the simplicity of

our monomeric decoy set, obtained by a rudimentary
threading procedure (see Materials and Methods). The
three residue alphabet puts the aromatic residues in a class
of their own. The corresponding energy parameters (Table
2) are qualitatively consistent with the binary ones. The

discriminating power is slightly increased (D = 72%,  =

75%).

With four and six classes, the discrimination D increases
markedly, to 85% and 89%, respectively (Table 1). The
four-class alphabet puts L, V, I, M and C into a separate
group. The parameter values (Table 3) remain consistent
with the simpler alphabets. For example, aromatic–aro-
matic interactions remain very favorable, while polar–
polar interactions remain unfavorable, except for those
between the two classes {EDNQ} and {KRH}.

The most detailed energy function, with all twenty amino
acid types, is subject to overoptimization, or overtraining:
performance on the Test set is 3–4% below that on the
Optimization set (Table 1). In fact, the performance on
the Test set is slightly inferior (by 1%) to that of the best
six-class energy function. For the simpler alphabets (2–6

Q

Q

Q

Q

Q

Table 1: Fold recognition: performance of the optimized energy functions on the Optimization and Test sets

Number of amino
acid groups

Optimization Set Test Set

(%) D (%) (%) D(%)

2 74.3 69.8 74.4 70.0
3 76.4 72.2 75.3 72.0
4 87.5 84.4 87.4 84.6
6 88.3 86.7 91.9 89.4
20 94.4 91.9 91.3 88.4

Q Q
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types), the performance on the Test set was as good, or
slightly better than on the Optimization set.

Fig. 2 shows the discrimination D for different protein size
ranges, for all alphabets. For proteins of more than 320
amino acids, discrimination is 100% with either four, six,
or twenty residue classes. With two and three amino acid
classes, discrimination reaches 100% when the protein

size reaches 250 amino acids, except for a few large pro-
teins. The lower discrimination for small proteins is partly
due to their higher number of decoys (also shown).

The amino acid groupings used here (Fig. 1) were derived
from the Blosum50 similarity matrix by Levy et al [30].
Residues with similar physicochemical properties are clus-
tered together. The parameters show a good consistency

Table 2: Two- and three-class energy parameters for fold recognition and dimer interface recognition. Best parameters (kcal/mol) for 
monomeric fold recognition (upper right) and dimer interface recognition (lower left).

H P Monomeric

-8.5 9.0 H = {ALSVTPIGMCFYW}
H -9.0 -3.5 P = {EKRHDNQ}
P 9.8 -7.1

Dimeric H P

Ha Hb P Monomeric

-4.7 -9.6 6.4 Ha = {ALSVTPIGMC}
Ha -3.8 -11.4 1.5 Hb = {FYW}
Hb -8.4 -14.3 -1.9 P = {EKRHDNQ}
P 4.8 2.4 -1.5

Dimeric Ha Hb P

Hierarchical Amino Acid Classification TreeFigure 1
Hierarchical Amino Acid Classification Tree. Hierarchical clustering of amino acid types, using the Blosum50 similarity 
matrix (right) or the optimized, 20-class energy matrix (left). The Pearson Correlation coefficent of each cluster is given for the 
lefthand tree.
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with the hierarchy of amino acid types, as discussed
above. When an amino acid group is subdivided, the
parameters corresponding to the subgroups are usually in
qualitative agreement with the parent group. This is not
due to bias in the optimization procedure, since the best
parameters at each level were usually obtained from a ran-
dom scan of parameter space (see Methods). Another six-
class grouping ({AVLIMC}, {FWYH}, {STNQ}, {KR},
{DE}, {GP}), proposed by Shakhnovich and coworkers
[31], gave significantly poorer results, with a D of 71%.

Recognizing protein–protein interfaces
Characterizing the structures
To parameterize and test the energy functions, we used
219 protein–protein complex structures, including 195
homodimers and 24 heterodimers. We constructed about
1300 decoys each (for a total of about 290,000 decoys).
The decoys were constructed by a realistic (and computa-
tionally expensive) docking procedure, with flexible pro-
teins interacting through a molecular mechanics energy
function. Some of the native structures' properties are
summarized in Fig. 3. The distribution of interface sizes
has a peak at about 1800 Å2, with a broad tail extending
up to about 6500 Å2. The propensities PX of each amino
acid type X to be found at the interface are also shown. PX
is defined as

where  and  are the proportion of amino acid

type X found in the protein–protein interfaces and in the

SwissProt data base, respectively [13]. A positive propen-
sity PX means that the proportion of X in the interfaces is

higher than the overall proportion of X in SwissProt.
Hydrophobic types, especially Met, Trp, Tyr and Phe are
overrepresented, compared to their natural abundance in
proteins. Among the polar amino acids, Arg and His are
overrepresented, and Lys is underrepresented.
Homodimeric interfaces (the majority of our data set)
tend to be larger and more hydrophobic than heterodim-
ers. Nevertheless, the trends in Fig. 3 agree with recent sur-
veys of protein–protein interfaces [12,13].

To illustrate our decoy sets, Fig. 4 shows two native struc-
tures (PDB codes 1ARO and 1BJF) along with a simplified
representation of their decoy series. The series contain
1573 and 1652 decoys each. Decoys are produced by fix-
ing one or the other of the partners, and positioning the
other using a flexible docking procedure (see Methods).
In Fig. 4. one partner ("A") is arbitrarily taken as a refer-
ence, and the distribution of the other ("B") around it is
shown (one structure per decoy). Partner B is seen to be
widely distributed around A, with a wide variety of orien-
tations. By construction, each decoy has a native-like
interface size and a limited distortion of the internal struc-
ture of both A and B. The energy distributions for these
same series of structures are discussed in the next section.
The decoy series for a third, typical, dimer is illustrated in
Fig. 5 in a different way. For each amino acid of one mem-
ber of the dimer, Fig. 5 shows the number of decoys where
it participates in the protein–protein interface. We see,

P f fX X X= log / ,int SWP (1)

fX
int fX

SWP

Table 3: Four- and six-class energy parameters for fold recognition and dimer interface recognition. Best four- and six-class energy 
parameters (kcal/mol) for monomeric proteins (upper right) and dimer interface recognition (lower left)

Hα Hβ Hγ P Monomeric

-6.96 1.81 -8.85 1.94 Hα = {LVIMC}
Hα -5.70 -0.59 0.15 1.56 Hβ = {AGSTP}
Hβ -0.60 -0.02 -6.41 1.53 Hγ = {FYW}
Hγ -3.68 -0.61 -7.08 -1.30 P = {EDNQKRH}
P 1.75 0.04 0.63 1.21

Dimeric Hα Hβ' Hγ P

Hα Hβ' Hγ Pα Pβ G Monomeric

-8.30 0.30 -5.11 3.77 2.62 0.43 Hα = {LVIMC}
Hα -2.06 -1.35 1.49 0.42 1.30 2.54 Hβ' = {ASTP}
Hβ' 0.09 -0.02 -7.79 1.01 0.79 -0.85 Hγ = {FYW}
Hγ -1.73 -0.45 -0.65 1.61 -3.30 1.00 Pα = {EDNQ}
Pα 0.76 0.13 0.36 0.52 1.57 -0.38 Pβ = {KRH}
Pβ 0.51 -0.24 -0.25 -0.30 0.53 -0.08 G
G -0.17 0.12 -0.55 0.04 0.19 0.01

Dimeric Hα Hβ' Hγ Pα Pβ G
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again, that the surface coverage of one partner by the other
in the decoy sets is rather thorough.

Recognition power with different amino acid alphabets

The energy functions for interface recognition were opti-
mized using a combination of monomeric and dimeric
structures (see Methods). We considered two Optimiza-
tion sets, containing respectively 110 and 109 dimeric
structures and their associated decoys, along with 110
monomeric structures and their decoys. We denote them
OS1 and OS2. The dimeric structures not belonging to
OS1 form the Test Set 1; similarly for OS2. The amino acid
subdivisions into classes are the same as for the mono-
meric energy functions above. The prediction results are
summarized in Table 4. The optimized energy parameters
are in Tables 2, 3 and in Supplementary Material (for the
20 class function: see additional file 2: Supp2.ps). To
measure performance, we employ Dint, the percentage of

native interfaces ranked above all their decoys, and ,

the average of  over all the protein–protein complexes.

Dint and  are exactly analogous to D and  (Eq. 7), but

they only include the interface recognition statistics; fold
recognition statistics are not included (whereas they are
taken into account during the optimization).

The optimal energy parameters with the binary alphabet
are consistent with the ones derived for fold recognition
(Table 2). The parameters obtained using OS1 and OS2
are almost identical. Discrimination is fair, with a Dint of

47% and a  of 87% for both the OS1 and OS2 sets.

The energy parameters with the ternary alphabet are con-
sistent with the binary ones. Contacts between members
of the two "hydrophobic" classes are stabilizing, for exam-

ple. The discrimination power has increased:  = 89%

and Dint = 53% (averaging over the OS1 and OS2 results).

With the four-class alphabet,  and Dint increase

sharply, to 94% and 64%, respectively. Consistent with
the monomeric results, contacts within and between the

Qint

Q

Q Q

Qint

Qint

Qint

Discrimination according to Protein SizeFigure 2
Discrimination according to Protein Size. Discrimination power of the different amino acid alphabets for fold recognition 
as a function of protein length (number of amino acids). The corresponding energy functions are those derived for fold recog-
nition, using the Monomeric Optimization Set. The mean number of decoys is shown vs. protein length (grey bars; righthand 
graduations).
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{LIVIMC} and {FYW} classes are the most stabilizing.
Optimal parameters from OS1 and OS2 are similar. The
rms deviation between the OS1 and OS2 energy matrices
(with four amino acid classes) is 3.6 kcal/mol.

Performance improves only slightly with six classes: 

= 95% and Dint = 66%. With the complete, 20-class alpha-

bet, there is almost no further improvement:  is 94%

and Dint is 68%. It appears that for the simple, residue–res-

idue model used here, 4–6 amino acid classes are suffi-
cient to encode the actual complexity of the model.

To illustrate further the behavior of our energy functions,
we consider the structures 1AR0, 1BJF, and 1FBT, which
represent three typical situations. The energy spectra for
the three decoy series are shown in Fig. 6, using the energy
functions with two, six, and twenty amino acid classes.

• 1AR0: With 20 classes, discrimination is successful. The
native complex is very stable compared to the decoys.

• 1BJF: The native complex is not recognized as the low-
est-energy structure, but it has the third-best energy and is
well-separated from the rest of the energy distribution
(the decoys lying higher than it).

• 1FBT: This structure illustrates the worst case. The energy
function is unable to recognize the native complex at any
level of alphabet complexity. The native energy is quite
high. The position of the native structure in the energy
spectrum is only 0.5 standard deviations below the aver-
age decoy.

To illustrate the diversity of the decoy sets, we also calcu-
lated energy spectra with a "random energy" model.
Decoys are not explicitly built; rather, we count the
number of interface contacts in the native dimer A:B, say
N contacts; we replace them by N contacts established
between N random pairs, where the first amino acid is
drawn from the surface of A and the second from the sur-
face of B. Given the rather large numbers of interface con-
stants, the corresponding energy spectra are essentially
gaussian, with a standard deviation that is easy to com-
pute from the composition in amino acid types (not
shown). The distribution mean is taken to be the same as
that of our decoy sets. The 2-class random energy spectra
are shown in Fig. 6 (lefthand panels; thick lines). We see
that our decoy sets lead to more diverse energies than the
random energy model.

Finally, for 1AR0, 1BJF, and 1FBT, Fig. 7 illustrates our
ability to discriminate decoys as a function of their devia-
tions from the native structure. For the best case, 1ARO,
there is a clear energy increase as one moves away from
the native structure (large dot, lower left). For 1BJF, the
native structure has a low energy, while the closest decoy
structures are much higher. For 1FBT, the energy/structure
correlation is fair, even though the native structure is not
well-discriminated; the decoys that have a lower energy
correspond to very different structures with a different,
competing binding mode. Energy/structure correlations
will be studied in more detail in future work. Notice that
the decoy sets typically contain some, but not very many
structures that are very close to native. This is not the goal
of our docking approach, which focuses on the structural
quality of the decoys (reasonable van der Waals and elec-
trostatic interactions), the size of the interfaces (which
should not be too small), and seeks to produce diverse
interfaces. For the present class of energy functions, the
number and nature of interface contacts are the most
important decoy properties, and we believe these are ade-
quately sampled with our procedure; this should lead to a
successful parameterization. In contrast, we systematically

Qint

Qint

Characterizing the dimeric protein complexesFigure 3
Characterizing the dimeric protein complexes . 
Upper panel: the distribution of interface sizes among the 
219 complexes. Lower panel: the propensity PX of each 
amino acid type X to be found in the interface (Eq. 1). Posi-
tive (negative) values correspond to types that are overrep-
resented (underrepresented) in the interfaces, compared to 
their abundance in the SwissProt data bank. The two shades 
of grey correspond to the binary amino acid classification.
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include near-native structures in the blind testing of the
energy functions further on.

Analysis of the energy parameters and amino acid classes
The simplified amino acid alphabets used here were
derived from a clustering procedure based on the

Blosum50 similarity matrix ("Blosum clustering"; see
Methods, Eq. 4). An alternative classification can be
obtained by performing a clustering based on the opti-
mized energy matrix, constructed with all 20 amino acid
types ("energy clustering"; Eq. 5). By comparing these two
classifications, we can assess the robustness and consist-

Coverage of the surface of the receptorsFigure 4
Coverage of the surface of the receptors. Two examples of decoy structure series, along with their native structures: 
1ARO (top) and 1BJF (bottom). In each case, the native complex is shown. One partner (the 'A' receptor) is arbitrarily taken as 
a reference (orange ribbon). The second partner (the 'B' ligand) is shown as a cyan tube. The decoys corresponding to B are 
schematized by sticks; constructed from the center of mass and an arbitrary atom in the decoy structure.
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Table 4: Dimer interface recognition: performance of the energy functions

Number of 
amino acid 

groups

Optimization Set 1a Optimization Set 2b

Opt.c Test.d Opt.c Testd

2 89.4 90.7 87.5 46.7 90.1 90.1 87.2 47.3
3 93.0 92.7 89.0 50.5 93.0 92.7 89.9 56.4
4 97.9 96.7 93.5 60.7 97.9 97.2 94.6 68.2
6 98.0 97.0 93.7 63.5 98.0 97.7 95.4 69.1
20 99.1 97.6 93.9 67.3 98.7 98.2 94.8 69.1

20/Bastollae - - 96.5 56.4 - - 93.3 62.6
20/Lue - - 93.6 63.6 - - 93.5 63.5

aResults for the parameter sets produced with OS1. bResults for the parameter sets produced with OS2. cResults on the Optimization set. d Results 

on the Test set. e  and Dint include only the performance for interface recognition (the fold recognition statistics are left out). eWith the 

Bastolla or Lu energy functions.

Q Q Qint Dint
e Q Q Qint Dint

e

Qint

Coverage of the surface of the receptorsFigure 5
Coverage of the surface of the receptors. Surface coverage of one partner by the other for the (homodimeric) 1AA7 
decoy series (total of 1507 decoys). For each surface amino acid in one partner, we show the number of decoys where it is 
part of the interface (ie, buried by the other partner). Polar/nonpolar amino acids are in black/grey. We see that all the amino 
acids at the protein surface participate in the interfaces of many decoys.
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ency of the simplified alphabets. The two methods give
somewhat different clusters, as shown in Fig. 1. At the
lowest level, the energy function does not give a meaning-
ful separation into two classes. It gives the same hydro-
phobic cluster as the Blosum50 matrix, with a good
internal coherence (Pearson Correlation Coefficient of R =
0.58; Eq. 5). But the Blosum50 polar group is split in two
by the energy clustering. At the six-class level, the two
methods give the exact same amino acid groupings.

Fig. 8 illustrates the best energy function for each level of
complexity, using a contour representation. The functions
are seen, again, to form a coherent hierarchy. We note that
with three, four, and six amino acid types, the best func-
tion was obtained independently of the simpler functions.
Only the 20-class function was obtained using one of the
simpler functions as a starting point (the 6-class/OS2 set,
shown on the lower right). Thus, the consistency between
the energy functions with the largest and the smaller

alphabets is largely independent of the optimization pro-
cedure.

To further check the internal consistency of our hierarchy
of energy functions, we take a "top-down" approach,
using the complete, 20-class function as a starting point to
infer simplified functions, which can be compared to the
simplified functions described above. To infer a 6-class
function, for example, we simply average the appropriate
elements in the complete matrix. Thus, the lines and col-
umns corresponding to K, R, and H in the complete 20 ×
20 matrix form a submatrix, which is averaged to give the
{KRH}{KRH} interaction in the inferred 6-class matrix.
We also compute the standard deviation over the subma-
trix, which measures the internal consistency of the
{KRH} subgroup within the complete matrix. Results for
4 and 6 classes are given in Table 5; results for 2 and 3
classes are qualitatively similar and are not shown. The

Spectra of the distribution of the energy of association of different serie of decoysFigure 6
Spectra of the distribution of the energy of association of different serie of decoys. Native and decoy energy distri-
butions for three complexes: 1AR0 (top), 1BJF (middle) and 1FBT (bottom), using the energy functions with two (left), six 
(middle), and 20 amino acid classes (right). The native energy is shown as a thin bar. Thick curves in the lefthand panels corre-
spond to a random energy model for decoy energies; see main text. Our decoy energies are significantly more diverse than the 
random energy model.
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Decoy energies versus deviation from native structureFigure 7
Decoy energies versus deviation from native structure. Decoy energies as a function of the structural deviation from 
native for three complexes: 1AR0 (top), 1BJF (middle) and 1FBT (bottom), using the energy function with 20 amino acid 
classes. The native energy is shown as a large dot (lower left). The structural deviation is measured by the rms difference 
RMSD in Cα positions.
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simplified functions inferred in this way are in general
agreement with the functions described above, obtained

by direct optimization of .

Evaluating the energy functions in blind tests
A test set of heterodimers
Our Optimization and Test sets are mostly made up of
homodimers, due to the relative scarceness of heterodim-
ers in the PDB (excluding trimers and higher order mul-
timers). To assess the effect of this, we set aside for a blind

test 23 heterodimers that are not homologous to any
structures used in the parameterization. Table 6 gives the
performance for these sets of our best energy functions, as
well as the Bastolla function. Discrimination is about 54%
(13/24), compared to about 68% for the homodimers
(Table 4). (Cross-validated) results are also listed for the
heterodimers in the two optimization sets and are quite
similar (8/17 and 9/17 with the 20- and 6-class functions,
respectively). The weaker discrimination D3 gives a success
rate of about 71% (17/24 series for which the native struc-

Q

Table 5: Four- and six-class parameters averaged over the complete energy matrix (standard deviation in parentheses) In Kca/mol.

Hα Hβ' Hγ Pα Pβ G

-2.03(0.07) 0.13(0.06) -1.70(0.05) 0.79(0.04) 0.54(0.04) -0.13(0.03) Hα
0.01(0.05) -0.43(0.05) 0.16(0.05) -0.22(0.05) 0.11(0.04) Hβ'

Hα -2.03(0.07) -0.65(0.02) 0.37(0.05) -0.22(0.06) -0.56(0.06) Hγ
Hβ 0.08(0.11) 0.05(0.07) 0.55(0.05) -0.27(0.07) 0.03(0.07) Pα
Hγ -1.70(0.05) -0.45(0.07) -0.65(0.02) 0.56(0.08) 0.24(0.13) Pβ
P 0.71(0.10) 0.02(0.19) 0.12(0.30) 0.15(0.42) 0.1(0.) G

Hα Hβ Hγ P

Contour representations of the interaction parameters for selected energy functionsFigure 8
Contour representations of the interaction parameters for selected energy functions. Top row: energy functions 
with two, three and four amino acid classes, optimized for interface recognition using Optimization Set 2. Bottom row: six- and 
20-class functions optimized over OS1 or OS2, as indicated. Contours levels in kcal/mol. Each energy matrix has a mean of 
zero. The amino acids belonging to each class are shown next to the corresponding rows and columns of each matrix. For the 
sake of clarity, the rows and columns of the 20-class matrix are not labelled individually but groupwise.
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ture is among the three best energies; see Methods).
Clearly, it is easier to discriminate the homodimers, which
usually have larger interfaces and stronger binding con-
stants. A similar behavior and discrimination quality are
seen below for the other blind tests.

Decoys constructed by other methods: Sternberg and Vakser decoys
Limited series of protein–protein structures have been
made available by Sternberg (ten series) and Vakser (five
series) and coworkers, along with 99 high-quality decoys
each. They are listed in Supplementary Material: see addi-
tional file 3, Supp3.ps. These series have been used in the
past to assess energy functions, including one function of
the same form as ours [19,32] and some more compli-
cated ones [19,21]. We use them for a blind test of our
energy functions. With the Sternberg structures, our best
energy function ranked the native complex among the top
ten structures in just three cases out of ten (Table 7). Our
best function is the 20-class function optimized using

OS2 (see Table 4); the 20-class function optimized using
OS1 gave slightly poorer results. Very poor scoring
occurred for three complexes (99–100th position for the
native structure). The 1AVZ complex, for example, has the
lowest interface similarity between the top decoys and the
native structure (as measured by the fraction of common
contacts). Its native interface is unusually small, with an
area of just 1076 Å2 and only 28 interresidue contacts
across the interface. The other failures were for 1BRC,
1BGS, 1DFJ, 1WQ1, 2PCC and 2SIC. For IBRC, two near-
native structures were ranked among the top five. These
decoys have rms deviations of just 1.6 and 1.9 Å from the
native complex, so that 1BRC can actually be considered a
near-success. For 1BGS, the parameters optimized using
OS1 correctly ranked the 1BGS experimental structure
first. For 1UGS, 2PCC and 2SIC, a near-native decoy is
highly-ranked (3rd, 7th and 3rd, with rmsd's of 5.3, 4.6
and 3.2, Å respectively). For WQ1, the native structure is
ranked last; however, decoys 4 and 5 are ranked 6th and

Table 6: Energy rank for heterodimeric structures. Energy rank of the native structure, compared to its decoys, using various energy 
functions. a23 hetermodimers with their decoys, not used in the parameterization. The 20- and 6-class energy functions used are the 
ones optimized on OS2. bHeterodimers in the TS1 and TS2 data sets. For the structures in TS1 (bottom 11), the OS1 energy functions 
are used; for those in TS2 (top 6), the OS2 functions are used (i.e., we show cross-validated results). cFraction of successful series. D 
and D3 correspond to strong discrimination (native structure ranked first) and weak discrimination (native ranked among top three; 
see Methods).

Blind heterodimer seta TS1, TS2 setsb

PDB ID 20Cl Bastolla 6Cl PDB ID 20Cl Bastolla 6Cl

1ai7 1 1 1 1abr 4 2 3
1as4 1 1 1 1aui 1 1 1
1bpl 1 1 1 1ay7 3 3 2
1clv 2 1 2 1blx 3 6 3
1dj7 4 4 4 1c1y 3 4 3
1dow 1 1 1 1dkf 2 47 1
1eud 8 9 7 1ugh 1 3 1
1f0c 1 1 1 1efv 1 1 1
1ksg 5 3 5 1ezq 1 1 1
1ku6 3 2 4 1f3v 67 145 36
1lot 1 1 1 1fle 19 4 9
1lpb 20 8 16 1hdm 1 1 1

1mhm 1 1 1 1itb 1 1 3
1mtp 1 1 1 1phn 1 1 1
1mzw 3 3 4 1qav 1 2 1
1npe 4 4 2 1smp 14 69 2
1nw9 1 10 1 1stf 2 5 1

1n52 10 1 9 Dc 8/17 6/17 9/17
1o5m 3 1 2 D3 13/17 9/17 15/17

1qge 1 1 1
1rke 1 1 1
1rtj 1 2 1
1ubt 1 2 1
4sgb 5 6 5

Dc 13/24 13/24 13/24
D3 17/24 18/24 16/24
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10th. 1DFJ gives the worst results. The native structure is
ranked last by our energy functions. No decoy ressem-
bling the native structure is ranked among the top ten
structures. 1DFJ has a native interface that is poor in
hydrophobic residues (only 27% of the contacts). In con-
trast, some of its decoys have interfaces rich in hydropho-
bic residues.

Our energy function was more successful with the Vakser
set, with one failure and four successes (native structure
among the top ten). One of the successful Vakser targets
(1CHG-1HPT) is also part of the Sternberg set (labelled
1CGI in Table 7; also successful). However, part of the
structure is missing in the Vakser complex (14 amino
acids) and the decoy sets are different; therefore, we con-
sider the Vakser target to be a separate test. Overall, we
find that our energy function behaves most successfully
when the native interface has a fairly typical hydrophobic/
hydrophilic profile. This presumably reflects the predom-
inance of homodimers in the training sets (see above).

We also did calculations with two energy functions devel-
oped by Bastolla et al [20] and Lu et al [19]. With our own
Test Sets and the Bastolla function, we obtained Dint =

56.4% and  = 96.5% for Test Set 1, and Dint = 62.6%

and  = 93.3% for Test Set 2. With the Lu et al function,

we obtained Dint = 63.6% and  = 93,6% for Test Set 1,

and Dint = 63.5% and  = 93.5% for Test Set 2. These

results (Table 4) are somewhat poorer than the ones
obtained with our own functions, except for the Bastolla

 with Test Set 1. The correlation coefficient between

our OS2 20-class function and the Bastolla function is
0.70. For the 15 Sternberg and Vakser blind tests, the Bas-
tolla and Lu functions gave six and eight clear successes,
compared to seven with our best function (eight, includ-
ing 1BRC; Table 7). Performance for near-native decoys
was qualitatively similar for all three functions.

Qint

Qint

Qint

Qint

Qint

Table 7: Blind tests of dimer interface recognition: the rank of the native structure. aThe top (1AVZ-2SIC) and middle groups are the 
Sternberg and Vakser test sets, respectively (see Methods). The lower group (T04–T19) are the 2005 CAPRI target structures. 
bColumns 2–5 correspond to the energy functions optimized with OS1 and OS2, using 20, 4, or 6 amino acid classes, as 
indicated.cEnergy functions from Refs. [19], [20]. Numbers in bold show cases where the native structure is ranked among the top ten 
structures.

PDB IDa 20Cl OS1b 20Cl OS2 6Cl OS2 4Cl OS2 Luc Bastollac

1AVZ 73 35 67 100 54 40
1BGS 1 65 62 39 16 1
1BRC 76 37 41 31 5 70
1CGI 56 1 1 1 1 18
1DFJ 100 100 100 100 78 100
1FSS 24 1 1 1 1 1

1UGH 11 10 20 10 10 71
1WQ1 99 100 100 100 97 98
2PCC 20 72 82 79 25 23
2SIC 17 48 56 17 14 96

5CHA-2OVO 6 7 3 2 2 3
2PTN-4PTI 5 9 9 33 4 10
1SUP-2CI2 4 4 4 4 5 9
1A2P-1A19 31 58 52 27 20 17

1CHG-1HPT 2 7 4 6 2 4

T04 9 8 10 11 11 1
T05 64 61 62 62 60 60
T06 2 3 3 1 4 3
T07 58 63 62 56 58 64
T08 84 52 68 96 136 145
T09 165 162 164 165 159 164
T11 1 1 2 1 1 1
T12 9 5 6 2 1 5
T13 194 176 179 175 174 175
T14 68 121 91 125 18 43
T15 12 3 4 7 1 1
T18 25 8 7 1 2 4
T19 3 38 22 1 37 6
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With the Sternberg decoys, there are small internal defor-
mations of the two partners, relative to the experimental
dimer structure. Here, we take these into account, scoring
each structure by its binding free energy. In contrast, Lu et
al [19] employed the interface free energy, which ignores
internal deformation. This leads to a better ranking of the
native structure, but is physically questionable, since
dimerization is governed by the total binding free energy,
and not the interface free energy alone.

Finally, we note that our best 4- and 6-class functions,
remarkably, gave results of practically the same quality as
the 20-class functions (Table 7).

Structures submitted to the CAPRI experiment
The Capri structure sets are expected to be the most diffi-
cult test. Indeed, the structures submitted are not decoys
in the usual sense, but attempts by the participating
groups to predict the target structure. All the target struc-
tures were determined by Xray crystallography, with an
experimental resolution of 3.0 Å or better. We considered
13 of the 19 CAPRI targets. The others were discarded for
technical reasons (eg, gaps or insertions in the decoy struc-
tures). In Tables 7, 8, we report results with two 20-class
energy functions, optimized using OS1 and OS2, respec-
tively. The OS2 function gave distinctly better results for
our own structure sets (Table 4) and for the Sternberg
blind tests, above. Therefore, we take this as our best
energy function.

In four cases, T06, T11, T12 and T15, our best energy func-
tion correctly identified the native complex within the five
lowest-energy structures. In two cases, T04 and T18, the
experimental complex was ranked within the top ten. T04,

T05, and T06 are complexes between an alpha-amylase
and three different camelide antibodies. T05 has slightly
fewer polar–polar contacts than T04 and T06. T11 and
T12 correspond to the same cohesin-dockerin complex.
For T11, CAPRI participants received the unbound
cohesin crystal structure and the NMR structure of a
homologous dockerin domain, sharing 50% sequence
identity with T11. The decoys thus involve a homology-
modelling of the T11 dockerin moiety. For T12, they
received the same, unbound cohesin structure, while the
dockerin moiety was from the crystal structure of the com-
plex. Although the two complexes correspond to the same
native interface, their sets of decoys, submitted by the
CAPRI participants, are completely different. Therefore,
we count them as separate targets. The native interfaces for
T06 and T11/T12 feature similar kinds of interactions,
with 45% of hydrophobic-hydrophobic contacts (the
{LVIMCGPTASFYW} class), 43% of polar–polar contacts
(the {EDNQKRH} class), and 12% of polar–hydrophobic
contacts (averaged over the 3 structures). The percentage
of interface contacts of each type are given in Table 8,
along with the total number of contacts, relative to the
native structure. T11 and T12 had 190 and 214 decoys,
respectively. Our successes for T15 (Colicin D catalytic
domain-Colicin D immunity protein complex) and T18
(a xylanase–inhibitor complex) are notable, as their inter-
face hydrophobicities are distinctly untypical, with a pre-
dominance of hydrophobic–polar interactions and a large
number of polar–polar interactions.

Among the failures, T05 is the worst case. Note that none
of the models submitted by the CAPRI participants for
T05 (or T04) were acceptable. Thus, the 66 T05 "decoys"
included only a few structures that were at all similar to

Table 8: Native complex discrimination and residue contacts at the interfaces of submitted and target CAPRI structures

Interface contactsb

Target number Native ranka HH HP PP Top decoy's interface 
contact number Fc

T04 9 8 53 (49.8) 32 (39.7) 15 (10.4) 1.1
T05 64 61 42 (56.8) 51 (34.4) 7 (8.7) 1.4
T06 2 3 46 (43.1) 33 (37.1) 21 (19.9) 1.0
T07 58 62 23 (25.7) 43 (44.9) 35 (29.3) 1.3
T08 84 61 7 (40.2) 77 (42.6) 16 (17.1) 4.3
T09 165 162 27 (39.2) 53 (42.1) 20 (18.6) 2.2
T11 1 1 48 (42.5) 41 (42.8) 11 (14.6) 1.0
T12 9 5 48 (53.5) 41 (36.9) 11 (9.5) 1.1
T13 194 176 65 (64.2) 33 (30.5) 2 (5.3) 1.0
T14 68 121 26 (31.4) 51 (44.2) 23 (24.4) 0.6
T15 12 3 18 (17.3) 44 (48.6) 38 (14.5) 0.8
T18 25 8 36 (49.3) 49 (43.1) 14 (7.6) 1.0
T19 3 38 36 (45.1) 44 (40.0) 20 (14.9) 0.6

aValues for the 20Cl/OS1, OS2 functions, already given in Table 7. bThe percentage of interface contacts of each type, averaged over the 99 decoy 
structures: hydrophobic-hydrophobic (HH), hydrophobic-polar (HP), polar–polar (PP); values for the native structure in parentheses. cThe relative 
contact number F = Ndec/Nnat (Eq. 2) of the decoy ranked first by the 20-class OS2 energy function.
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the native (eg, only nine have at least one of the native
interface contacts). The best "decoy" submitted for T05
was ranked 29th by our energy function. The T07, T08 and
T09 interfaces are rather poor in hydrophobic contacts
(from 26 to 40% of the interface contacts). Their decoy
sets all include interfaces with more typical hydrophobic
contents. This may explain the poor ranking of the native
structure for these three targets (62th out of 71, 73rd out
of 180, 162nd out of 165 for T07, T08, T09, respectively).

The other three failed trials, T13, T14 and T19, correspond
to large decoy sets (211, 251 and 237 submitted struc-
tures), all of a very good quality (as judged by the
Charmm19 energy function, for example). The T13 set
includes 53 submitted complexes that present at least one
native contact. Among the decoys closest to the native
structure, the best one (contact similarity q of 0.87; i.e.,
87% of its contacts are native-like) is still poorly ranked by
our energy function (44th position). The T14 decoy set is
of an even better quality, with half of its 251 structures
featuring some native contacts. In this case, the decoy that
is closest to the native structure is ranked 18th by our best
function. Our result for the T19 complex (an ovine prion–
Fab complex) is somewhat better. The structure that is
closest to the experimental structure (with a contact simi-
larity q of 0.53) is ranked 2nd by our energy function.
Overall, the Bastolla and Lu energy functions performed
in a similar fashion (Table 7). They both failed to correctly
rank T05, T07, T08, T09, T13 and T14.

Finally, to illustrate further the occurrence of false positive
and false negative predictions, we considered the nine
CAPRI series that contain at least one near-native decoy
(T06, 7, 8, 12, 13, 14, 15, 18, 19). For six of these, we
ranked at least one near-native decoy among the top ten
structures. In all, with the 20-class function, 27% of the
native or near-native structures were recognized (highly
ranked); 30% were recognized with the 6-class function.

Discussion
The quality of interface recognition
An important goal of modern genomics is to identify
interacting proteins and characterize the structure and
function of the corresponding complexes. A promising
strategy is to assemble putative complexes from individ-
ual protein structures and characterize them by comput-
ing a binding free energy. Here, we have developed
simple, empirical energy functions for interface recogni-
tion. We used a coarse-grained description, at the residue
level, along with the simplest possible, stepwise, distance-
dependence. More compex models are known to give
superior results [10,18,19,21,26,33]. Here, however, we
pursued two more limited goals. First, we examined
whether a large computational effort would lead to better
parameterization and performance of this simplest class

of models. Second, we examined what size amino acid
library is needed for optimal performance.

Thanks to increased computing power, we employed
many more structures and many more decoys than previ-
ous workers. The decoys were both diverse and structur-
ally-realistic (for example, in terms of interface size),
thanks to a realistic, flexible docking method of construc-
tion. In particular, van der Waals and electrostatic contacts
between partners are reasonable. The decoy set was char-
acterized in some detail; more details will be given else-
where. Our search of parameter space was also
considerably more thorough than some past work. This is
important for the 6-, and especially the 20-class amino
acid alphabets, which have 21 and 210 adjustable param-
eters, respectively. For these, we considered a total of over
140,000 starting guesses for the parameters. We also
included fold recognition in the optimization criterion
(using additional sets of target structures and decoys),
which should help to restrain the parameters to physically
meaningful values. Finally, by constructing a hierarchy of
energy functions, with amino acid alphabets of increasing
complexity, we could focus the parameter search effec-
tively for the larger alphabets. For example, our best 20-
class function was obtained using a 6-class function as a
starting point. The performance of our method is meas-
ured by its ability to identify the experimental, native
interface from among sets of decoys.

Despite the improvements made here, the performance of
our functions is very similar to those (of the same com-
plexity) developed by Bastolla, Lu, and coworkers. For the
CAPRI tests, we had six successes out of 13 targets with our
6- and 20-class functions, while our 4-class function actu-
ally gave a seventh near-success (the native T04 structure,
ranked 11th). The Bastolla function gave seven successes
and the Lu function, six. The successful cases are almost
the same with all the functions, and behavior for near-
native decoys is similar. This is a bit disappointing, given
the extensive computational effort in the present work.
However, this effort was needed to establish firmly that
the performance limit of this class of models has been
reached.

A coherent hierarchy of amino acid alphabets and models
Our second goal was to examine a hierarchy of amino acid
alphabets and models. This analysis has produced new
insights into both the similarities and differences among
amino acids, and the diversity required for protein–pro-
tein recognition. The amino acid groupings were initially
obtained by clustering the Blosum50 similarity matrix
[30], which is itself based on the mutational frequencies
seen in multiple sequence alignments [34]. The muta-
tional frequencies are mainly determined by factors other
than interface recognition. Presumably, the dominant
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mutational constraint is the fold and stability of the indi-
vidual protein [35]. Protein–protein recognition is one of
several secondary constraints, along with folding kinetics
and robustness towards mutations [36]. Nevertheless, the
Blosum clustering leads to good quality interface recogni-
tion. At the 4-class level, for example, two thirds of the
native structures in our data set are ranked first, among
over 1300 high-quality decoys. This is consistent with the
idea that similar physical-chemical effects operate in pro-
tein folding and protein–protein association.

The best energy functions at each level were obtained
from random initial guesses, except for the 20-class func-
tion, which was obtained from a 6-class function. Never-
theless, the energy functions form a consistent hierarchy,
with qualitatively similar parameters at all levels. This is
especially striking in the contour representation of Fig. 8.
From the complete energy matrix, we can also infer amino
acid groupings (left of Fig. 1). The 20-class matrix gives
back the Blosum 6-class grouping, as expected (because of
its construction from a 6-class function). At the 4-class
level, there is an interesting difference between the two
groupings. Blosum splits the aromatics {FWY} into their
own group, whereas the energy matrix classification splits
the polar amino acids into two groups, based partly on
electrostatic charge: {DENQ} and {HKR}. At the 6-class
level, polar–polar interactions are repulsive, except for the
{DENQ}{HKR} interaction, which is reasonable. On the
other hand, F, W, and Y have much higher interface pro-
pensities than the other hydrophobics except Met, so that
an aromatic group is also reasonable. The 6-class function
captures both of these effects. The internal coherence of
the 4- and 6-class energy groupings is very high (see corre-
lation coefficients of each group, left of Fig. 1). In future
work, it would be interesting to also consider 5-class func-
tions.

Conclusion
The good performance of the 4- and 6-class functions,
compared to the 20-class function, may be partly due to
the limited structural data available today for parameteri-
zation. If the number of known dimeric structures (partic-
ularly heterodimers) were to increase substantially, there
may be enough information to parameterize a superior
20-class function. Nevertheless, the good performance
with four and six classes suggests that a moderate amino
acid diversity is sufficient to establish specific protein–
protein recognition. One might speculate that this facili-
tated the emergence of protein–protein interaction net-
works in the course of evolution. Indeed, it seems much
easier to perform a "coarse-grained" optimization of an
interface, rather than a "detailed" optimization; i.e., it
seems easier to optimize the distribution of interface resi-
dues among a limited set of four or six groups, rather than

optimizing the exact amino acid distribution at the inter-
face.

The present models can serve as the basis for future, more
complex models that use a reduced amino acid library but
include additional physical effects [22]. More complex
models are needed to detect transient complexes, which
are likely to be missed by the present, coarse-grained
model. An improved model could account for the dis-
tance dependency of electrostatic interactions, either
between polar residues or between polar residues and sol-
vent. Backbone contacts between protomers are another
possibility. With twenty amino acid types, such models
lead to a very large number of adjustable parameters. A
high-quality, 6-class grouping could provide a better start-
ing point for a model that balances efficiency and realism.
The decoys sets created here are available on request and
will also be of use, especially as flexible docking strategies
become more common.

The models developed here have already proven useful for
the inverse protein folding problem (unpublished data).
Their good performance for the difficult CAPRI tests sug-
gests that they will also be useful for exploring protein–
protein interactions at the proteome scale, particularly for
strongly interacting protein–protein complexes such as
those used in the model parameterization. Improved,
more sophisticated models will have an increased ability
to detect the weaker, transient complexes that are also
common in the proteome.

Methods
Monomeric structure selection
We used 810 X-ray structures from the PDBselect collec-
tion [37]. Sequence identity between all pairs was less
than 25%. The structures were monomeric and did not
contain any cofactors or metal ions. Crystallographic res-
olution was better than 3.3 Å (average of 2.0 Å). They were
divided into two sets, having similar average chain lengths
(around 190 amino acids). 615 proteins were used as an
Optimization set, for the parameterization of the energy
functions below. The other 200 were used as a Test set, for
evaluating the parameters' performance.

Monomeric decoys
For each native structure, we performed a gapless thread-
ing of the sequence onto segments of matching size from
all the structures in our 810 protein set. On average, we
obtained 349 decoys per native structure. For each amino
acid position in a decoy, the most probable rotamer for
the given amino acid type was arbitrarily taken from the
Dunbrack backbone-independant rotamer library [38]
and constructed. Thus, steric constraints could be violated
in the decoy structures, because the rotamers were not
optimized with respect to the particular backbone and
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sidechain environment. With the energy functions used
below, this is not a difficulty. Furthermore, this simple
method for constructing monomeric decoys was deemed
sufficient, because our main focus is not fold recognition,
but the identification of protein–protein complexes.

Dimeric structure selection
We used 219 dimer structures from the DIMER-1 set of Lu
et al [19], which contains 340 structures. We retained only
dimers, as opposed to higher-order complexes. This dis-
tinction is not always straightforward, and one higher-
order complex was identified in the data set at a late stage.
It is not expected to affect the results, judging by the sim-
ilar parameters obtained with OS1 and OS2, or when an
optimized parameter set is refined further with the higher-
order structure left out. All the structures have a crystallo-
graphic resolution better than 2.5 Å, 30 interface contacts
or more (using a 4.5 Å distance cutoff), and a pairwise
sequence identity with any other member of the set below
35%. All correspond to biological dimers, as opposed to
crystal contacts. This was established by running an auto-
mated test with the PQS server [39] and by checking the
literature.

Our final set included 195 homodimers and just 17 het-
erodimers. A second set of 23 heterodimers was set aside
to perform blind tests after parameterization was finished.
The predominance of homodimers was largely imposed
by the structures available in the PDB [40]. A typical
homodimer is expected to have a larger, somewhat more
hydrophobic interface, and a stronger binding constant,
compared to a typical heterodimer. This is both a limita-
tion and an advantage for our purposes. We expect that
there will be a stronger dimerization signal in the
homodimer interfaces and, furthermore, the signal is
repeated twice, since the complexes are almost always
symmetrical. This should facilitate parameterization,
without damaging the heterodimer performance. Indeed,
heterodimer association is driven by largely the same
physical effects as homodimerization, so that the easier
homodimer parameterization should carry over and be
applicable to heterodimers. This is confirmed by our
blind tests on the separate set of 23 heterodimers, which
are not used in any step of the parameterization, and are
not homologous to any of the proteins used.

Dimeric decoys
Decoy sets were built by a docking procedure, starting
from each native, dimeric structure. First, the two, native
partners were shifted apart through a random translation
and rotation of one of the partners. Second, rigid body
minimization was done, using the Charmm19 molecular
mechanics energy function [41]. No solvent model was
included; ie, electrostatic interactions were computed
with a dielectric constant of one. A harmonic pulling

restraint was applied between the two centers of masses.
The target distance was the native separation distance; the
force constant was 60 kcal/mol/Å2. After 100 steps of rigid
body minimization, the number of interprotein contacts
was evaluated as the number of pairs of residues with at
least one interatomic distance below 4.5 Å. We then com-
pared the number of interprotein contacts in the decoy
and the native complex. We define the "relative contact
number" F of a given structure by:

where Ndec, Nnat are the number of residue–residue con-
tacts in the decoy and native structure, respectively. If F
was at least 80%, the decoy coordinates were output at
this stage. If not (the vast majority of cases), minimization
was continued, without the pulling restraint, but allowing
now intramolecular deformation of one of the partners.
Also, an electrostatic contrast was introduced by enhanc-
ing the atomic charges on the two partners (with respect
to the Charmm19 values), to increase the interprotein
attraction. The charges of one partner were all increased
by 0.25e, while the charges of the other partner were
decreased by 0.25e. Intraprotein sidechain–sidechain
electrostatic interactions were omitted and intraprotein
sidechain-backbone electrostatic interactions were
reduced by 1/2.

After 50 steps of Powell minimization [42], we compared
the decoy structure to the native one. For the "deforma-
ble" partner, we performed a best fit of the monomer on
its native structure and evaluated the "intramolecular"
rms deviation between the two, considering its sidechains
only. If the sidechain deviation was above 4.5 Å, the decoy
was discarded. Decoys with F < 0.45 were also discarded.
Decoys with a van der Waals energy greater than 4000
kcal/mol were also discarded. If the decoy was too similar
to the native complex it was discarded. The criterion for
similarity was the rms deviation for the "mobile" partner
in the decoy and the native complex: if the rms deviation
was less than 3 Å, the decoy was discarded. The deviation
was computed without superimposing the two structures,
so that it measures the overall motion of the mobile part-
ner away from its starting, native position. Finally, to
eliminate redundant decoy structures, we computed rms
deviations between all pairs of decoy structures, rejecting
decoys that were within 3.5 Å of another decoy. In all, we
obtained a total of about 290000 decoys, for 219 native
complexes, giving an average of 1326 decoys per native
complex, with a minimum of 277 and a maximum of
1843 decoys. Typically, several tries were needed per
decoy, so that the first step of the protocol (random dis-
placement of one partner) was done over one million
times.

F
N
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nat
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Page 18 of 22
(page number not for citation purposes)



BMC Bioinformatics 2007, 8:270 http://www.biomedcentral.com/1471-2105/8/270
To assess the quality of decoy structures, we used a
detailed, atomic energy function, corresponding to the
Charmm19 molecular mechanics force field [41]. The sol-
vent environment was modelled with the ACE variant
[43] of the Generalized Born model, parameterized as in
[44]. These calculations were done with the XPLOR pro-
gram [45].

Empirical, residue-based energy function
Consider a protein with the amino acid sequence S and a
given three-dimensional conformation. We use a residue-
based energy function, of the form:

where the sum is over all pairs of amino acids i, j in the
protein. U(Si, Sj) is an interaction energy, which depends
on the amino acid types Si, Sj at positions i, j. Cij is one if
the pair i, j is close together, and zero otherwise. Specifi-
cally, i, j are assumed to interact if they have at least one
pair of nonhydrogen atoms within a distance of 4.5 Å, and
if they are not first or second neighbors along the
polypeptide chain; i.e., |i – j| ≥ 3. We refer to U as an
energy matrix, and to C as a "contact map".

With a complete amino acid alphabet of twenty types, the
210 elements in the energy matrix U are all different. With
a reduced alphabet, amino acid types belonging to the
same group share the same coefficients in the energy
matrix U. For example, with a binary, hydrophobic/
hydrophilic alphabet, the 210 elements in U fall into just
three categories, and have just three possible values, corre-
sponding to hydrophobic–hydrophobic, hydrophobic–
hydrophilic, or hydrophilic–hydrophilic pairs. In what
follows, we consider alphabets with two, three, four, six,
and twenty classes.

Reduced amino acid alphabets
To define reduced amino acid alphabets, we mainly used
a hierarchical clustering proposed by Levy and coworkers
[30], shown on the right of Fig. 1. It is based on the fol-
lowing similarity measure between two amino acid types
x, y:

M is the Blosum50 matrix [34], and the sums are over the
twenty amino acid types. The clustering method assigns
the two amino acid types with the highest similarity to a
group. Then, the pair with the next-highest similarity
value is considered. If one member of this pair belongs to
the first group, the other member is added to that group.

If not, the pair is assigned to a new group. This process is
repeated until all the amino acid types are divided into a
predefined, desired number of groups.

We also performed our own groupings, using the same
clustering method, but a different similarity measure,
defined by our own empirical energy function. In this
case, the similarity between two amino acid types was
related to the similarity between the associated coeffi-
cients in the energy matrix U, constructed with the com-
plete amino acid alphabet of twenty types. The pairwise
similarity was defined as the Pearson correlation coeffi-
cient between their sets of coefficients in the energy matrix
U:

Here, x and y are two different amino acids, Ux, i is the pair-

wise energy of interaction between the residues x and i,

 is the average over the Ux, i, and similarly for y.

Optimizing the energy function: general method
We define different energy functions, corresponding to
amino acid alphabets of varying complexities. For a given
amino acid alphabet, the energy function is optimized by
adjusting the elements of the corresponding energy matrix
U. The goal is to assign low energies to conformations that
ressemble the native structure (which can be monomeric
or dimeric). We follow a method introduced by Bastolla
and coworkers [20]. To characterize the similarity
between two conformations, with the contact maps C and
C', we consider the number q(C, C') of contacts that are
present in both maps, divided by the number of contacts
in the larger of the two maps (the one with the most con-
tacts). q(C, C') is referred to as the "contact similarity".
Then; for any native structure, we compute the Boltz-
mann-averaged overlap Q with all of its decoys:

where the sum is over all the decoys, C is the contact map
of a decoy, Cnat is the native contact map, k is Boltzmann's
constant, and T is the absolute temperature. If the Boltz-
mann-averaged overlap Q is close to one, then the lowest-
energy conformation is either equal to the native structure
or very close to it. At physiological temperatures, a high
value of Q implies that structures very different from the
native one have high energies, while native-like structures
have low energies. The energy landscape is said to be well-
correlated [20].
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The interaction parameters are chosen to maximize the

quantity ,

where the sum is over all the proteins of our Optimization

set. Following Bastolla et al, we optimize  through a

gradient ascent method, adjusting the energy matrix U
iteratively, according to the rule:

where t, t + 1 are successive iterations; the sum is over the
proteins S in the Optimization set; q0 is the overlap
between the minimum energy conformation and the
native structure of S; δ and γ are numerical parameters,
chosen to facilitate convergence to a maximum. Typical
values were 0.2 and 0.0075. For more details, see [20].

For monomer structure recognition, we optimized the
energy function using the 615 native structures in our
Optimization set, along with their associated decoys. For
dimer recognition, we optimized the energy function
using a combination of monomeric and dimeric struc-
tures. We considered two Optimization sets, each contain-
ing 109 or 110 dimeric structures and their associated
decoys, along with 110 monomeric structures and their
decoys. We denote the Optimization sets by OS1 and
OS2. The dimeric structures were assigned randomly to
OS1 or OS2. The monomeric structures were chosen so
that their average chain length is equal to that of the Mon-
omeric Optimization Set, above (189 amino acids). The
OS2 dimer structures form the Test Set 1 (TSl); the OS1
dimer structures form Test Set 2 (TS2). The same mono-
meric structures were used for both OS1 and OS2. Notice
that cross-validation, below, is done using the perform-
ance of the energy functions on interface recognition only.
Parameter bias towards the monomer structures can exist
but is not a concern. Notice also that with the normaliza-
tion of Q in Eq. (6), the monomers and dimers have the
same weight in the combined optimization, despite the
larger number of decoys for the dimers.

Optimizing the energy function: starting parameters

For the more complex alphabets, the number of energy
parameters to be optimized is large (210 in the case of the
complete amino acid alphabet). This means that there are

many local maxima for , and the optimization must be

done repeatedly, with multiple starting points. We used

three methods, both for the monomeric and dimeric pro-
tein sets. For the simplest alphabets, with two or three
amino acid types, we performed a systematic scan of pos-
sible parameter choices. The range of values considered
was from -10 to + 10 kcal/mol, with a step of 0.25 (binary
alphabet) or 0.5 (ternary alphabet). For the larger alpha-
bets, a systematic scan was no longer possible; instead, we
used 64000 random starting points, with each parameter
drawn randomly from the same range of -10 to +10 kcal/
mol. In addition, for alphabets with three amino acid
types or more, we used starting points taken from the opti-
mization of the smaller alphabets. Indeed, the alphabets
form a hierarchy, where the finer groupings are subdivi-
sions of the larger groupings. For example, the binary
alphabet uses the groups {LVIMCAGSTPFYW} (hydro-
phobic) and {EDNQKRH} (hydrophilic), while the ter-
nary alphabet splits the hydrophobic group into two
subgroups.

The ternary optimization can be started from the binary
optimum, assigning initially the same, "binary" parame-
ters to the two hydrophobia subgroups. As the optimiza-
tion proceeds, the parameters associated with two
subgroups will shift to different values.

For the alphabets with 6 and 20 classes, to explore the
effect of an overall scaling of the energy parameters, we
also generated sets of random starting parameters with a
fine-grained sampling of possible values, limited to the
range -1 to +1 kcal/mol. These parameter sets were opti-
mized in combination with four different values of the
temperature T (Eq. 6), corresponding to kT products of
0.6, 1.0, 1.5, and 4.0 kcal/mol. 2000 parameter sets were
optimized with each temperature, for each each alphabet,
giving 8000 additional parameter sets per alphabet.

Testing the energy function

To test the potentials, we used a cross validation proce-
dure. As described above, the set of native structures were
split into Optimization and Test sets. Only the Optimiza-

tion set was used in Eqs. (7, 8), above. The total  was

then evaluated for the Test set. A value close to 100%
means that the native structure is almost always ranked as
the lowest-energy conformation. We also compute a "dis-
crimination" percentage. We mostly employ a "strong"
discrimination, D, which is the fraction of native struc-
tures that are ranked as the lowest-energy conformation
(compared to their decoy set). We occasionally compute a
"weaker" discrimination, Dk , which is the fraction of

native structures that are ranked among the k lowest-
energy conformations (so that D = D1).
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Another form of cross validation was done by performing
several blind tests. In one test, we used our energy func-
tions to rank native and decoy structures available on the
web, from Vakser, Sternberg and coworkers. Vakser's
decoys sets were produced by a rigid body docking
method, using the GRAMM program at "high resolution"
(grid step ≤ 2 Å) [27]. They correspond to five biological
dimeric complexes. Each decoy series includes 99 decoys.
A few of these are within 5 Å (rms deviation) of the native
structure; the others are farther away. The Sternberg
decoys were produced by a rigid body docking method
using the MultiDock program [28]. They correspond to
ten biological dimeric complexes, including one that is
present in the Vakser set (with different decoys). Each
series includes 99 decoys. An electrostatic filter is used
during the docking simulations, and all ten decoy series
include at least three decoys that are close to the native
structure. The complexes are listed in Supplementary
Material.

Finally, in another blind test, we applied our energy func-
tions to native and decoy structures of protein dimers sub-
mitted to the CAPRI experiment for protein–protein
complex structure prediction (rounds 2–5) [8,9]. We con-
sidered 13 native structures, with an average of 173 decoys
each and a minimum of 66.
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