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Background: Previous studies revealed that colonic cancer-associated fibroblasts (CAFs)
are associated with the modulation of the colon tumor microenvironment (TME). However,
identification of key transcriptomes and their correlations with the survival prognosis,
immunosuppression, tumor progression, and metastasis in colon cancer remains lacking.

Methods: We used the GSE46824, GSE70468, GSE17536, GSE35602, and the cancer
genome atlas (TCGA) colon adenocarcinoma (COAD) datasets for this study.We identified the
differentially expressed genes (DEGs), Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathways, hub genes, and survival-associated genes in colon cancer. Finally, we investigated
the correlation of key genes with the survival prognosis, immunosuppression, and metastasis.

Results: We identified 246 common DEGs between the GSE46824 and
GSE70468 datasets of colonic CAFs, which included 72 upregulated and
174 downregulated genes. The upregulated pathways are mainly involved with cancers
and cellular signaling, and downregulated pathways are involvedwith immune regulation and
cellular metabolism. The search tool for the retrieval of interacting genes (STRING)-based
analysis identified 15 hub genes and 9 significant clusters in colonic CAFs. The upregulation
of CTHRC1, PDGFC, PDLIM3, NTM, and SLC16A3 and downregulation of FBN2 are
correlated with a shorter survival time in colon cancer. The CTHRC1, PDGFC, PDLIM3, and
NTM genes are positively correlated with the infiltration of tumor-associated macrophages
(TAM), macrophages, M2macrophages, the regulatory T cells (Tregs), T cell exhaustion, and
myeloid-derived suppressor cells (MDSCs), indicating the immunosuppressive roles of these
transcriptomes in colon cancer. Moreover, the CTHRC1, PDGFC, PDLIM3, NTM, and
SLC16A3 genes are gradually increased from normal tissue to the tumor and tumor to the
metastatic tumor, and FBN2 showed the reverse pattern. Furthermore, theCTHRC1, FBN2,
PDGFC, PDLIM3, and NTM genes are positively correlated with the metastatic scores in
colon cancer. Then, we revealed that the expression value of CTHRC1, FBN2, PDGFC,
PDLIM3, NTM, and SLC16A3 showed the diagnostic efficacy in colonic CAFs. Finally, the
expression level of CTHRC1, PDGFC, and NTM genes are consistently altered in colon
tumor stroma as well as in the higher CAFs-group of TCGA COAD patients.
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Conclusion: The identified colonic CAFs-derived key genes are positively correlated with
survival prognosis, immunosuppression, tumor progression, and metastasis.

Keywords: colon cancer, survival time, immunosuppressive roles, metastatic scores, cancer-associated fibroblasts

BACKGROUND

Cancer is a complex ecosystem comprising several cellular
components including stromal cancer-associated fibroblasts
(CAFs) [1]. CAFs are dominant components of the tumor
microenvironment (TME) to control the colon cancer cells [2].
In the TME, CAFs promote the development, invasion,
progression, and metastasis of colon cancer cells [2]. The
increasing number of CAFs in the TME is correlated with
poor prognosis and recurrence of colorectal cancer (CRC) [3].
Colonic CAFs-derived transcriptomes are associated with
tumor angiogenesis, metastasis, and prognosis of human
colon cancer [4]. In adenomatous colorectal polyps and
primary tumors, accumulation of CAFs is associated with
inferior prognosis and recurrence of disease [5]. CAFs of
colonic mucosa provide information on functional
heterogeneity and are associated with the prognosis [6]. The
CAFs-associated markers are increased at the invasive front of
the tumor and it is critically correlated with the tumor-stroma
ratio in CRC [7].

CAFs are predominantly associated with the secretion of
several inflammatory mediators which included chemokines,
cytokines, transcription factors, proteases, and growth factors,
thereby promoting the immunosuppressive TME [8]. These
immunosuppressive mediators strictly control the reactivity of
tumor and stroma cell communication in the TME [9, 10]. CAFs
are associated with the modulation of the immune system and it is
correlated with immune evasion and poor immunotherapy
responses [11]. Moreover, CAFs- derived gene expression
signatures are associated with poor clinical outcomes in CRC
[12, 13]. Hang Zheng et al. identified the CAFs-associated
transcriptomes that influence the prognosis and therapeutic
responses in CRC [14]. In CRC, the higher CAF infiltration
scores predicted poor disease-free survival (DFS) outcomes [15].
CAFs- expressed transcription factors (TFs) are correlated with
epithelial-to-mesenchymal transition (EMT) which ultimately
controls the cellular stemness and fate [16]. Also, TFs are
related to the infiltration of CAFs and the independent
prognostic factors which ultimately associated with cancer cell
invasion, proliferation, and progression [17]. These studies
provide the clue that the CAFs-derived transcriptomes are
associated with cancer initiation, invasion, migration, and
metastasis.

Herein, we identified the deregulated transcriptional
signatures of human colonic CAFs. Then we analyzed the
association of CAFs-derived DEGs with the enrichment of
pathways. Moreover, we identified the key hub genes and
significant clusters from the protein-protein interaction (PPI)
network. Furthermore, we investigated the correlation of key
genes with survival prognosis, immunosuppression, tumor
progression, and metastasis.

METHODS

Datasets
We searched the NCBI gene expression omnibus (GEO) database
(https://www.ncbi.nlm.nih.gov/geo/) using the keywords “colon
cancer fibroblast,” “cancer-associated fibroblast,” “CAFs”
“stroma cells,” “colon tumor stroma cells” and “tumor
stroma,” and identified two cancer-associated fibroblasts gene
expression datasets GSE46824 (n = 34) [18] and GSE70468 (n =
14) [19] of colonic CAFs. In GSE70468, we selected the 7 CAFs
samples and 7 colon normal fibroblasts samples and removed the
other samples from this dataset. Besides, we downloaded the
TCGA COAD cohort and normalized the data into log2-base
transformation (https://gdc-portal.nci.nih.gov/) [20]. For
analyzing the survival differences in the TCGA COAD dataset
(https://gdc-portal.nci.nih.gov/), we used the gene expression
profiling interactive analysis (GEPIA) [21] tool (http://gepia2.
cancer-pku.cn/#index). Furthermore, we used PrognoScan-based
[22] colon cancer data, the GSE17536 (n = 177) [23], for
validating the survival-associated genes found in TCGA data.
Finally, we used the colon tumor-stromal dataset GSE35602 [24]
for verifying the expression levels of key genes. The summary of
the GEO datasets is presented in Table 1.

Identification of Differentially Expressed
Genes
The differential expression was screened by using GEO2R (http://
www.ncbi.nlm.nih.gov/geo/geo2r), which is an interactive web
tool to identify the DEGs. GEO2R tool identified the significant
DEGs by utilizing the GEOquery [25] and limma R packages [26]
from the Bioconductor project (http://www.bioconductor.org/).
The R package “limma” was employed for identifying the
significant DEGs between CAFs and normal colonic fibroblasts
(NCFs) [26]. We identified the DEGs with a threshold absolute
value of fold change (LogFC) > 0.585 and a p-value ≤0.05 [27, 28].
Finally, we identified the common DEGs between both datasets.
We utilized the online tool “Calculate and draw custom Venn
diagrams” (http://bioinformatics.psb.ugent.be/webtools/Venn/)
for identifying common DEGs in both datasets.

Gene-Set Enrichment Analysis
We performed a gene-set enrichment analysis of the DEGs by
using the gene-set enrichment analysis (GSEA) [29]. We inputted
all significant commonly found upregulated and downregulated
DEGs into the GSEA tool for identifying deregulated pathways. In
the GSEA, we selected the KEGG pathways panel to identify the
significant pathways. The KEGG [30] pathways significantly
associated with the upregulated DEGs and the downregulated
DEGs were identified, respectively. The p-value <0.05 was
considered significant when separating the pathways.
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Identifying HubGenes andModular Analysis
From Protein-Protein Interaction Network
of Differentially Expressed Genes
To better know the relationship among these identified DEGs, the
PPI network was established using the STRING-based analysis
[31]. To identify the rank of hub genes, we used Cytoscape plug-
in tool cytoHubba [32]. Hub genes were identified based on the
degree of interactions with neighbour genes.We set theminimum
required interaction score as 0.40 for identifying the PPI of DEGs.
Hub genes were defined as a gene that was connected to a
minimum of 10 other DEGs in the PPI. We visualize the PPI
networks by utilizing the Cytoscape 3.6.1 software [33]. A
Cytoscape plug-in molecular complex detection (MCODE) was
employed to detect the modules from the PPI network [34]. This
is a computational method for searching molecular complexes in
large protein interaction networks. We identified the significant
modules based on the MCODE score and node number. The
threshold of the MCODE was node score cut-off: 0.2, haircut:
true, k-core: 2, and maximum depth from Seed: 100.

Survival Analysis of Differentially Expressed
Genes by Using the Gene Expression
Profiling Interactive Analysis and
PrognoScan
We compared the overall survival (OS) and the DFS of colon
cancer patients. Kaplan-Meier survival curves were used to show
the survival differences between the high expression group and low
expression groups. The survival significance of all DEGs in the
TCGA COAD cohort was analysed using GEPIA [21] databases.
GEPIA is a web-based tool to deliver fast and customizable
functionalities based on TCGA data. Furthermore, we used
PrognoScan-based [22] GSE17536 (n = 177) [23] for validating
the survival-associated genes found in the TCGA COAD dataset.
PrognoScan is a database for meta-analysis of the prognostic value
of genes. Cox regression p-value <0.05 was considered as
significant when comparing the survival between the two groups.

The ESTIMATE Algorithm for Quantifying
Immune Score and Stromal Score
ESTIMATE is an algorithmic tool based on the R package for
predicting tumor purity, immune score (predicting the
infiltrations of immune cells), and stromal score (predicting
the infiltrations of stromal cells) which uses the gene

expression profiles of 141 immune genes and 141 stromal
genes [35]. The presence of infiltrated immune cells and
stromal cells in tumor tissues were calculated using related
gene expression matrix data, represented by immune score
and stromal score, respectively [35]. Then we calculated the
correlations of key genes with immune scores and stromal
scores. The threshold value of correlation is R > 0.30, and
p-value is not less than 0.001 (Spearman’s correlation test).

Single-Sample Gene-Set Enrichment
Analysis and Correlation of Immune
Signatures With Survival-Associated Genes
One of the extension packages of GSEA, single-sample gene-set
enrichment analysis (ssGSEA) was used to identify the enrichment
scores of immune cells for each pairing of a sample and gene set in
the tumor samples [36]. We collected the marker gene set for
immune signatures and utilized each gene set to quantify the
ssGSEA scores of specific immune signatures [37–40]. We
identified the ssGSEA scores of CD8+ T cells, CD4+ regulatory
T cells, NK cells, TAM,macrophages,M2macrophages, Tregs, T cell
exhaustion, myeloid-derived suppressor cells (MDSCs), and CAFs.
Moreover, we used themetastasis-promoting gene set for identifying
the ssGSEA scores of metastasis-promoting genes [40, 41]. All of the
marker genes are displayed in Supplementary Table S1. Then we
investigated Spearman’s correlation between the ssGSEA scores and
specific survival-associated genes. The absolute value of this
correlation was greater than 0.30 with a p-value less than 0.001.

Diagnostic Efficacy Evaluation and
Expression Validation for
Survival-Associated Key Genes
To assess diagnostic values of the survival-associated genes, the
receiver operating characteristic (ROC) curve was plotted and the
area under the ROC curve (AUC) was calculated using the “pROC”
R package [42] to evaluate the capability of distinguishing cancer-
associated fibroblasts and normal tissues. The “pROC” R package
can visualize, smooth, and compare ROC curves. The AUC can be
compared with statistical tests based on U-statistics or bootstrap. A
greater AUC value of individual genes indicated the differences
between tumor and normal samples, and the key gene of AUC >
0.5 in the CAFs datasets was defined as a diagnostic efficiency of the
gene [43]. To verify the survival-associated genes in a colorectal
cancer stromal tissue, we selected GSE35602 [24] to distinguish the
expression levels of key genes between non-tumor and tumor

TABLE 1 | The summary of the GEO datasets that are used in this study.

Serial
number

Accession
number

Title Platform Samples
number

1. GSE46824 Carcinoma-associated fibroblasts’ transcriptomic program predicts clinical outcome in stage II/III
colorectal cancer

GPL6244 n = 34

2. GSE70468 Vitamin D receptor expression and associated gene signature in tumor stromal fibroblasts predict
clinical outcome in colorectal cancer

GPL17077 n = 14

3. GSE35602 microRNA and Gene expression profiles in colorectal cancer stromal tissue GPL6480 n = 17
4. GSE17536 Metastasis Gene Expression Profile Predicts Recurrence and Death in Colon Cancer Patients GPL570 (n = 177)
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samples. We identified the ssGSEA scores (prediction of the
content) of CAFs by using the marker genes (Supplementary
Table S1) of CAFs. Then, we divided the TCGA COAD samples
into the high-CAFs group versus the low-CAFs group based on the
median value of ssGSEA scores of CAFs.

Statistical Analysis
We used the R software version 4.0.1 for all statistical analysis. In
the Log-rank test, p < 0.05 was considered statistically significant
for survival analysis. To investigate the correlation of survival-
associated genes, Spearman’s correlation between the ssGSEA
scores and specific survival-associated genes was performed (p <
0.001). We used Welch’s t-test for identifying the significance of
specific genes between the two groups of samples (p ≤ 0.05). We
utilized the R package ggplot2 for the graphical presentation of
the Heatmap and correlation graph.

RESULTS

Identification of Differentially Expressed
Genes in Colonic Cancer-Associated
Fibroblasts
We identified 246 commonly differentially expressed genes
(DEGs) between the GSE46827 and GSE70468 datasets. The

principal component analysis (PCA) plot of samples is shown
in Figures 1A,B and the commonly upregulated and
downregulated genes in CAFs and normal colonic
fibroblasts (NCFs) are shown in Figures 1C,D respectively.
We found 72 upregulated (Figure 1C; Supplementary Table
S2) and 174 downregulated (Figure 1D; Supplementary
Table S3) genes in the CAFs when compared with NCFs.
CDH13, DSP, EFNB2, IL7R, KIAA1217, KRT19, NTM,
PDLIM3, SRGN, SYNPO2L, TGFB2, and TNFSF4 were the
most significantly upregulated genes in colon CAFs
(Supplementary Table S2), while A2M, AOC3, ADH1B,
ASPA, CHRDL1, COL14A1, CYP24A1, FBN2, FBLN1,
GREM2, IL33, NOVA1, PRKCH, SEPP1, and SMOC2 are
the most downregulated genes over the selected datasets
(Supplementary Table S3).

CAFs-Derived Transcriptomes Are
Associated With the Enrichment of Kyoto
Encyclopedia of Genes and Genomes
Pathways
The enriched upregulated and downregulated biological
pathways were identified by using the GSEA tool (Figures
2, 3). GSEA identified 28 KEGG pathways significantly
associated with common upregulated 72 DEGs
(Supplementary Table S4). The pathways are mainly

FIGURE 1 | Identification of DEGs in the colonic CAFs. (A) The PCA analysis of samples in the GSE46824 dataset comprehensively summarizes the data (B). The
PCA analysis of samples in the GSE70468 dataset comprehensively summarizes the data. (C) Identifying commonly found 72 upregulated genes in both datasets. (D)
Identifying commonly found 174 downregulated genes in both datasets. CAFs: cancer-associated colonic fibroblasts; Normal: normal colonic fibroblasts; GSE46824-
Up: Upregulated gene in GSE46824; GSE46824-Down: Downregulated gene in GSE46824; GSE70468-Up: Upregulated gene in GSE70468, GSE70468-Down:
Downregulated gene in GSE70468.
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involved with cancer or malignant tumor (colorectal cancer,
pancreatic cancer, pathways in cancer, melanoma, chronic
myeloid leukemia, small cell lung cancer, and prostate cancer)
and cellular signaling and developments (regulation of actin
cytoskeleton, TGF-beta signaling pathway, focal adhesion,
p53 signaling pathway, adherens junction, gap junction,
MAPK signaling pathway, cell cycle, cell adhesion
molecules (CAMs), and Wnt signaling pathway) (Figure 2).

Besides, we identified the 54 KEGG pathways that are
significantly linked with commonly found downregulated
174 DEGs (Supplementary Table S5). The pathways are
involved with immune regulation (such as complement and
coagulation cascades, chemokine signaling pathway, and
cytokine-cytokine receptor interaction) and cellular
metabolism (glycolysis/gluconeogenesis, fatty acid
metabolism, tyrosine metabolism, purine metabolism, beta-
Alanine metabolism, metabolism of xenobiotics by
cytochrome P450, histidine metabolism, propanoate
metabolism, pyruvate metabolism, limonene and pinene
degradation, retinol metabolism, drug

metabolism—cytochrome P450, ascorbate and aldarate
metabolism, butanoate metabolism, tryptophan metabolism,
lysine degradation, valine, leucine and isoleucine degradation,
glycerolipid metabolism, arginine and proline metabolism,
and arachidonic acid metabolism) (Figure 3).

STRING-Based Protein-Protein Interaction
Analysis Identified CAFs-Derived Hub
Genes and Significant Modules in Colon
Cancer
We investigated the PPI of all significant CAFs-derived DEGs.
The PPI information of STRING is inputted into the Cytoscape
for identifying and visualizing the hub genes and significant
clusters. We identified 15 hub genes (minimum degree of
interaction is 10 with other DEGs) which included
3 upregulated hub genes (PLAUR, RAC2, and TGFB2) and
12 downregulated hub genes (A2M, ADCY3, ADCY4, ADCY9,
BIN1, CFD, CLU, CXCL12, LDLR, PPARG, PTK2B, and VTN)
(Table 2).

FIGURE 2 | Significantly enriched KEGG pathways that are associated with upregulated colonic CAFs-derived DEGs.
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We found that 183 DEGs were involved in PPI
(Supplementary Table S6). The other DEGs were not
involved in the PPI network. We investigated the

significant cluster-based analysis of this PPI network. The
MCODE-based analysis identified 9 clusters from the original
PPI networks. The description of MCODE-derived clusters is

FIGURE 3 | Significantly enriched KEGG pathways that are associated with downregulated colonic CAFs-derived DEGs.

TABLE 2 | Identification of the 15 hub genes and their degree of interaction with differential expression between the CAFs and NCFs in two datasets.

Rank Name of
genes

Degree of
interaction

Regulatory status GSE46824 GSE70468

LogFC p-value LogFC p-value

1 CLU 18 Downregulated −1.01 1.09E-04 −1.14 4.56E-03
1 CXCL12 18 Downregulated −1.42 4.25E-03 −1.58 1.82E-02
3 VTN 15 Downregulated −1.45 1.78E-04 −1.09 3.18E-03
4 ADCY3 13 Downregulated −0.78 3.35E-05 −0.76 3.98E-03
5 A2M 12 Downregulated −1.94 2.15E-03 −2.13 8.36E-03
5 LDLR 12 Downregulated −0.67 9.72E-03 −0.65 3.43E-02
5 TGFB2 12 Upregulated 2.31 3.57E-09 0.59 1.35E-02
5 PPARG 12 Downregulated −1.60 1.18E-05 −0.86 1.21E-02
5 ADCY9 12 Downregulated −0.73 2.83E-03 −0.98 4.91E-04
5 PLAUR 12 Upregulated 0.68 3.10E-03 0.98 1.28E-02
11 ADCY4 11 Downregulated −0.67 7.70E-04 −1.21 2.99E-03
11 PTK2B 11 Downregulated −0.74 1.73E-04 −0.66 1.20E-02
13 RAC2 10 Upregulated 1.02 8.65E-05 0.81 4.43E-02
13 CFD 10 Downregulated −2.40 6.34E-08 -3.60 1.20E-03
13 BIN1 10 Downregulated −0.73 1.34E-06 -0.83 1.35E-02
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illustrated in Table 3. The top significant cluster 1 included
7 nodes and 21 edges (Table 3). We identified the significantly
enriched KEGG pathways for the identified 9 clusters by using
the GSEA. Interestingly, we found that seven clusters are
associated with the enrichment of KEGG pathways (p <
0.05). Gene set of cluster 1 is associated with the
enrichment of complement and coagulation cascades (p =
1.67e-7). Gene set of cluster 2 is mainly involved with immune
regulation and cellular signaling (Table 3). In addition, the
gene set of cluster 3 is mainly associated with the regulation of
metabolism (Table 3). Also, Cluster 4, Cluster 6, Cluster 8,
and Cluster 9 are associated with the enrichment of KEGG
pathways (Table 3).

Cancer-Associated Fibroblasts Derived
Transcriptomes Are Correlated With
Survival Prognosis in Colon Cancer
We investigated the survival significance of the CAFs-derived all
significant common DEGs (72 upregulated and
174 downregulated genes) in TCGA COAD data. Our analysis
revealed that the upregulated group of CAFs-derived upregulated
genes included CTHRC1, EMB, FOXS1, LYPD1, NTM, PDGFC,
PDLIM3, SLC16A3, SYNPO2L, and TNFSF4 (Figure 4A) and the
lower expression group of downregulated genes included ABCA5,
FBN2, IMPA2, and TIMP4 (Figure 4B) are significantly
correlated with shorter survival time of colon cancer patients
(Figure 4). Moreover, we verified this result in a GEO dataset
GSE17536 (n = 177) of colon cancer. We found that upregulated
group of CTHRC1, NTM, PDGFC, PDLIM3, and SLC16A3 genes

are consistently correlated with the shorter survival of colon
cancer patients in GSE17536 (Figure 4C). In contrast, the
downregulated group of FBN2 gene is consistently correlated
with the shorter survival of colon cancer patients in GSE17536
(Figure 4C), indicating the tumor-suppressive role of FBN2 in
colon cancer.

Association of Survival-Associated Genes
With Immune Score and Stroma Score in
Colon Cancer
Since the upregulated group of CTHRC1, NTM, PDGFC,
PDLIM3, and SLC16A3 and the downregulated group of
FBN2 genes are consistently correlated with the shorter
survival time in TCGA and GEO datasets, we investigated
the association of these genes with immune score and
stromal scores in colon cancer. Interestingly, we found that
the expression levels (log2 transformation) of CTHRC1, NTM,
PDGFC, and PDLIM3 are moderately correlated with immune
scores (Spearman’s correlation test, p < 0.001) (Figure 5A). In
addition, the expression levels (log2 transformation) of
CTHRC1, NTM, PDGFC, PDLIM3, and FBN2 are strongly
correlated with the stromal score (Spearman’s correlation
test, p < 0.001) (Figure 5B). In contrast, SLC16A3 is not
correlated with immune scores and stromal scores in the
TCGA-COAD cohort (R > 0.30 and p < 0.01). This indicated
that the expression levels of CTHRC1, FBN2,NTM, PDGFC, and
PDLIM3 genes are associated with the modulation of immune
and stromal activity in the colon cancer tumor
microenvironment.

TABLE 3 | MCODE identified significant 9 clusters from the PPI networks of DEGs and the GSEA-based analysis identified the enriched KEGG pathways (p < 0.05) for a
specific gene set of individual clusters. NA: KEGG pathways not found for a specific cluster.

Cluster Score of
MCODE

Nodes Edges Node symbol Enrichment of
KEGG pathways

(p < 0.05)

1 7 7 21 PROS1, ISLR, TGFB2, CFD, SRGN, A2M, CLU Complement and coagulation cascades
2 6.75 9 27 ADCY9, ADORA1, ADCY4, PTGER3, CCL13,

CXCL12, ADCY3, GCH1, PDE3B
Chemokine signaling pathway, progesterone-mediated oocyte maturation,
purine metabolism, calcium signaling pathway, dilated cardiomyopathy,
gap junction, GnRH signaling pathway, melanogenesis, Oocyte meiosis,
vascular smooth muscle contraction, vasopressin-regulated water
reabsorption, vibrio cholerae infection, cytokine-cytokine receptor
interaction, and neuroactive ligand-receptor interaction

3 5 5 10 ALDH2, ADH1A, ALDH3A2, ADH1B, ADH1C Fatty acid metabolism, glycolysis/gluconeogenesis, tyrosine metabolism,
retinol metabolism, metabolism of xenobiotics by cytochrome P450, drug
metabolism-cytochrome P450, limonene and pinene degradation, beta-
Alanine metabolism, ascorbate and aldarate metabolism, histidine
metabolism, propanoate metabolism, butanoate metabolism, pyruvate
metabolism, tryptophan metabolism, lysine degradation, valine, leucine and
isoleucine degradation, glycerolipid metabolism, and arginine and proline
metabolism

4 4 8 14 VTN, PKP2, DSG2, C1S, DSP, C1R, PPL, KRT8 Arrhythmogenic right ventricular cardiomyopathy (ARVC), complement and
coagulation cascades, and systemic lupus erythematosus

5 4 4 6 ATP8B4, TNFRSF1B, PLAUR, PGRMC1 NA
6 3.333 4 5 SEMA3B, NTF3, EFNB2, SLIT3 Axon guidance
7 3 3 3 RSPO3, FZD1, RSPO2 NA
8 3 3 3 F2R, GNA14, F2RL2 Calcium signaling pathway and Neuroactive ligand-receptor interaction
9 3 3 3 NFASC, CADM1, EPB41L3 Cell adhesion molecules (CAMs)
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FIGURE 4 | Identification of survival-associated DEGs in colonic CAFs. (A) The higher expression group of upregulated genes that included CTHRC1, EMB,
FOXS1, LYPD1, NTM, PDGFC, PDLIM3, SLC16A3, SYNPO2L, and TNFSF4 are significantly correlated with shorter survival time in the TCGA COAD cohort. (B) The
lower expression group of downregulated genes that included ABCA5, FBN2, IMPA2, and TIMP4 are significantly correlated with shorter survival time in the TCGA
COAD cohort (C). The higher group of CTHRC1, NTM, PDGFC, PDLIM3, and SLC16A3 genes are consistently correlated with the shorter survival of colon cancer
patients in GSE17536. In contrast, the lower group of FBN2 gene is consistently correlated with the shorter survival of colon cancer patients in GSE17536.
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Cancer-Associated Fibroblasts Derived
Survival-Associated Genes Are Associated
With Immunosuppression in Colon Cancer
Since survival time of patients is correlated with immunological
responses in human cancers [44], we investigated the correlation
of six survival-associated genes (CTHRC1, NTM, PDGFC,
PDLIM3, SLC16A3, and FBN2) with the several immune
stimulatory and inhibitory signatures including CD8+ T cells,
CD4+ regulatory T cells, NK cells, TAM, macrophages,
M2 macrophages, Tregs, T cell exhaustion, and MDSCs. We
found that the expression levels of upregulated CTHRC1, NTM,
PDGFC, and PDLIM3 are positively correlated with ssGSEA
scores of TAMs, macrophages, M2 macrophages, Tregs, T cell
exhaustion, and MDSCs (Spearman’s correlation test, p < 0.001)
(Figure 6). Besides, SLC16A3 is positively correlated with the
infiltration of MDSCs (Spearman’s correlation test, p < 0.001)
(Figure 6). In addition, the expression level of FBN2 is correlated
with ssGSEA scores of TAMs, macrophages, M2 macrophages,
Tregs, and MDSCs (Spearman’s correlation test, p < 0.001).

Interestingly, the CD8+ T cells, CD4+ regulatory T cells, and
NK cells are not significantly correlated with the expression levels
of CTHRC1, NTM, PDGFC, PDLIM3, SLC16A3, and FBN2.

Cancer-Associated Fibroblasts Derived
Survival-Associated Genes Are Associated
With Tumor Progression and Metastasis in
Colon Cancer
We analysed the expression level differences of five shorter
survival-associated genes (CTHRC1, NTM, PDGFC, PDLIM3,
and SLC16A3) and one longer survival-associated gene (FBN2)
among the normal fibroblast (n = 9), primary tumor fibroblast
(n = 14), and metastatic tumor fibroblast (n = 11) samples of
GSE46824 [18]. Interestingly, we found that CTHRC1, NTM,
PDGFC, PDLIM3, and SLC16A3 are gradually upregulated from
normal to a metastatic tumor, indicating the association of these
genes in tumor progression (Welch’s t-test, p < 0.05) (Figure 7).
Besides, the expression of FBN2 is gradually downregulated from
normal to the metastatic tumor, indicating that the

FIGURE 5 | Association ofCTHRC1,NTM, PDGFC, PDLIM3, and FBN2 expression levels with the regulation of tumor microenvironment (TME) in colon cancer. (A)
The expression levels (log2 transformation) of CTHRC1, NTM, PDGFC, and PDLIM3 are moderately correlated with the immune score. (B) Strong positive correlation
between CTHRC1, NTM, PDGFC, PDLIM3, and FBN2 with stromal scores. (R is Spearman’s correlation coefficient and P is the p-value). We used the TCGA COAD
cohort (n = 287) to identify the correlation.
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downregulation of this gene is associated with tumor progression
(Welch’s t-test, p < 0.05) (Figure 7). Since the expression levels of
CTHRC1, FBN2, NTM, PDGFC, PDLIM3, and SLC16A3 are

significantly differentiated among the normal samples, primary
tumor, and metastatic tumor, we anticipated that these genes are
associated with metastasis in colon cancer.

FIGURE 6 | The expression levels ofCTHRC1,NTM, PDGFC, PDLIM3, SLC16A3, and FBN2 are positively correlated with ssGSEA scores of immune signatures in
colon cancer (Spearman’s correlation test, p < 0.001). We used the TCGA COAD cohort (n = 287) to identify the correlations.
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To prove this hypothesis, we investigated the correlation of
these genes with the metastasis-promoting gene set scores. We
identified the ssGSEA scores of metastasis-promoting genes and
identified the correlation with the expression levels of these six
gene signatures (Spearman’s correlation test, p < 0.001). We
found that the expression levels of CTHRC1, FBN2, NTM,
PDGFC, and PDLIM3 are positively correlated with the
ssGSEA scores of metastasis-promoting genes in the TCGA
COAD cohort (Figure 8).

Diagnostic Efficacy Evaluation in Fibroblast
Dataset and Expression Validation of Key
Survival-Associated Genes in Colon Tumor
Stroma
We speculate that these six genes (CTHRC1, FBN2, NTM,
PDGFC, PDLIM3, and SLC16A3) have diagnostic value in
colonic CAFs. We used the GSE46824 dataset to validate our
hypothesis, and the results showed that the ROC curve of the
expression levels of these six genes (CTHRC1, FBN2, NTM,
PDGFC, PDLIM3, and SLC16A3) showed excellent diagnostic
value for colonic CAFs and normal colonic fibroblast
(Figure 9A). Since CAFs are major regulatory components of
tumor stroma [45], we validated the expression levels of survival-
associated key genes between colon tumor stroma and normal
colon stroma. Interestingly, we found that three upregulated
survival-associated genes were also upregulated in colon tumor

stroma versus normal colon stroma (p < 0.05) (Figure 9B). In
addition, downregulated FBN2 is consistently downregulated in
colon tumor stroma (Figure 9B). Moreover, we divided the
TCGA COAD samples into the higher-CFAs group versus the
lower-CAFs group to identify the expression level of CTHRC1,
FBN2, NTM, PDGFC, and PDLIM3. Interestingly, we revealed
that the expression of CTHRC1, FBN2, NTM, PDGFC, and
PDLIM3 was highly expressed in the higher-CAFs group
(Figure 9C). However, SLC16A3 is not significantly altered
between the higher-CFAs group versus the lower-CAFs
group. It indicates that the aberrant expression of CAFs-
derived CTHRC1, NTM, and PDGFC is critically involved in
the pathogenesis of CRC.

DISCUSSION

Since CAFs are associated with tumor initiation, invasion,
migration, metastasis, and inhibiting immunotherapy response
[8–11], identifying key transcriptomes that are correlated with
cellular signaling, survival prognosis, immunosuppression, tumor
progression, and metastasis should be elucidated. To do this, we
identified colonic CAFs-derived transcriptomes which included
72 commonly upregulated (Supplementary Table S2) and
174 commonly downregulated (Supplementary Table S3)
DEGs. We used the two datasets, including GSE46824 and
GSE70468. The GSE46824 was derived from the patient-

FIGURE 7 | The expression levels of CTHRC1, NTM, PDGFC, PDLIM3, SLC16A3, and FBN2 are significantly differentiated among the normal samples, primary
tumor, and metastatic tumor of colonic fibroblast (Welch’s t-test, p < 0.05). We used the GSE46824 to compare the expression level of genes in the normal samples,
primary tumor, and metastatic tumor of colonic fibroblast.
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derived colon normal fibroblasts and laser micro-dissected CAFs
from the surgical colon cancer specimen. On the other hand, the
GSE70468 was derived from the primary cultures of patient-
derived colon normal fibroblasts (NFs) and cancer-associated
fibroblasts (CAFs). We selected the commonly deregulated
transcriptomes from both of the datasets (Figures 1C, D),
indicating that these transcriptomes are associated with CAFs
development in colon cancer tissues, and also involved with the
development of CAFs in culture medium. Previous studies
showed that CAFs-derived transcriptomes are associated with
colon cancer growth, development, and progression [46–50]. For
example, the TNFSF4 gene is associated with epigenetic
regulation in colon cancer [49]. Xu et al. reported that SRGN
can stimulate the metastasis of CRC as a key downstream target of
HIF1-A [48]. TGFB2 is frequently mutated in colon cancer and
associated with carcinogenesis [50]. The reduced level of SEPP1 is
correlated with M2 macrophage polarization and its
downregulation is linked with stemness and proliferation of
cells [51]. AOC3, another downregulated gene in CAFs, is
associated with the enrichment of pathways in colon cancer
[52]. Altogether, it indicates that the CAFs derived deregulated
transcriptomes are associated with the prognosis of colon cancer.

Then, we investigated the deregulated pathways which are
associated with CAFs-derived DEGs. We found that the
upregulated DEGs are associated with the enrichment of
KEGG pathways that are mainly involved with cancer and
cellular signaling and development (Supplementary Table
S4). In contrast, CAFs-derived downregulated DEGs are
associated with the enrichment of immune regulation and
metabolism-associated pathways (Supplementary Table S5).

Uddin et al. also found that many of these pathways
including pathways in cancer, small cell lung cancer, ECM-
receptor interaction, focal adhesion, TGF-beta signaling
pathway, and cell adhesion molecules (CAMs) are enriched
in colon tumor stroma [53, 54]. It indicates that the CAFs-
derived transcriptomes are associated with the stimulation of
cancerous and depression of immunological and metabolic
pathways in colon cancer.

Since CAFs-derived transcriptomes [4] are crucially related to
cancer pathogenesis and cancer therapy [55, 56], we identified key
hub genes and survival-associated genes for finding their
relationship with survival prognosis, immunosuppression, and
metastasis. The PPI-based analysis identified key hub
transcriptomes in colonic CAFs. Previous studies consistently
found the relevance of these key genes with the pathogenesis of
colorectal cancer. For example, the dysregulated FOXM1-PLAUR
signaling axis is significantly associated with the progression and
metastasis of human colon cancer [57]. In the Rac2−/− mice, a
marked reduction in regional colonic lymph node metastasis was
found, suggesting a substantial role for Rac2 in controlling
spontaneous lymph node metastasis [58]. TGFB2, one of the
major members of TGF-β signaling, is critically associated with
the progression and susceptibility of colorectal cancer [59]. P
Mazzarelli et al. reported that the serum level of CLU could
represent a diagnostic marker for colon cancer screening [60].
Also, we identified 9 clusters that are associated with the
enrichment of KEGG pathways (Table 3). The complement
components are associated with the regulation and remodeling
of the tumor microenvironment [61]. The chemokines are
critically promoting the invasion and metastasis of colorectal

FIGURE 8 | The expression levels ofCTHRC1,NTM, PDGFC, PDLIM3, and FBN2 are positively correlated with the ssGSEA scores of metastasis-promoting genes
in the TCGA COAD cohort (Spearman’s correlation test, p < 0.001).
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cancer [62]. Altogether, PPI-based identification of key hub genes
and clusters are involved in the regulation of colon cancer.

The expression level of survival-associated genes is
significantly correlated with the shorter survival time of colon
cancer patients (Figure 4). The elevated expression of CTHRC1
correlated with poor prognosis in patients with CRC [63]. It was
reported that the overexpression of SLC16A3 is correlated with
prognosis in pancreatic cancer [64]. Collectively, these results
indicate that the CAFs-derived genes are associated with the poor
prognosis of CRC patients. We selected these survival-associated
genes (upregulated CTHRC1, NTM, PDGFC, PDLIM3, and
SLC16A3, and downregulated FBN2) for finding the
correlations (Spearman’s correlation test, p < 0.001) with
various immune signatures (Figures 5, 6). Since TAM,
macrophages, M2 macrophages, Tregs, T cell exhaustion, and
MDSCs are immune suppressive components of TME [45,65,66],

the positive correlation of these immune signatures with survival-
associated genes indicates the immunosuppressive roles of these
genes in the colon TME.

Furthermore, we investigated the expression level of CTHRC1,
FBN2,NTM, PDGFC, PDLIM3, and SLC16A3 among the normal,
primary tumor, and metastatic tumors in a colonic fibroblast
dataset and revealed that these genes are gradually deregulated
among the three groups, indicating their roles in tumor
progression (Welch’s t-test, p < 0.05) (Figure 7). Finally, we
investigated the correlation of CTHRC1, FBN2, NTM, PDGFC,
PDLIM3, and SLC16A3with the metastatic scores in colon cancer
data. Interestingly, we found that the expression levels of
CTHRC1, FBN2, NTM, PDGFC, and PDLIM3 are positively
correlated with the ssGSEA scores of metastatic-promoting
genes in colon cancer (Spearman’s correlation test, p < 0.001)
(Figure 8). Shujuan Ni et al. reported that the elevated level of

FIGURE 9 | Evaluation of diagnostic efficacy and expression validation of key survival-associated genes. (A) The receiver operating characteristic (ROC) curve of
survival-associated genes in colonic CAFs and normal fibroblast (GSE46824 dataset). (B) Expression validation of shorter survival-associated genes in colon tumor-
stromal GSE35602 dataset. NS: Non-significant. (C) The shorter survival-associated genes are consistently deregulated in the high-CAFs group versus the low-CAFs
group in the TCGA COAD dataset.
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CTHRC1 is associated with the progression of CRC [63]. PDGFC is
correlated with early diagnosis, cancer grading, and metastatic
disease of CRC [67]. In CRC patients with hepatic metastasis, the
methylated FBN2 was detected in the patient’s serum [68]. In
summary, these results indicated that the expression of CTHRC1,
FBN2, NTM, PDGFC, and PDLIM3 is associated with tumor
progression and metastasis of colon cancer cells. Furthermore,
we validated the diagnostic efficacy of these key genes in colonic
CAFs and found that the CTHRC1, NTM, PDGFC, PDLIM3,
SLC16A3, and FBN2 genes have diagnostic efficiency in colonic
fibroblast (Figure 9A). It indicates that the expression value of
these key genes could be used in the diagnostic process. Finally, we
validated the expression levels of these key genes in the colon
tumor stroma dataset, and we revealed that the CTHRC1, NTM,
PDGFC, and FBN2 genes are consistently altered in colon tumor
stroma (Figure 9B). Also, CTHRC1, NTM, PDGFC, and PDLIM3
are consistently deregulated when compared the high-CAFs group
with the low-CAFs group in the TCGACOAD cohort (Figure 9C).
It indicates that stromal CAFs-derived transcriptomes may have a
crucial contribution to colon cancer. However, the expression
levels of PDLIM3 and SLC16A3 are not significantly altered in
colon tumor stroma (p < 0.05) and the expression level of FBN2
showed the opposite trend in the high-CAFs group (Figure 9C). As
far as we know, FBN2 is a protein-coding gene, which is associated
with tissue microfibrils and may be involved in elastic fiber
assembly [69]. It has been reported that FBN2 could have
excellent diagnostic value for smooth muscle sarcoma and
rhabdomyosarcoma [70, 71]. Besides, it also has been proved
that FBN2 might both have tumor-suppressive effects and is a
typical basement membrane marker in several types of cancers
[72]. Previous studies have found that FBN2 harbour cancer-
specific promoter methylation in human colorectal cancer [73].
Furthermore, clinical research has found that FBN2 gene
methylation exhibited in 63% of tumor samples of patients with
primary colorectal carcinoma, and FBN2 might be an early and
frequent event in precancerous and cancerous lesions of the colon
and rectum [68]. Although little is known about FBN2 biological
function regarding epigenetic changes in human cancers, the
methylation of these genes has great potential to detect early-
stage colon cancer [74]. FBN2 annotation research showed that
high expression of FBN2 was mainly enriched in extracellular
matrix (ECM) receptor interaction and epithelial-mesenchymal
transition (EMT) pathway [75]. In contrast, high expression of
FBN2 was found as a risk factor in lung and gastric cancer [76, 77].
In our research, we found that FBN2 is highly expressed in normal
fibroblasts, and downregulated FBN2 is consistently correlated
with the shorter survival of colon cancer patients, this result
gives rise to the idea to study the role of FBN2 in a deeper way.
Since we divided COAD samples into the high-CAFs group versus
the low-CAFs group and found a higher level of FBN2 in the high-
CAFs group, suggesting that the tumor cell contributed to the
higher expression of FBN2 but stromal CAFs contributed to the
lower expression level of FBN2. Furthermore, in the TCGACOAD
cohort, we found that the expression level of FBN2 is associated
with the infiltrations of immune cells (Figure 6), indicating that
tumor cells contributed to the higher expression level of FBN2 and
stromal CAFs contributed to the lower level of FBN2, which

ultimately associated with lowering survival time and increasing
the immune infiltrations in colon cancer patients.

Altogether, these results indicate the expression of CAFs-derived
key transcriptomes (CTHRC1,NTM, and PDGFC) is associated with
poor survival prognosis, immunosuppression, tumor progression,
andmetastasis in human colon cancer. Numerous evidence indicated
that immunohistochemistry is a highly effective substantial tool to
predict survival prognosis in patients with various cancer types [78].
Since laser-capture micro-dissected stromal FFPE tissue can be
utilized to identify molecular proteomic and transcriptomic
profiling [79], measuring the key genes with
immunohistochemistry in the laser micro-dissected CAFs may
lead the clinicians to taking decisions in diagnosis and specific
gene-oriented targeted therapy of colon cancer patients. However,
for using these findings in clinical and therapeutic applications,
further experimental and clinical verification would be necessary.

CONCLUSION

The identification of colonic CAFs-derived key transcriptomes
may provide insight into the association of these key genes with
survival prognosis, immunosuppression, tumor progression, and
metastasis.
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