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ABSTRACT
The aim of this study was to identify predictive immunity/hypoxia/ferroptosis/epithelial mesen-
chymal transformation (EMT)-related biomarkers, pathways and new drugs in allograft rejection
in kidney transplant patients. First, gene expression data were downloaded followed by identifi-
cation of differentially expressed genes (DEGs), weighted gene co-expression network analysis
(WGCNA) and protein–protein interaction (PPI) analysis. Second, diagnostic model was construc-
tion based on key genes, followed by correlation analysis between immune/hypoxia/ferroptosis/
EMT and key diagnostic genes. Finally, drug prediction of diagnostic key genes was carried out.
Five diagnostic genes were further identified, including CCR5, CD86, CD8A, ITGAM, and PTPRC,
which were positively correlated with allograft rejection after the kidney transplant. Highly infil-
trated immune cells, highly expression of hypoxia-related genes and activated status of EMT
were significantly positively correlated with five diagnostic genes. Interestingly, suppressors of
ferroptosis (SOFs) and drivers of ferroptosis (DOFs) showed a complex regulatory relationship
between ferroptosis and five diagnostic genes. CD86, CCR5, and ITGAM were respectively drug
target of ABATACEPT, MARAVIROC, and CLARITHROMYCIN. PTPRC was drug target of both
PREDNISONE and EPOETIN BETA. In conclusion, the study could be useful in understanding
changes in the microenvironment within transplantation, which may promote or sustain the
development of allograft rejection after kidney transplantation.
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Introduction

In recent years, kidney transplantation has been consid-

ered as the best therapeutic intervention for patients

with end-stage organ failure [1]. However, kidney trans-

plantation brings the risk of allograft rejection. If leav-

ing unchecked, allograft rejection reaction can destroy

the graft. With the use of immunosuppressive agents,

the incidence of transplant rejection has reduced [2].

Although the annual survival rate of kidney transplant

has reached more than 90%, there is a 4–5% loss of

function of the kidney graft. The 5-year survival rate of

kidney transplant is 70%, whereas the 10-year survival

rate is only 50% [2]. Regular monitoring of serum cre-

atinine is an insensitive predictor and only increases

upon the deficiency in kidney function [3]. Thus, it is

important to identify potential diagnostic and thera-

peutic markers that associated with different molecular

mechanisms in the process of allograft rejection in kid-
ney transplant patients.

Activation of the immune system in recipients is
majorly responsible for allograft rejection [4,5]. The
severity of the allograft dysfunction process is positively
correlated with the incidence of T cell-mediated acute
rejection [6]. Hypoxia, an inevitable event accompany-
ing kidney transplantation, is regarded as a common
cause for delayed graft function [7–10]. In response to
hypoxia, tubular epithelial cells can produce multiple
pro-inflammatory factors and trigger tubule interstitial
inflammation [11–13]. Ferroptosis, characterized by
membrane damage, is an iron-dependent and regu-
lated cell death [14]. Ferroptosis-related indicators,
including iron and lipid peroxides are associated with
renal fibrosis [15–20]. Epithelial–mesenchymal transition
(EMT) is the indispensable process in embryonic devel-
opment and organ fibrosis [21]. It is noted that the EMT

CONTACT Hongwei Yang yang__hongwei@163.com Organ Transplantation Center, General Hospital of Northern Theater Command, No. 5,
Guangrong Street, Heping District, Shenyang City, Liaoning Province, China
� 2022 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

RENAL FAILURE
2022, VOL. 44, NO. 1, 1850–1865
https://doi.org/10.1080/0886022X.2022.2141648

http://crossmark.crossref.org/dialog/?doi=10.1080/0886022X.2022.2141648&domain=pdf&date_stamp=2022-11-02
http://creativecommons.org/licenses/by/4.0/
http://www.tandfonline.com


is involved in the progression of interstitial fibrosis in
kidney allograft with chronic kidney allograft dysfunc-
tion [22]. Maybe, there are complex regulatory mecha-
nisms among immunity, hypoxia, ferroptosis, and EMT,
which may be important factors in allograft rejection
after the kidney transplant. In view of this, the aim of
the present study is to explore predictive immunity/
hypoxia/ferroptosis/EMT biomarkers, pathways, and
new drugs in the process of graft rejection in kidney
transplant patients, thus enabling more accurate and
less invasive diagnosis.

Materials and methods

Filtering of dataset

Gene expression data were downloaded from the Gene
Expression Omnibus (GEO) dataset. Keywords of ‘kidney
transplant’ and ‘Homo sapiens’ were used to filter the
gene expression profile data. The corresponding data
set was then filtered using the following criteria.
Inclusion criteria for dataset are as follows: (1) there are
more than five cases; (2) there is rejection information.
Exclusion criteria for dataset are as follows: (1) the study
is conducted at the cell line or animal level; (2) there is
a single case in the study; (3) repetitive or overlapping
study. Finally, a total of four datasets (involving kidney
transplant biopsy sample) were included in the study,
including GSE36059 (involving 122 patients with allo-
graft rejection and 281 patients without allograft rejec-
tion), GSE48581 (involving 78 patients with allograft
rejection and 222 patients without allograft rejection),
GSE129166 (involving 35 patients with allograft rejec-
tion and 60 patients without allograft rejection), and
GSE124203 (involving 774 patients with allograft rejec-
tion and 905 patients without allograft rejection).
Randomly, GSE36059, GSE48581, and GSE129166 data-
sets were considered as a training set. GSE124203 data-
sets were considered as a validation set. For the above
four datasets, the gene expression matrix files were
downloaded and annotated using annotation files of
GPL platform. For datasets of GSE36059, GSE48581, and
GSE129166, the combat function in ‘SVA’ in R package
was utilized to remove batch effect. The combined
dataset included 235 cases and 563 normal controls.

Screening of differentially expressed genes (DEGs)
and weighted gene co-expression network
analysis (WGCNA)

In the training set, the ‘llimma’ package was used to
identify DEGs in kidney transplant patients with allo-
graft rejection. The screening criteria of DEGs were false

discovery rate (FDR) <0.05 and jlog2 fold change (FC)j
>0.5. The volcano map was used for visualization of
DEGs. The ‘WGCNA’ in R package was utilized to analyze
the co-expression network of all genes, followed by the
construction of the scale-free gene co-expression net-
work. Genes with similar expression patterns were gath-
ered together. Modular signature genes (ME) were
defined as the first major component in each module.
To identify the key modules most associated with allo-
graft rejection, the ME of each module was calculated
using the ‘moduleEigengenes’ function. Pearson’s
method was applied to analyze the correlation with
allograft rejection. Modules with the highest positive
and negative correlation with allograft rejection were
chosen as hub modules.

Functional analysis and protein–protein
interaction (PPI) network construction of common
genes in hub modules and DEGs

First, in order to study the function of common genes
in hub modules and DEGs in kidney transplant patients
with allograft rejection, David database was used for
Gene Ontology (GO) analysis. In addition, GSVA analysis
was carried out to reveal differences in metabolic path-
ways. Significantly enriched GO terms and pathways
were identified under the threshold value of FDR <0.05.
Second, common genes in hub modules and DEGs
were put into the STRING database to study the regula-
tory relationship between proteins encoded by these
genes. The PPI network was constructed by Cytoscape
software. CytoHubba is one of the plug-ins in
Cytoscape software, which provides 11 topology ana-
lysis methods [23]. Finally, a total of seven topology
analysis methods were adopted to screen central genes,
including Degree, EPC, MNC, MCC, Closeness,
Betweenness, and Stress. The first 20 node genes of
each algorithm score were identified through the R
package ‘UpSet’ to screen the multi-center intersection
genes, which were considered as key genes involved in
allograft rejection after the kidney transplant.

Construction of diagnostic model based on
key genes

The receiver operating characteristic (ROC) curve was
used to determine the accuracy of key genes in the
diagnosis of allograft rejection after the kidney trans-
plant. The area under curve (AUC) is an evaluation
index of model performance. The AUC value ranges
from 0 to 1, where 0.7 is acceptable performance and
0.9 is excellent performance. First, ROC curves of the
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combinations of key genes were plotted. Then, ROC
curve of the single key gene was plotted separately in
allograft rejection and non-rejection groups. Finally, the
accuracy of the model was verified in the validation set.

Construction of regulatory networks between
miRNAs, transcription factors (TFs) and key genes

First, to explore the influence of miRNA-gene regulatory
relationship on the occurrence and development of
allograft rejection after the kidney transplant, the
miRNA-key gene regulatory network was constructed
based on the interaction data of miRDB Database.
Second, TRRUST Database was used to study the role of
TFs in key gene regulation.

Correlation analysis between immune, hypoxia,
ferroptosis, epithelial–mesenchymal transition,
and key genes

First, the single-sample gene set enrichment analysis
(ssGSEA) algorithm was used to quantify the abundance
of each cell infiltrate in the immune microenvironment
(IME). Gene sets that mark each infiltrating immune cell
type in IME were obtained from previous studies
[24,25]. To observe the immune status of kidney trans-
plant patients with allograft rejection, enrichment score
was used to represent the relative abundance of each
infiltrating cell in IME in each sample. Second, the sta-
tus of hypoxia in the kidney transplant patients with
allograft rejection was inferred from the hypoxia marker
gene set in the MSigDB Database, which includes 200
hypoxia-related genes. Third, status of ferroptosis and
EMT in the kidney transplant patients with allograft
rejection was inferred from the literature [26,27]. Finally,
the correlation between immune, hypoxia, ferroptosis,
EMT and key genes was analyzed.

Drug prediction of key genes

In order to provide a new perspective for disease diag-
nosis, treatment, and research for kidney transplant
patients with allograft rejection, drugs related to key
genes were screened out based on DGIdb Database
(https://dgidb.org/).

Statistical analysis

Statistical analysis was performed using R version 3.5.3
(R Foundation for Statistical Computing, Vienna,
Austria). The Limma package was used for differential
expression analysis. Modules positively associated with
allograft rejection were screened using the ‘WGCNA’
package. The function of the gene set was studied by
using David database. The regulation relationship
between the gene set was performed by using STRING
database. ROC analysis was performed using the R
package ‘pROC’ to calculate the AUC to assess the
accuracy of genes in the diagnosis of allograft rejection.
Wilcoxn.test was used to compare the differences of dif-
ferent immune cells in allograft rejection. Pearson’s cor-
relation analysis was used to analyze the relationship
between genes and immune cells.

Results

Identification of DEGs

After data preprocessing, 21,655 intersection genes
were identified in the training set (GSE36059,
GSE48581, and GSE129166) (Figure 1(A)). A total of 319
DEGs were identified in the kidney transplant patients
with allograft rejection, including 313 up-regulated and
six down-regulated genes. Volcano map and heat map
of all DEGs are shown in Figure 1(B,C), respectively.

Figure 1. Identification of DEGs in the kidney transplant patients with allograft rejection. (A) Venn diagram of intersection genes
in the training set; (B) volcano map of DEGs; (C) heat map of DEGs.
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WGCNA

WGCNA was used to identify genes related to allograft
rejection after the kidney transplant. First, samples were
clustered and four abnormal samples were deleted.
When the parameter value of the weight coefficient is
24, the scale-free topology is approximate (Figure 2(A)).
After building the cluster tree, the minimum number of
genes in modules was set to 100, which separate seven
modules (gray modules were not included). The
dynamic cutting tree method was utilized to merge the
modules with the dissimilarity degree <25%. Finally,
five modules were identified (Figure 2(B,C)). As shown
in Figure 2(D), the red module had the highest positive
correlation with allograft rejection after kidney trans-
plant (Pearson’s r¼ 0.45; p¼ 3E–41). Some up-regulated
genes in the red module were identified, such as C-C
motif chemokine receptor 5 (CCR5), CD86 molecule
(CD86), CD8a molecule (CD8A), integrin subunit alpha
M (ITGAM), and protein tyrosine phosphatase receptor
type C (PTPRC). The blue module had the highest nega-
tive correlation with allograft rejection after kidney

transplant (Pearson’s r¼�0.2; p¼ 1E–08). Some down-
regulated genes in the blue module were identified,
such as 4-hydroxyphenylpyruvate dioxygenase (HPD)
and afamin (AFM). Therefore, red and blue modules
were chosen as hub modules, which involved
1066 genes.

Functional analysis of common genes in hub
modules and DEGs

Totally, 270 common genes were identified in hub
modules (involving 1066 genes) and DEGs (involving
319 genes) in the kidney transplant patients with allo-
graft rejection. Based on GO analysis, immune response,
external side of plasma membrane and identical protein
binding were the most significantly enriched biological
process, cytological component, and molecular func-
tion, respectively (Figure 3(A)). In the GSVA analysis, a
total of 148 metabolic pathways were identified. Some
metabolic pathways were more active in the allograft
rejection group, such as graft versus host disease and
type I diabetes mellitus (Figure 3(B)).

Figure 2. WGCNA in the kidney transplant patients with allograft rejection. (A) Scale-free fitting index of different soft threshold
power and average connectivity of various soft threshold power; (B) merging of modules; (C) genes are divided into different
modules; (D) correlation heat map between modular characteristic genes and allograft rejection.
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PPI analysis of common genes in hub modules
and DEGs

These 270 common genes were put into STRING data-
base to study the regulatory relationship between pro-
teins encoded by these genes in kidney transplant
patients with allograft rejection (Figure 4(A)).
Outermost 39 genes were derived from the union of
the first 20 genes of seven topology analysis methods.
After screening of the first 20 node genes of each algo-
rithm score, a total of five key genes were identified
(Figure 4(B)), including CCR5, CD86, CD8A, ITGAM, and
PTPRC. The heat map of the above five key genes is
shown in Figure 5(A). Moreover, the up-regulation of
the above five key genes was verified in the validation
set (Figure 5(B)).

Construction of diagnostic model based on five
key genes

The diagnostic model for kidney transplant patients
with allograft rejection was constructed based on five
key genes in the training set (Figure 6(A)). AUC value
was 0.802. The diagnostic model was also verified in
the validation set (Figure 6(B)). The AUC value in the
validation set was 0.903. This suggested that the diag-
nostic model based on five key genes had an excellent
diagnostic performance for kidney transplant patients
with allograft rejection. Additionally, the diagnostic
value of the single key gene was analyzed in the train-
ing set (Figure 7(A)) and the validation set (Figure 7(B)).
The AUC value of above five key genes was more than
0.7, which suggested a potential diagnostic value of

Figure 3. Functional analysis of common genes in hub modules and DEGs in the kidney transplant patients with allograft rejec-
tion. (A) GO analysis. BP: top 10 biological processes; CC: top 10 cytological components; MF: top 10 molecular functions; (B) top
10 metabolic pathways.

Figure 4. PPI analysis of common genes in hub modules and DEGs in the kidney transplant patients with allograft rejection. (A)
PPI network constructed by common genes; (B) identification of key genes by intersecting the top 20 genes of 7 topology ana-
lysis methods.
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these genes for kidney transplant patients with allograft
rejection.

Construction of regulatory networks between
miRNAs, TFs, and five key genes

Based on interaction data of miRDB database, the
miRNA-key gene regulatory network was constructed in
kidney transplant patients with allograft rejection
(Figure 8(A)). There were respectively 121, 30, 67, 60,
and 65 related miRNA with PTPRC, ITGAM, CD8A, CD86,
and CCR5. Three miRNA-key gene regulatory pairs were
identified, including hsa-miR-8485-ITGAM/CD86, hsa-
miR-12123-PTPRC, and hsa-miR-664a-3p-CCR5/CD8A.
According to the TRRUST database, the role of TFs in
regulation of five key genes was investigated (Figure
8(B)). It is noted that TFs of nuclear factor kappa B sub-
unit 1 (NFKB1) and RELA proto-oncogene, NF-kB sub-
unit (RELA) regulated the expression of CCR5 and CD86.

Correlation analysis between immune and five
key genes

The ssGSEA was used to evaluate the status of 23
types of immune cell infiltration in the training set
in kidney transplant patients with allograft rejection
(Figure 9(A)). Infiltration degree of 23 types of
immune cells was high in the kidney transplant
patients with allograft rejection. In the validation set
(Figure 9(B)), apart from neutrophil and immature
dendritic cells, the infiltration degree of the rest of
21 types of immune cells was elevated in kidney
transplant patients with allograft rejection.
Interestingly, all 23 types of immune cells were sig-
nificantly positively correlated with five key genes
(Figure 9(C)). For example, activated CD4 T cells, acti-
vated CD8 T cells, myeloid-derived suppressor cells
(MDSCs), regulatory T cells, and T follicular helper
cells were significantly positively correlated with
PTPRC, CD8A, CD86, ITGAM, and CCR5, respectively.

Figure 5. The heat map (A), expression validation (B) of 5 key genes in the kidney transplant patients with allograft rejec-
tion. ����p< 0.0001.
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Correlation analysis between hypoxia and five
key genes

There are 200 hypoxia-related genes in the MSigDB
database. Moreover, these 200 genes are highly
expressed in hypoxia state. A total of seven common
genes were identified between 200 hypoxia-related
genes and 319 DEGs, including caveolin 1 (CAV1), C-X-C
motif chemokine receptor 4 (CXCR4), interferon stimu-
lated exonuclease gene 20 (ISG20), placenta associated
8 (PLAC8), S100 calcium binding protein A4 (S100A4),
transforming growth factor beta induced (TGFBI), and
TNF alpha induced protein 3 (TNFAIP3). These seven
genes were up-regulated in kidney transplant patients

with allograft rejection in training set (Figure 10(A)) and
validation set (Figure 10(B)). Moreover, all seven hyp-
oxia-related genes were significantly positively corre-
lated with five key genes (Figure 10(C)). It is noted that
TNFAIP3, ISG20, PLAC8, TGFBI, and CXCR4 were signifi-
cantly positively correlated with PTPRC, CD8A, CD86,
ITGAM, and CCR5, respectively.

Correlation analysis between ferroptosis and five
key genes

Ferroptosis status was predicted based on the suppres-
sors of ferroptosis (SOFs) and drivers of ferroptosis

Figure 6. Construction of diagnostic model based on 5 key genes in the kidney transplant patients with allograft rejection. (A)
ROC curve in the training set; (B) the ROC curve in the validation set.

Figure 7. Diagnostic analysis of 5 single key genes in the training set (A) and validation set (B) in the kidney transplant patients
with allograft rejection.
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(DOFs) in the literature. Some SOFs, such as CD44 mol-
ecule (CD44) and carbonic anhydrase 9 (CA9) were
respectively significantly up-regulated and down-regu-
lated in kidney transplant patients with allograft rejec-
tion in training set (Figure 11(A)) and validation
set (Figure 11(B)). Some DOFs, such as ATM serine/
threonine kinase (ATM) and phosphatidylethanolamine
binding protein 1 (PEBP1) were respectively signifi-
cantly up-regulated and down-regulated in kidney
transplant patients with allograft rejection in training
set (Figure 11(C)) and validation set (Figure 11(D)).
Depending on the correlation analysis between SOFs
and five key genes (Figure 11(E)), CD44 was significantly
positively correlated with five key genes. CA9 was the
most significantly negatively correlated with PTPRC.
According to the correlation analysis between DOFs
and five key genes (Figure 11(F)), ATM was the most
significantly positively correlated with PTPRC. PEBP1
was the most significantly positively negatively
with ITGAM.

Correlation analysis between EMT and five
key genes

Based on the evaluation of EMT status, EMT2 and EMT3
were higher in the kidney transplant patients with allo-
graft rejection (Figure 12(A)). Similarly, EMT2 and EMT3
were higher in the kidney transplant patients with allo-
graft rejection in the validation set (Figure 12(B)). It is
worth mentioning that EMT2 and EMT3 were signifi-
cantly positively correlated with ITGAM (Figure 12(C)).

Drug prediction of five key genes

Drugs associated with four key genes were screened
based on DGIdb database (Figure 13). It is a pity that
no related drugs were found for CD8A in the DGIdb
database. CD86, CCR5, and ITGAM were respectively
drug target of ABATACEPT, MARAVIROC, and
CLARITHROMYCIN. In addition, PTPRC was drug target
of both PREDNISONE and EPOETIN BETA.

Discussion

CCR5, a chemokine receptor, is associated with the
pathogenesis of a wide spectrum of health conditions,
such as inflammatory diseases and autoimmune dis-
eases. In a rat renal acute rejection model, CCR5 is sig-
nificant up-regulated after allogeneic transplantation
[28]. Interruption of the CCR5 is related to prolongation
of allograft survival [29,30]. In addition, in kidney trans-
plant recipients, those who are homozygous for CCR5
delta 32 have improved survival [31]. CD86, expressed
on antigen-presenting cells, suppresses host immunity
[32,33]. The numbers of circulating CD86þ after kidney
transplant are significantly higher than those at pre-
transplantation [34]. CD8A is significant up-regulated
after kidney transplantation [28]. ITGAM, a member of
the b2 integrin family of adhesion molecules, is
expressed by cells of the myeloid lineage [35]. ITGAM is
expressed by some kidney tubules. ITGAM plays essen-
tial roles in the adhesion of monocytes, macrophages,
and the uptake of pathogens [36,37]. PTPRC is involved
in regulating B cell and T cell receptor signaling. PTPRC

Figure 8. Construction of regulatory networks between miRNAs, TFs and 5 key genes in the kidney transplant patients with allo-
graft rejection. (A) miRNA-key gene regulatory network. Purple and orange color represent miRNA and key gene, respectively; (B)
TFs-key gene regulatory network. Orange and blue represent key gene and TF, respectively.
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is up-regulated in stable and acute kidney transplant
patients [38,39]. In this study, CCR5, CD86, CD8A,
ITGAM, and PTPRC were up-regulated and had the posi-
tive correlation with allograft rejection in kidney trans-
plant patients. It is noted that a combination or single

gene of the above five genes had a potential diagnostic
value for kidney transplant patients with allograft rejec-
tion. Thus it can be seen that CCR5, CD86, CD8A,
ITGAM, and PTPRC play crucial roles in the process of
allograft rejection and can be considered as potential

Figure 9. Correlation analysis between immune and 5 key genes in the kidney transplant patients with allograft rejection. (A)
Differences in the degree of infiltration of 23 types of immune cells in the training set; (B) differences in the degree of infiltration
of 23 types of immune cells in the validation set; (C) correlation heat map between 23 types of immune cells and 5 key genes.��p< 0.01, ���p< 0.001, ����p< 0.0001. ns: not significant.
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diagnostic markers for allograft rejection after the kid-
ney transplant.

Both innate and adaptive immune systems play crit-
ical roles in allograft rejection after the kidney

transplant, among which T lymphocytes are the main
cells for recognizing allografts [40]. According to func-
tion, T cells are divided into CD4þ T cells, CD8þ T cells
and Treg cells [41,42]. Significantly higher RNA

Figure 10. Correlation analysis between hypoxia and 5 key genes in the kidney transplant patients with allograft rejection. (A)
Expression of 7 hypoxia-related genes in the training set; (B) expression of 7 hypoxia-related genes in the validation set; (C) cor-
relation heat map between 7 hypoxia-related genes and 5 key genes. ���p< 0.001, ����p< 0.0001.

Figure 11. Correlation analysis between ferroptosis and 5 key genes in the kidney transplant patients with allograft rejection. (A)
Expression of SOFs in training set; (B) expression of SOFs in validation set; (C) expression of DOFs in training set; (D) expression
of DOFs in validation set; (E) correlation heat map between SOFs and 5 key genes; (F) correlation heat map between DOFs and
5 key genes. �p< 0.05, ��p< 0.01, ���p< 0.001, ����p< 0.0001. ns: not significant.

Figure 12. Correlation analysis between EMT and 5 key genes in the kidney transplant patients with allograft rejection. (A) Status
evaluation of EMT in the training set; (B) status evaluation of EMT in the validation set; (C) correlation heat map between EMT
and 5 key genes. ���p< 0.001, ����p< 0.0001. ns: not significant.
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expression levels of CD4 are found in blood samples of
patients with T-cell-mediated kidney transplant rejec-
tion [43]. Natural killer (NK) cells interact directly with
CD4þ T lymphocytes and induce acute rejection mecha-
nisms [44]. CD8þ T lymphocytes infiltrate the kidney
during allograft rejection [45]. CD8þ senescent T cells
are linked to a reduced possibility of allograft rejection
after kidney transplantation [46,47]. Relatively few

effector memory CD8þ T cells and effector CD8þ T cells
are found in the peripheral blood of patients receiving
immunosuppressive therapy after kidney transplant-
ation [48]. In peripheral blood of kidney transplant
patients, low regulatory T cells are related to allograft
rejection and poor outcomes [49–55]. In addition, regu-
latory T cells can suppress memory CD8þ T cell and
contribute to allograft survival [56]. T follicular helper

Figure 13. Drug prediction of 4 key genes in the kidney transplant patients with allograft rejection.
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cells induce differentiation of B lymphocyte and con-
tribute to rejection [57–60]. Inhibition differentiation
and function of T follicular helper cell can prevent the
development of anti-donor antibody responses in trans-
plantation [61–63]. In kidney transplantation, MDSCs
reveal a strong immune suppressive ability [64]. In kid-
ney transplant patients, MDSCs expand T regulatory
cells [65]. In the present study, all 23 types of immune
cells were significantly positively correlated with CCR5,
CD86, CD8A, ITGAM, and PTPRC. Moreover, activated
CD4 T cells, activated CD8 T cells, MDSCs, regulatory T
cells, and T follicular helper cells were significantly posi-
tively correlated with PTPRC, CD8A, CD86, ITGAM, and
CCR5, respectively. It is indicated that PTPRC, CD8A,
CD86, ITGAM, and CCR5 may play key roles in the
immune systems, which are associated with allograft
rejection after the kidney transplant.

In allografts, local over expression of vascular endo-
thelial growth factor (VEGF) results in chronic rejection.
Hypoxia is the major stimulating factor of VEGF expres-
sion [66,67]. Herein, seven hypoxia-related genes were
up-regulated in kidney transplant patients with allograft
rejection. It is noted that TNFAIP3, ISG20, PLAC8, TGFBI,
and CXCR4 were significantly positively correlated with
PTPRC, CD8A, CD86, ITGAM, and CCR5, respectively. In
kidney transplantation, TNFAIP3 expression is linked to
outcome prediction [68]. ISG20 is up-regulated in acute
rejection after kidney transplant [69]. ISG20 could be a
novel therapeutic target of renal fibrosis [70]. TGFBI can
promote renal fibrosis [71]. The antagonist of CXCR4
effectively reduces the rejection intensity after trans-
plantation [72,73]. The positive correlation between
hypoxia-related genes and PTPRC, CD8A, CD86, ITGAM,
and CCR5 may be associated with allograft rejection
after the kidney transplant.

Ferroptosis is considered to play key regulatory roles
in acute kidney injury. However, the role of ferroptosis
in immune rejection after kidney transplantation
remains unclear [74]. In this study, two SOFs, CD44, and
CA9 were respectively significantly up-regulated and
down-regulated in kidney transplant patients with allo-
graft rejection. Two DOFs, ATM, and PEBP1 were
respectively significantly up-regulated and down-regu-
lated in kidney transplant patients with allograft rejec-
tion. There is a prominent continuous expression of
CD44 by the endothelial cells of kidney allograft in
acute rejection [75]. CD44 absence leads to attenuated
kidney injury following ischemia or reperfusion injury
[76]. CA9, a membrane protein, regulates cell prolifer-
ation in response to hypoxia [77,78]. CA9 can serve as a
potential target for renal cell carcinoma-specific
immunotherapy [79]. Activation of ATM is found in

renal ischemia or reperfusion injury [80]. PEBP1, plays
roles in anti-inflammatory effects under homeostatic/
basal conditions, is associated with kidney allograft
rejection [81,82]. This suggested the association of fer-
roptosis and allograft rejection after kidney transplant-
ation. In addition, CD44 was significantly positively
correlated with PTPRC, CD8A, CD86, ITGAM, and CCR5.
CA9 and ATM were respectively the most significantly
negatively and positively correlated with PTPRC. PEBP1
was the most significantly positively negatively with
ITGAM. These results indicated that SOFs (CD44 and
CA9) and DOFs (ATM and PEBP1) showed a complex
regulatory relationship between ferroptosis and PTPRC,
CD8A, CD86, ITGAM, and CCR5.

EMT plays key roles in the fibrosis process of renal
grafts [83]. In the present study, EMT2 and EMT3 were
higher in the kidney transplant patients with allograft
rejection. Moreover, EMT2 and EMT3 were significantly
positively associated with ITGAM. EMT2 and EMT3 were
significantly linked to renal cell carcinoma [84].
Positively correlation between EMT2, EMT3, and ITGAM
may be involved in the fibrosis process after kid-
ney transplant.

Based on regulatory networks between miRNAs and
PTPRC, CD8A, CD86, ITGAM, and CCR5, three miRNA-
key gene regulatory pairs were identified, including
hsa-miR-8485-ITGAM/CD86, hsa-miR-12123-PTPRC, and
hsa-miR-664a-3p-CCR5/CD8A. In addition, TFs of NFKB1
and RELA regulated the expression of CCR5 and CD86.
NFKB1 is an inflammatory marker. After kidney trans-
plantation, the NFKB1 promoter polymorphism (-94ins/
delATTG) is related to susceptibility to cytomegalovirus
infection [85]. Increased expression of RELA is associ-
ated with renal thrombotic microangiopathy [86]. Our
result suggested that the regulation relationship
between miRNA, TFs and PTPRC, CD8A, CD86, ITGAM,
and CCR5 could be associated with inflammatory
response in the development of allograft rejection after
the kidney transplant.

It is reported that existing immunosuppressive drugs
are not sufficient to completely prevent allograft rejec-
tion in kidney transplant patients [87,88]. Therefore, it is
needed to find potential drug targets for kidney trans-
plant patients with allograft rejection. Based on DGIdb
database, PTPRC was drug target of both PREDNISONE
and EPOETIN BETA. In addition, CD86, CCR5, and ITGAM
were respectively drug target of ABATACEPT,
MARAVIROC, and CLARITHROMYCIN. PREDNISONE is an
essential component of immunosuppression protocols
during the first three decades of clinical kidney trans-
plantation [89]. Anemia is a common complication of
kidney transplantation. In kidney transplant recipients
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with moderate renal insufficiency, correction of anemia
with EPOETIN BETA can slow the decline in glomerular
filtration rate, reduce the incidence of end-stage renal
disease, and improve quality of life without increasing
the risk of cardiovascular events [90].

Treatment success of ABATACEPT has been found in
post-kidney transplant patients [91]. MARAVIROC
impairs lymphocyte chemotaxis with a theoretical
reduction in organ transplant rejection [92].
CLARITHROMYCIN is utilized to prevent and treat infec-
tion in kidney transplant recipients [93]. Thus, it can be
seen that PTPRC, CD86, CCR5, and ITGAM could be con-
sidered as potential targets of PREDNISONE, EPOETIN
BETA, ABATACEPT, MARAVIROC, and CLARITHROMYCIN,
which may provide novel treatment options for kidney
transplant patients with allograft rejection.

Beside above five diagnostic key genes positively
correlated with allograft rejection, two genes negatively
correlated with allograft rejection were found, including
HPD and AFM. HPD is down-regulated in renal ische-
mia–reperfusion injury [94]. AFM is a biomarker of acute
kidney transplant rejection [95]. Decrement in AFM is
observed in early acute kidney allograft rejection [96]. It
is reported that decreased expression of HPD and AFM
may be associated with allograft rejection after the kid-
ney transplant. In addition, based on GSVA analysis,
some metabolic pathways were more active in the allo-
graft rejection group, such as graft versus host disease
and type I diabetes mellitus. Graft versus host disease is
a rare complication after kidney transplantation [97].
New-onset diabetes after transplantation, another com-
plication in kidney transplant recipients, can increase
the risk of infections, allograft loss, and mortal-
ity [98,99].

In conclusion, five diagnostic genes were identified
in kidney transplantation patients with allograft rejec-
tion, including CCR5, CD86, CD8A, ITGAM, and PTPRC.
Highly infiltrated immune cells, highly expression of
hypoxia-related genes and activated status of EMT were
significantly positively related to these diagnostic
genes. SOFs and DOFs showed a complex regulatory
relationship between ferroptosis and five diagnostic
genes. CD86, CCR5, and ITGAM were respectively drug
target of ABATACEPT, MARAVIROC, and
CLARITHROMYCIN. PTPRC was drug target of both
PREDNISONE and EPOETIN BETA. Our study could be
useful in understanding changes in the microenviron-
ment within kidney transplantation. However, there are
limitations to our study. First, the mRNA or protein
expression validation analysis of CCR5, CD86, CD8A,
ITGAM, and PTPRC is needed in kidney transplant
biopsy sample from transplant recipients with graft

rejection compared to who do not present dysfunction
events. Second, the potential pathological mechanism
of these genes should be investigated in cell lines or
animal models. Third, the potential interaction mechan-
ism between immune cell and CCR5, CD86, CD8A,
ITGAM, and PTPRC are needed to investigate in the
future study.
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