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Abstract: Bronchopulmonary dysplasia (BPD) and chronic obstructive pulmonary disease 

(COPD) are chronic lung diseases of human infants and adults, respectively, that are character-

ized by alveolar simplification. One-third of the infants with severe BPD develop pulmonary 

hypertension (PH). More importantly, PH increases morbidity and mortality in BPD patients. 

Additionally, COPD is a common respiratory morbidity in former BPD patients. The lack of 

an appropriate small animal model wherein echocardiography (Echo) can demonstrate PH is 

one of the major barriers to understand the molecular mechanisms of the disease and, thereby, 

develop rational therapies to prevent and/or treat PH in BPD patients. Thus, the goal of this 

study was to establish a model of experimental BPD and PH and investigate the feasibility of 

Echo to diagnose PH in neonatal mice. Since hyperoxia-induced oxidative stress and inflam-

mation contributes to the development of BPD with PH, we tested the hypothesis that exposure 

of newborn C57BL/6J mice to 70% O
2
 (hyperoxia) for 14 days leads to lung oxidative stress, 

inflammation, alveolar and pulmonary vascular simplification, pulmonary vascular remodeling, 

and Echo evidence of PH. Hyperoxia exposure caused lung oxidative stress and inflammation as 

evident by increased malondialdehyde adducts and inducible nitric oxide synthase, respectively. 

Additionally, hyperoxia exposure caused growth restriction, alveolar and pulmonary vascular 

simplification, and pulmonary vascular remodeling. At 14 days of age, Echo of these mice 

demonstrated that hyperoxia exposure decreased pulmonary acceleration time (PAT) and PAT/

ejection time ratio and increased right ventricular free wall thickness, which are indicators of 

significant PH. Thus, we have demonstrated the feasibility of Echo to phenotype PH in neonatal 

mice with experimental BPD with PH, which can aid in discovery of therapies to prevent and/or 

treat BPD with PH and its sequelae such as COPD in humans.

Keywords: hyperoxia, oxidative stress, malondialdehyde adducts, inflammation, inducible 

nitric oxide synthase

Introduction
Bronchopulmonary dysplasia (BPD) is a chronic lung disease of infancy that 

results from interrupted lung alveolar and vascular growth.1,2 The pathogenesis and 

pathophysiology of BPD is identical to chronic obstructive pulmonary disease (COPD), 

Correspondence: Binoy shivanna
section of neonatology, Baylor College 
of Medicine, 1102 Bates avenue, MC: 
FC530.01, houston, TX 77030, Usa
Tel +1 832 824 6474
Fax +1 832 825 3204
email shivanna@bcm.edu 

Journal name: International Journal of COPD
Article Designation: Original Research
Year: 2016
Volume: 11
Running head verso: Reynolds et al
Running head recto: Phenotypic assessment of pulmonary hypertension
DOI: http://dx.doi.org/10.2147/COPD.S109510

http://www.dovepress.com/permissions.php
https://www.dovepress.com/terms.php
http://creativecommons.org/licenses/by-nc/3.0/
https://www.dovepress.com/terms.php
www.dovepress.com
www.dovepress.com
www.dovepress.com
http://dx.doi.org/10.2147/COPD.S109510
https://www.facebook.com/DoveMedicalPress/
https://www.linkedin.com/company/dove-medical-press
https://twitter.com/dovepress
https://www.youtube.com/user/dovepress
mailto:shivanna@bcm.edu


International Journal of COPD 2016:11submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

1598

reynolds et al

which is a chronic lung disease of human adults.3 Alveolar 

simplification is a unique histological pattern of BPD that 

is characterized by larger but fewer alveoli with decreased 

septation.2 Despite major advances in the respiratory care of 

premature infants, BPD remains among the most prevalent 

condition in these patients.4,5 Infants with BPD are more 

likely to have long-term pulmonary and neurodevelopmental 

morbidities.4,6 Importantly, COPD is a common long-term 

respiratory morbidity of former BPD patients.7–10

Evidence implicates hyperoxia-induced generation of 

reactive oxygen species (ROS) and lung inflammation as 

the major contributors to the development of BPD and 

its sequelae.11,12 Supplemental oxygen (O
2
) is commonly 

administered as a life-saving measure in patients with 

impaired lung function. Although it relieves the immediate 

life-threatening consequences transiently, O
2
 may also exac-

erbate lung injury.13 Excessive O
2
 exposure leads to increased 

ROS production, and the generated ROS react with nearby 

molecules (eg, protein, lipids, DNA, and RNA) and modify 

their structure and function, resulting in chronic pulmonary 

diseases such as BPD and COPD.14–18

Pulmonary hypertension (PH) is a severe form of pulmo-

nary vascular disease that affects 25%–43% of infants with 

moderate-to-severe BPD.19,20 The pathogenesis of PH in BPD 

is complex and may result from interactions between ante-

natal risk factors such as pregnancy-induced hypertension, 

intrauterine growth restriction and infection, and postnatal 

risk factors such as oxidative stress, inflammation, infection, 

and mechanical ventilation in a preterm infant with underly-

ing genetic susceptibility.21 Importantly, PH increases short- 

and long-term morbidity and mortality, including COPD, in 

BPD patients.21 Hence, there is an urgent need to improve 

therapies for BPD patients with PH.

Small animal models such as genetically modified mice 

offer a unique opportunity to understand the molecular 

mechanisms that contribute to the development of BPD and 

PH and, thereby, discover novel therapies. Although right 

heart catheterization is the gold standard to diagnose PH 

in adult mice,22,23 it is a terminal procedure and precludes 

long-term follow-up in these animals. Moreover, animal 

size is a major limitation to perform heart catheterization in 

newborn mice. Echocardiography (Echo) is a noninvasive 

technique that can reliably diagnose PH and can circumvent 

the catheterization-associated problems in mice. However, 

lack of Echo studies to diagnose PH in neonatal mice has 

precluded the development of reliable neonatal mouse models 

of PH-associated disorders such as BPD, which is pivotal 

to understand the pathogenesis and improving therapies for 

PH in human infants with BPD and preventing long-term 

respiratory morbidities such as COPD. Thus, the goal of this 

study was to provide a platform to discover early biomarkers 

and interventions to prevent BPD with PH and COPD in 

humans by investigating the feasibility of Echo to diag-

nose PH in newborn mice with experimental BPD and PH. 

Since hyperoxia-induced oxidative stress and inflammation 

contributes to the development of BPD with PH in human 

infants, we tested the hypothesis that exposure of newborn 

C57BL/6J mice to 70% O
2
 (hyperoxia) for 14 days leads to 

lung oxidative stress, inflammation, alveolar and pulmonary 

vascular simplification, pulmonary vascular remodeling, and 

Echo evidence of PH.

Materials and methods
animals
This study was approved and conducted in strict accordance 

with the federal guidelines for the humane care and use of 

laboratory animals by the Institutional Animal Care and 

Use Committee of Baylor College of Medicine (Protocol 

number: AN-5631). The C57BL/6J wild-type mice were 

obtained from the Jackson Laboratory (Bar Harbor, ME, 

USA). Timed-pregnant mice raised in our animal facility 

were used for the experiments.

exposure
Within 24 hours of birth, male and female pups from multiple 

litters were pooled before being randomly and equally redis-

tributed to the dams, following which they were exposed to 

either 21% O
2
 (air, n=21) or 70% O

2
 (hyperoxia, n=21) for 

14 days. During each experiment, four dams with 4–8 pups/

dam were equally allocated to air and hyperoxic conditions. 

The dams were rotated between air- and hyperoxia-exposed 

litters every 48 hours to prevent oxygen toxicity in the dams 

and to eliminate maternal effects between the groups. Oxygen 

exposures were conducted in Plexiglas chambers, and the 

animals were monitored as described previously.24

Tissue preparation for lung morphometry
After completion of experiments, a subset of pups were eutha-

nized, their lungs were inflated and fixed via the trachea with 

10% formalin at 25 cm H
2
O pressure for at least 10 minutes, 

and sections of the paraffin-embedded lungs were obtained for 

the analysis of lung morphometry as described previously.24

lung morphometry
As per American Thoracic Society/European Respiratory 

Society task force guidelines,25 a systematic, uniform, random 

sampling principle was used to evaluate the lung sections for 

morphometry. Alveolar development on selected mice (n=9/
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group) was evaluated by radial alveolar counts (RAC) and 

mean linear intercepts (MLI). The observers performing the 

measurements were masked to the slide identity. RAC was 

determined as described by Cooney and Thurlbeck.26 RAC 

measurements were made by dropping a perpendicular line 

from the center of a respiratory bronchiole to the edge of 

the septum or pleura and counting the number of alveoli 

traversed by this line. MLIs were assessed as described pre-

viously.27 Briefly, grids of horizontal and vertical lines were 

superimposed on an image and the number of times the lines 

intersected with the tissue was counted. The total length of 

the grid lines was then divided by the number of intersec-

tions to provide the mean linear intercept in micrometer. 

Photographs from at least ten random nonoverlapping lung 

fields (10× magnification) were taken from each animal for 

RAC and MLI measurements.

analyses of pulmonary vascularization
Pulmonary vessel density was determined based on immu-

nohistochemical staining for von Willebrand factor (vWF), 

which is an endothelial specific marker. At least ten counts 

from ten random nonoverlapping fields (20× magnification) 

were performed for each animal (n=9/group).

analyses of pulmonary vascular 
remodeling
Pulmonary vascular remodeling, which reflects significant 

PH, was determined by the medial thickness index (n=9/

group) of resistance pulmonary arteries (20–150 µm external 

diameter) calculated using the equation: Medial thickness 

index = [(area
ext

 - area
int

)/area
ext

] ×100, where area
ext

 and 

area
int

 are the areas within the external and internal boundaries 

of the α-smooth muscle actin (α-SMA) layer, respectively.28 

Additionally, α-SMA, which is a marker of vascular smooth 

muscle cells, was quantified by immunoblotting lung pro-

teins using anti-α-SMA (Sigma-Aldrich Co., St Louis, MO, 

USA; A5228, dilution 1:1,000) and anti-β-actin (Santa Cruz 

Biotechnologies, Santa Cruz, CA, USA; sc-47778, dilution 

1:2,000) antibodies.

analysis of lung oxidative stress and 
inflammation
Malondialdehyde (MDA) is a stable end product of lipid 

peroxidation and is a generally accepted marker of oxidative 

stress.29 Likewise, inducible nitric oxide synthase (iNOS) 

is a well-known marker of lung inflammation.30 Hence, we 

performed immunoblotting on lung proteins using anti-

MDA (Cell Biolabs, Inc., San Diego, CA, USA; STA-331, 

dilution 1:1,000), anti-iNOS (Santa Cruz Biotechnologies; 

sc-7271, dilution 1:1,000), and anti-β-actin (Santa Cruz 

Biotechnologies; sc-47778, dilution 1:2,000) antibodies. 

The primary antibodies were detected by incubation with 

the appropriate horseradish peroxidase-conjugated second-

ary antibodies. The immunoreactive bands were detected 

by chemiluminescence methods, and the band density was 

analyzed by Image J software (National Institutes of Health, 

Bethesda, MD, USA).

echocardiography
PH was assessed by performing functional Echo in mice as 

described previously.31,32 Briefly, the mice (n=11/group) were 

anesthetized by using inhaled isoflurane via facemask and 

subjected to transthoracic two-dimensional, M-mode, and 

pulsed-wave Doppler (PWD) Echo using the VisualSonics 

Vevo 2100 machine (VisualSonics Inc., Toronto, ON, 

 Canada) and a 40 MHz linear transducer. Right ventricular 

free wall (RVFW) thickness was measured during end dias-

tole in the right parasternal long-axis view by two-dimen-

sional and M-mode Echo. PWD recording of the pulmonary 

blood flow was obtained at the level of the aortic valve in the 

parasternal short axis view to measure pulmonary accelera-

tion time (PAT, defined as the time from the onset of flow 

to peak velocity), and RV ejection time (ET, the time from 

the onset to the termination of pulmonary flow).

statistical analyses
The results were analyzed by GraphPad Prism 5 software 

(La Jolla, CA, USA). At least three separate experiments were 

performed for each measurement (n= total animals from the 

three experiments), and the data are expressed as mean ± SD. 

The effects of exposure for the outcome variables were 

assessed using Student’s t-test. A P-value of ,0.05 was 

considered significant.

Results and discussion
The hallmarks of a murine hyperoxia model that mimics BPD 

with PH in human preterm infants include growth restric-

tion, lung oxidative stress and inflammation, interruption 

in alveolar and pulmonary vascular development (alveolar 

and pulmonary vascular simplification), pulmonary vascular 

remodeling, and decreased PAT/ET with increased RVFW 

thickness (PH). In this study, we investigated the effects of 

70% O
2
 (hyperoxia) on these hallmarks and demonstrated 

that exposure of newborn wild-type mice to hyperoxia for 

14 days increases lung oxidative stress and inflammation 

and causes alveolar and pulmonary vascular simplification, 

pulmonary vascular remodeling, and PH. Additionally, our 

study demonstrates the feasibility of Echo to elucidate PH in 
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these mice at 14 days postnatal age. Our studies are important 

to identify novel interventions to prevent and/or treat BPD 

and PH and, thereby, prevent COPD in former human preterm 

infants with BPD and PH.

The concentration of oxygen used in this study was 

comparable to those used in previous studies.33–35 We chose 

70% oxygen for our experiments because it was the lowest 

oxygen concentration that caused significant alveolar and 

pulmonary vascular simplification and PH in our mouse 

model. The survival rate of pups exposed to air and hyper-

oxia was identical. Hyperoxia exposure is known to restrict 

growth by various mechanisms in neonatal mouse models 

of experimental BPD.36–40 We observed a similar finding. 

Although the body weights were comparable at birth, 70% O
2
 

(hyperoxia) exposure for 14 days decreased the body weight 

by 21% when compared to corresponding air-breathing 

animals (Figure 1).

Oxidative stress contributes to the development of BPD 

with PH. It is difficult to measure and characterize hyperoxia-

induced ROS in real time as they are very unstable. Hence, we 

determined the expression of MDA-protein adducts, which are 

stable aldehyde end products of ROS-mediated lipid peroxi-

dation.41 Our finding of hyperoxia induced MDA adducts in 

mice (Figure 2A and B) are consistent with previous studies42,43 

and suggests that hyperoxia exposure causes oxidative stress 

in the lungs. Interestingly, hyperoxia induced MDA adducts 

in two specific regions between 40 and 80 kDa. This finding 

suggests that hyperoxia causes oxidative modifications of 

specific lung proteins in our model. The other possibility is that 

these proteins are abundant in the mouse lungs and are sus-

ceptible to hyperoxia-induced oxidative modification. Further 

studies are needed to identity these specific proteins because 

they could serve as potential biomarkers for oxidative stress 

in human infants with BPD. In addition to oxidative stress, 

inflammation plays a key role in the pathogenesis of BPD.44 

NO is used as a marker of respiratory tract inflammation in 

patients with asthma.45 Three isoforms of NOS, neuronal NOS 

(nNOS, NOS-1), inducible NOS (iNOS, NOS-2), and endothe-

lial NOS (eNOS, NOS-3), generate NO from the amino acid 

l-arginine. Although NO is critical for the homeostasis of 

lungs, excessive NO production increases nitrative stress 

and exerts proinflammatory effects. Inflammatory stimuli 

such as cytokines, chemokines, bacterial toxins, viral infec-

tions, allergens, hypoxia, and hyperoxia augment lung iNOS 

expression,30,46 which suggests that increased iNOS expression 

is biomarker of ongoing inflammation. Consistent with other 

murine hyperoxia models,46,47 hyperoxia exposure increased 

lung iNOS protein expression (Figure 3A and B), which indi-

cates the presence of underlying lung inflammation.

Figure 1 hyperoxia exposure decreases body weight in neonatal mice. 
Notes: Body weight of neonatal mice exposed to air or hyperoxia for 14 days. Values 
are mean ± sD from seven individual animals in each group from one experiment. 
Significant differences between air and hyperoxia groups are indicated by *P,0.05.
Abbreviation: sD, standard deviation.

Figure 2 hyperoxia exposure increases lung MDa protein levels.
Notes: lung protein obtained from neonatal mice exposed to air or hyperoxia for 14 days was subjected to immunoblotting using anti-MDa or -β-actin antibodies. 
representative immunoblot showing differential MDa protein adduct expression in the region between 40 and 80 kDa (A). Densitometric analysis wherein the aforementioned 
MDA protein adduct band intensities were quantified and normalized to β-actin (B). Values are mean ± sD from four individual animals in each group from one experiment. 
Significant differences between air and hyperoxia groups are indicated by *P,0.05.
Abbreviations: MDa, malondialdehyde; sD, standard deviation. 

β

β
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β β

Figure 3 hyperoxia exposure increases lung inOs protein levels. 
Notes: lung protein obtained from neonatal mice exposed to air or hyperoxia for up to 14 days was subjected to immunoblotting using anti-inOs or -β-actin antibodies. 
representative immunoblot showing inOs protein expression (A). Densitometric analyses wherein the iNOS band intensities were quantified and normalized to β-actin (B). 
Values are mean ± SD from three individual animals in each group from one experiment. Significant differences between air and hyperoxia groups are indicated by *P,0.05.
Abbreviations: inOs, inducible nitric oxide synthase; sD, standard deviation. 

Figure 4 Hyperoxia exposure induces alveolar simplification. 
Notes: representative hematoxylin and eosin–stained lung sections obtained at 14 days of age from neonatal mice exposed to air (A) or hyperoxia (B). alveolarization 
was quantified by RAC (C) and MlIs (D). Values are mean ± SD from three individual animals in each group from one experiment. Significant differences between air and 
hyperoxia groups are indicated by *P,0.05. scale bar =100 µM.
Abbreviations: WT, wild type; raC, radial alveolar count; MlI, mean linear intercept; sD, standard deviation.

Hyperoxia is known to interrupt alveolar development 

by mechanisms entailing cell proliferation, cell death, and 

disruption of lung developmental signaling pathways,48 

which collectively results in alveolar simplification in pre-

term infants1,2 and newborn mice.49 In line with these studies, 

exposure to hyperoxia for 14 days decreased RAC by 35% 

(Figure 4B and C) and increased MLI by 50% (Figure 4B 

and D), indicating that their alveoli were fewer in number 

and larger in diameter (alveolar simplification), respectively, 

when compared to corresponding air-breathing animals 

(Figure 4A, C, and D).

Pulmonary vascular and alveolar development are highly 

orchestrated interdependent processes and studies clearly 

support this concept by demonstrating that an interruption of 

distal lung angiogenesis secondary to decreased expression of 

vascular endothelial growth factor (VEGF) and/or its signal-

ing receptor, vascular endothelial growth factor receptor2, 

leads to alveolar simplification.50,51 Additionally, pulmonary 

vascular simplification decreases pulmonary vascular surface 

area leading to high pulmonary vascular resistance and PH.52 

Our findings of hyperoxia-induced decrease in vWF-stained 

lung blood vessels (Figure 5) suggest that hyperoxia causes 

pulmonary vascular simplification, which is consistent with 

studies in human preterm infants1,2 and newborn mice.53

Pulmonary vascular remodeling secondary to increased 

smooth muscle cell proliferation of resistance pulmonary 
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arteries is an additional risk factor that increases pulmonary 

vascular resistance and contributes to PH in BPD patients.21 

Consistent with several rodent models of experimental BPD 

with PH,28,35,54 hyperoxia increased pulmonary vascular 

remodeling (Figure 6), which indicates the presence of sig-

nificant PH in our experimental animals. Two-dimensional 

and Doppler Echo have been used in several murine models 

to effectively assess heart function, chamber dimensions and 

thickness, and vascular properties.55 It is a commonly used 

imaging modality in small animals because it is noninvasive, 

inexpensive, versatile, and is ideal for serial studies. PH is 

characterized by increased pulmonary artery (PA) and right 

ventricular systolic pressure, which is usually estimated 

indirectly from the tricuspid regurgitation (TR) peak flow 

velocity using Echo in human patients.56 However, because 

of technical limitations preventing proper flow alignment, the 

measurement of TR by Doppler is inaccurate in mice. More-

over, TR is rare in rodents and occurs only with severe PH.57 

Right ventricular systolic time intervals such as PAT (the time 

from the onset of pulmonary flow to peak velocity) and ET 

(the time from onset to end of systolic flow) can be accurately 

obtained by high-resolution PWD Echo in rodents and are 

used as alternative indices of PA pressure in these animals.31,32 

Although Echo has been the standard to diagnose PH in 

Figure 5 hyperoxia exposure decreases pulmonary vascular density. 
Notes: representative vWF-stained lung blood vessels obtained at 14 days of age from neonatal mice exposed to air (A) or hyperoxia (B). Quantitative analysis of vWF-
stained lung blood vessels per high power field (C). Values are mean ± SD from three individual animals in each group from one experiment. Significant differences between 
air and hyperoxia groups are indicated by *P,0.05. scale bar =100 µM.
Abbreviations: WT, wild type; vWF, von Willebrand factor; sD, standard deviation. 

α
β

α

β

Figure 6 hyperoxia exposure induces pulmonary vascular remodeling. 
Notes: representative α-sMa-stained resistance pulmonary arteries obtained at 14 days of age from neonatal mice exposed to air (A) or hyperoxia (B). Quantitative analysis 
of pulmonary vascular remodeling by medial thickness index (C). representative immunoblot showing α-sMa protein expression (D). Densitometric analyses wherein the 
α-SMA band intensities were quantified and normalized to β-actin (E). Values are mean ± SD from three individual animals in each group from one experiment. Significant 
differences between air and hyperoxia groups are indicated by *P,0.05. scale bar =100 µM.
Abbreviations: WT, wild type; α-sMa, alpha smooth muscle actin; sD, standard deviation. 
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older murine models, there is lack of data on its feasibility to 

demonstrate PH in neonatal mice. In neonatal mouse models 

of BPD with PH, Echo has been used to diagnose PH several 

weeks later in the postneonatal period.34,58 This comes with a 

limitation of missing important earlier time points where the 

interventions can be targeted to successfully prevent and/or 

treat BPD with PH. Hence, we conducted Echo studies in 

neonatal mice with experimental BPD with PH.

At a normal systolic pressure, the Doppler Echo pat-

tern of pulmonary systolic flow is symmetric. With PH, the 

Doppler flow pattern becomes asymmetric, with the peak 

velocity occurring earlier because the PAT is decreased as 

the pulmonary valve closes prematurely due to high PA pres-

sure. The reduced PAT also leads to a decrease in the ratio 

of PAT/ET. The normalization of PAT by ET offsets some 

of the confounders such as heart rate59 and cardiac output60 

that might independently affect the PAT. PAT and PAT/ET 

ratio estimated using high-frequency Echo have been shown 

to correlate with PA pressure measured by cardiac catheter-

ization. In agreement with studies in older rodents, Dop-

pler Echo of PA showed that exposure of neonatal mice to 

hyperoxia decreased PAT by 27% (Figure 7B and C) and 

the ratio of PAT/ET by 28% (Figure 7B and D), resulting in 

an asymmetric flow pattern (Figure 7B) when compared to 

air-breathing animals (Figure 7A, C, and D). Additionally, 

right ventricular hypertrophy (RVH) reflects severe PH, and 

RVFW thickness measured in diastole is shown to strongly 

correlate with RVH.32 Therefore, we determined RVFW 

thickness in diastole using M-mode Echo in our experimental 

animals. Consistent with its effects on other indices of PH, 

hyperoxia exposure increased RVFW by 70% (Figure 8B 

and C) compared to air-breathing animals (Figure 8A and C). 

The Echo findings clearly demonstrate that our experimental 

animals have significant PH.

Figure 7 hyperoxia exposure induces Ph. 
Notes: Representative PWD Echo recording of PA blood flow obtained at 14 days of age from neonatal mice exposed to air (A) or hyperoxia (B). PaT (C) and PaT/eT 
ratio (D) were estimated from the PWD Echo recordings of the PA blood flow. Values are mean ± sD from four individual animals in each group from one experiment. 
Significant differences between air and hyperoxia groups are indicated by *P,0.05.
Abbreviations: PWD, pulsed-wave Doppler; echo, echocardiography; Pa, pulmonary artery; PaT, pulmonary acceleration time; eT, ejection time; sD, standard deviation; 
Ph, pulmonary hypertension.

Figure 8 hyperoxia exposure induces rVh. 
Notes: representative M-mode echo recording obtained at 14 days of age from neonatal mice exposed to air (A) or hyperoxia (B). rVFW thickness in end-diastole (C) was 
estimated from the M-mode echo recordings. Values are mean ± SD from four individual animals in each group from one experiment. Significant differences between air and 
hyperoxia groups are indicated by *P,0.05.
Abbreviations: rVh, right ventricular hypertrophy; rVFW, right ventricular free wall; echo, echocardiography; sD, standard deviation.
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In summary, we have established a model of experimental 

BPD with PH and demonstrated that noninvasive assessment 

of PH is feasible in neonatal C57BL/6J mice using high-

resolution Echo. To the best of our knowledge, this is the first 

study to demonstrate PH using high-resolution Echo in neo-

natal mice at 14 days postnatal age. This animal model may 

offer the unique opportunity to identify pathophysiological 

mechanisms that contribute to PH and to develop therapeutic 

strategies to prevent and/or treat BPD with PH in human 

preterm infants and thereby prevent adult-onset COPD in 

former BPD patients. Additionally, our findings have impor-

tant implications for research in the prevention and treatment 

of other congenital disorders such as pulmonary hypoplasia, 

congenital diaphragmatic hernia, and congenital heart dis-

eases that are associated with PH in human infants.
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