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Tumour induction by methyl-nitroso-urea following
preconceptional paternal contamination with
plutonium-239
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Summary We have investigated the possibility that transgenerational effects from preconceptional patemal irradiation (PPI) may render
offspnng more vulnerable to secondary exposure to an unrelated carcinogen. 239Pu (0, 128 or 256 Bq g-1) was administered by intravenous
injection to male mice, 12 weeks before mating with normal females. Two strains of mouse were used - CBANH and BDF1. Haemopoietic
spleen colony-forming units (CFU-S) and fibroblastoid colony-forming units (CFU-F). a component of their regulatory microenvironment, were
assayed independentty in individual offspring at 6, 12 and 19 weeks of age. Bone marrow and spleen from each of these mice were grown in
suspension culture for 2 or 7 days for assessment of chromosomal aberrations. Female BDF1 were injected with methyl-nitroso-urea (MNU)
as a secondary carcinogen at 10 weeks of age and monitored for onset of leukaemia/lymphoma. Mean values of CFU-S and CFU-F were
unaffected by preconceptional patemal plutonium-239 (PP-2Pu), although for CFU-F in particular there was an apparent increase in
variation between individual animals. There was signifiant evidence of an increase in chromosomal aberrations with dose in bone marrow
but not in spleen. By 250 days, 68% of MNU-treated control animals (no PPI) had developed thymic lymphoma (62%) or leukaemia (38%).
The first case arose 89 days after MNU administration. In the groups with PPI, leukaemia/lymphoma developed from 28 days earlier, rising to
90% by 250 days. Leukaemia (65%) now predominated over lymphoma (35%). This second generation excess of leukaemia appears to be
the result of PPI and may be related to inherited changes that affect the development of haemopoietic stem cells.

Keywords: transgenerational leukaemogenesis; haemopoiesis: microenvironment; preconception patemal irradiation: methyl-nitroso-urea:
a-emitting radionuclides: chromosome damage

Considerable controx-ersv exists over wA-hether radiation-induced
mutations occurrinc in the male germ line can be the cause of a
predisposition to cancer in subsequent generations. In Gardner's
case-control study of leukaemia and ly mphoma among young
people in the Xillage of Seascale. near the Sellafield nuclear
plant in West Cumbria UK. it w as suggested that some
childhood leukaemias might be associated xwith occupational
radiation exposure of the father. prior to conception (Gardner et al.
1990). There xas no support for this hypothesis. howexer. from
offsprinc of cancer sunivors who had receix ed radiotherapy or
from anal ses of atomic bomb sunrixors (Yoshimoto. 1990:
Yoshimoto et al. 1990). The most recent report concluded that the
'Gardner hvpothesis' did not explain the excess of childhood
leukaemia near to the nuclear plant where the data were collected
(Doll et al. 1994). Their main argument centred on the fact that the
leukaemia cluster' was confined to Seascale. Children of compa-
rable Sellafield w orkers w-ho w ere resident in other parts of
Cumbria show-ed no similar excess of leukaemia incidence
(Parkeretal. 1993).

Nomura's (1975. 1982) experimental obserxations of increased
lung tumour incidence follow ing preconceptional exposure to
X-rays appeared to lend support to the hypothesis. Furthermore. he
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invoked differences in genetic background. based on studies in
three strains of mouse. to suggest an explanation for the anom-
alous epidemiological findings (Nomura. 1990). Cattenach et al
(1995). using a strain of mouse w-ith an established propensity for
lun, tumour formation. w as unable to confirm Nomura's findings.
Furthermore. this group noted cy clic and seasonal xariations in
tumour incidence wxhich threxx considerable doubt on many of
Nomura's experimental conclusions. stressing the necessity of
incorporating concurrent controls in all studies. The Committee on
NMedical Aspects of Radiation in the Environment (COMARE) has
recently review-ed all the axailable epidemiological and experi-
mental data how ex er. and concluded that. although the hypothesis
of preconceptional paternal irradiation (PPI) and cancer incidence
in offspring can be sustained in principle. it is not able to account
for the Seascale childhood leukaemia excess (COMARE. 1996).

In support of his experimental findings. Nomura further argued
that. if radiation-induced mutations in the germ line led to heri-
table lung tumours in the offspring. then all the lung cells should
camr that mutation and have an equal chance of forminc tumours.
Accordinglv. he found that subsequent exposure to urethane - also
capable of inducing, lung, tumours - stimulated large clusters of
tumour nodules in the lungs. This suggested that preconceptional
paternal irradiation could induce transmissible changes w hich
might render the offspringc more sensitive to subsequent exposure
to a secondarx carcinogenic agent.

W'e hax-e now extended Mxvestigations of this principle to our
experimental model of leukaemocenesis. We exposed male mice to
plutonium-239. mated themrwith normal females and injected their
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offspring wxith methyl-nitroso-urea (MNU) a chemical carcinogen
'Ahich induces thymic ly-mphomas and leukaemias in normal mice
(Schofield & Dexter. 1974). Offspring w-ere also examined for
effects on multipotent haemopoietic progenitor cells and frequen-
cies of chromosomal aberrations in bone marrow and spleen.

MATERIALS AND METHODS

Experiments 'Aere conducted in tx-o strains of mouse: (i) DBA2
male mice. mated x-ith C57B16 females to generate a BDF1
hxbrid. and (ii) inbred CBA/H mice of both sexes. They A-ere
treated and maintained under Home Office Licence according to
the provisions of the U'nited Kingdom. Animals (Scientific
Procedures ) Act. 1986. Procedures for preparation of the injection
solutions 'were as previously described (Schofield et al. 1986).

W'eapons-grade ""P. obtained from Amersham International.
UK. in citrate solution. w-as injected intraxenously in approxi-
matelx 0.2-ml units containing 128 or 256 Bq g-- body wxeioht.
Each mouse >-as w-eighed indixidually and injected accordingly.
Comparable citrate carrier solutions 'ere made up for control
group injections.

MethNyl-nitroso-urea (Sigma) wAas diluted in 0.9%; acetic acid in
phosphate-buffered saline (PBS ) to gix e an injection dose of
50 mg kg-' in 0.2 ml (i. ). This solution was made up not more
than 20 min before injection and '-as maintained on ice. Injected
animals 'Aere maintained in a carcinogen handlino room for 24 h
before transfer to clean boxes and beddinc and subsequent holding
in a conventional experimental room. No further precautions 'Aere
considered necessarx as excess MNMT is rapidly catabolized and no
further hazardous products are excreted.

Experimental protocol

Groups of 20 male DBA2 and CBA/H mice aged 12 xeeks w-ere
injected with either 128 or 256 Bq o- "9Pu (control groups of 20
mice receixed the carrier). Twelxe wAeeks later they wxere mated
with 12-week-old female C57BI and CBAJH mice respectixely.
Three day s before pairing. the mice Were housed in divided boxes
to induce oestrus (WAhitten. 1958). After teasing. they w-ere housed
in pairs and checked daily for vaginal plugs. Once plugs w-ere
observed. the pregnant mice 'Aere housed individuallv. Their litters
wxere weaned at 3 w'eeks of age and numbers per litter 'Aere
recorded.

At 6-8. 12 and 19 wxeeks of age. fixe male offspring wxere
assayed indixidually for femoral spleen and fibroblastoid colonx-
forming units (CFT-S and CFIT-F respectixely). These assays
w'ere duplicated in parallel experiments. one set being carried out
at the Paterson Institute (PICR on fix e randomly selected
offspring and the second set bein- carried out at MRC Chilton on
five mice selected from not more than two litters. Bone marrowx
and spleens 'Aere also remoxved for cvtogenetic assessments.

At 10 vveeks of age. the female BDF1 mice (axerage group size
53) ere injected intraxenously A ith 50 mg kc- MN-U. They wxere
subsequently monitored daily and sacrificed for autopsy as soon as
oxert signs of disease appeared: loss of weight. rapid xventilation.
physical languor. enlarged spleen or lixer. Examination of the
animals included recording, thymus. spleen and lixer w-eights
together w ith xisual examination of lymph nodes. blood and bone
marrow. Mice 'ith thxmus inxolxement only were recorded as
thy mic lymphomas. The rest w'ere grouped. for the purpose of
analysis. as leukaemias.

Assays

Spleen colony-forming units (CFU-S)
Femora w-ere remoxed from fixve male mice and assax ed indixidu-
aliv. Marrow cell suspensions were made in Fischer's medium (1
femur per 1 ml) and the femoral cellularities determined (Lord.
1993). For CFIT-S assavs (Till & MlcCulloch. 1961). the marrow
suspensions were diluted to 2 x I0 ml-' and 0.2 ml injected. i.x..
into each of ten lethallv irradiated recipient mice [8 Gx X-rax s at
0.75 Gx min-' (NIRC) or 15.25 Gy >XiCo y-rays at 0.85 Gv h-'
(PICR: Lord et al. 1984: Lord. 1993)]. Ten daxs later. the mice
w-ere sacrificed. their spleens excised and fixed for colonx
counting. It should be noted that for CFU-S enumeration. there is
no practical difference or significance incurred by the use of these
txx o recipient conditionin2 re2imens (Lord. 1993 ).

Fibroblastoid colony-forming units (CFU-F)
For CFU-F. a clonable component of the haemopoietic regulator-
microenxvironment (Friedenstern. 1970). 5 x 106 bone marrox- cells
,were inoculated into 25-cm' (T25) plastic tissue culture flasks
containingo S ml of Iscoxve's modified Dulbecco's medium. supple-
mented with 15%7e fetal calf serum. Three flasks per ogroup x-ere estab-
lished. gassedx -ith 5%- carbon dioxide in air and incubated at 37 C
for 7 davs (Fnredenstein et al. 1993). The flasks were then w-ashed
xith PBS. fixed for 30 s in methanol and stained "ith 1% crxstal
xiolet. Colonies containing at least 50 fibroblastoid cells A ere scored.

Cytogenetics
Chromosome preparations from marro"- and spleen '-ere made
from indix idual male mice ( usually fi e per group. minimum
three). Marrow' cells w-ere cultured in Fischer's medium. supple-
mented with 20%- horse serum. 5% medium conditioned bv cells
secreting interleukin-3 (1L-3). glutamine (200 mnxi) and peni-
cillin/streptomxcin (5000 units ml- ) at 37-C in a humidified incu-
bator containin2 5%7c carbon dioxide and 5% oxv2en. For 2-day
cultures. flasks w-ere seeded \vith S x 106 cells in 10 ml medium.
For 7-day cultures 1-2 x 10 cells A-ere added. Colcemid x-as
added 1.5 h before harvesting to arrest cells in metaphase.

For spleen cultures. cell suspensions 'Aere made with the aid of
a fine siexe. 'Aashed in RPNMI-1640 tissue culture medium.
centrifuged and resuspended in 6 ml of this medium supplemented
w-ith 20%N heat-inactivated fetal calf serum. clutamine and anti-
biotics (as for marroxx cells). At PICR phvtohaemagglutinin
(Nlurex HA 15. 10lgO ml-') >-as used as the mitogen: at MRC
concanaxalin A (200 pig ml-') '-as used. Cells were incubated in
5% carbon dioxide/95%/c air at 37 C in a humidified incubator for
48 h. Colcemid A as added for the last 2 h.

Table 1 Birth rates of CB"H and BDF1 mice following patemal injection of
--Pu

23SPu (Bq g-') No. Iitters Total offspring % (M/F) No. per litter

CB"H
0 15 100 55/45 6.67
128 19 139 52J48 7.32
256 1 5 92 45155 6.13

BDF1
0 19 121 55/45 6.39
128 15 104 39161 6.93
256 14 88 53/47 6.29
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Table 2 Bone marrow assays in male offspring of fathers injected with 23SPu 12 weeks before conception

Age of offspring 239Pu (Bq g-1) Assay BDF1 CBAAH

PICR MRC PICR MRC

0 21.7 1.2 21.2 + 2.2 22.4 t 0.9 20.7 + 1.2
128 Cells/femur 20.7 1.2 21.0 + 1.7 19.7 - 1.4 16.5 1.5
256 (x 10-) 19.3 0.6 19.7 t 1.8 23.0 - 1.1 20.7 0.3

6 weeks at PICR 0 463 94 161 ± 20 776 -t 78 172 58
128 CFU-F/femur 228 46 292 + 24 486 + 84 311 31

8 weeks at MRC 256 193 33 484 + 29 249 + 36 548 8

0 3701 84 4270 ± 192 4064 t246 2608 70
128 CFU-S/femur 3768+ 265 4571+ 303 3867 164 2164 266
256 3369± 326 4525 _258 4122 307 3305 +116

0 25.9 :2.4 21.2 - 1.4 23.2 0.7 21.8 1.5
128 Cells/femur 24.8 0.6 23.6 0.5 23.7 - 0.7 18.6 - 1.2
256 (x 104) 22.8 0.6 18.2 0.6 23.7 1.1 20.8 :0.9

0 ND 445 50 ND 649 - 68
12 weeks 128 CFU-Fffemur ND 521 54 ND 643 42

256 ND 370 46 ND 616 -19

0 4000: 655 3515 352 3951 210 3234 272
128 CFU-S/femur 4005 342 4283 173 3856- 172 3184 180
256 3110 ± 314 3401 88 4307 -157 3724 198

0 24.3 _ 1.2 21.6 0.6 27.9 -0.7 20.2 + 2.0
128 Cells/femur 23.5 + 0.3 18.6 1.2 27.0 1.0 21.2 _ 2.3
256 (x 10) 25.7+1.3 22.8 :2.4 27.5 +0.8 16.2 _ 1.1

0 570 72 629 : 35 560 : 53 567 : 80
19weeks 128 CFU-F/femur 362 50 356_±32 547:51 67:15

256 514 55 415 42 261 : 92 1288 _ 76

0 3421 172 5043± 258 5280 + 131 2780 - 81
128 CFU-S/femur 3362: 256 5017 _ 289 3989 183 3118 148
256 3569+ 259 5838: 529 3663 203 3145 255

Each result is the mean of 5 mice assayed individually ( + s.e.). Total mice assayed = 60 at each level of 239Pu injection. ND = 12 week data for CFU-F at PICR
were lost due to technical problems.

Table 3 Bone marrow assays - averages of data for both centres and all
ages of animals

Assay BDF1 CBA/H "3Pu (Bq g-1)

Cells/femur 22.7± 0.7 22.7 0.7 0
(x 10-) 21.8 + 0.6 21.2 -0.8 128

21.4+0.7 22.0-0.7 256

CFU-F/femur 454 + 41 545 + 50 0
352 +26 410+ 47 128
395- 28 593± 80 256

CFU-S/femur 3992 :162 3653-182 0
4168- 143 3363±140 128
3969:213 3711 : 110 256

Each result is the mean of 30 mice. assayed indivdualty (:s.e) at each
centre. for the three age groups combined.

Metaphase preparations of marrow- and spleen cells were made
by standard procedures and stained x-ith 5% Giemsa. One cytoge-
neticist at each of the two centres was responsible for chromosome
analvsis. Usuallv 50 (occasionallv 100) cells were scored from
marrow and spleen preparations from each animal. All scoring w as
done on coded and randomized slides.

Marro", preparations w ere made from 4-. 84- and 1 26-dav-old
animals at MRC but onlv from 42- and 84-dav-old animals at

PICR (except for 7-dav cultures from BDF1 mice at 126 daxs).
Spleen preparations x-ere made from 42- and 84-dav-old animals
at both centres.

RESULTS

Fertility
Although at the higher dose of "9Pu. the mice W ere slow er to mate
and for the BDF1 a second batch of pairings had to be introduced
in order to obtain sufficient litters. there Aere no strnificant differ-
ences in the size of those litters born. CBA/H litter sizes for the
control. 128 and 256 Bq g 2' 9Pu groups were respectixelx 6.7. 7.3
and 6.1. BDF1 litters similarlI axeraced 6.4. 6.9 and 6.3 respec-
tivelv (Table 1).

Bone marrow

Bone marrow- cellularity. CFU-S and CFR-F content were assaved
in fixe mice indixiduallx at 6-8. 12 and 19 weeks of age for each
of the txx o resultant sets of offspring. Axerage xalues for each
group of fi e mice are shown in Table 2 and are further condensed
to give axerage xalues for the txxo mouse strains oxer the wxhole
experimental period in Table 3. Preconceptional patemal 9;Pu
appeared to have little effect on these axverage group xalues.
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Figure 1 Frequency distributions of the numbers of cells per femur
among the offspring of carrier treated fathers (A) and of fathers injected with
128 Bq g-t (B) or 256 Bq g- (C) 29Pu. The two separate shades, plotted as a

stacked bar histogram. indicate the data obtained for 20 individual assays at
PICR (U) and 30 individual assays at MRC ( ) on both strains of mouse for
each set of observations (total number of assays = 150)

A tx o-sided analxsis of variances on the raw control data.
comparing each strain of mouse assaxved at PICR vs MRC and
comparing CBA/H xs BDFl mice at each centre. was carried out.

Generalix loser measurements for femoral cellularitx in CBA/H
mice at MRC A ere significant at the 1 cl% level. This difference w as

less evident for BDFl mice (P = 0.05). Howeveer. at neither centre

u-as there a significant oxerall difference betxeen the txo strains
(Table 3). These cell counts are integral in CFUT-S and CFU-F
calculations and the differences are therefore reflected in lou-er
CFU-S xalues (P = 0.01). where CBA/H measurements at MRC
w ere inx olved in the comparisons. It led also to a marginal
difference in CBA/H-CFU-F values betx-een PICR and MRC
(P = 0.05). No other comparison produced significant differences
betu-een strains or centres.

To compare the overall effects of PPI. and to compensate for
minor variations resulting from assavs at different times. different
xenues and different mice. axerage xalues for all the indiv idual
control mice were calculated. Values obtained for cellularit-.
CFU-S and CFUT-F were respectively 22.7 x 10W. 3800 and 480 per

femur. Then. based on the mean control xalue for each subset of
observations (e.g. 12 week BDF1 mice at PICR etc.). the xalues
for each indix idual mouse w ere normalized against the appropriate

Figure 2 Frequency distributions of the numbers of CFU-F per femur
among the offspring of carmer treated fathers (A) and of fathers injected with
128 Bq g-' (B) or 256 Bq g-t (C) 239Pu. Bars show the data obtained for 30
individual assays at PICR (-) and MRC ( ) and for each set of observations
(total number of assays = 180)

ox erall axerage xvalue. These normalized data x-ere plotted as

frequency histograms (Figures 1-31. Figure 1 A shox-s the femoral
cellularities in control offspring to be normally distributed. a mean

x-alue of 22.7 x 106 ± a standard dexiation (s.d.) of 4.1 x 1I6 incor-

porating 70%7c of the total obserxations. Parity of the data betxween
the two centres is shown in Fiaure IA. u-here the separate data sets

for the control animals are identified and seen to contribute
approximately equally to the distribution. A two-sided analx sis of
x-ariance on the standard dexiations shoxxwed no sionificant differ-
ence bet-een the two centres. This normal distribution was main-

tained in the offspringc of plutonium-injected fathers - about 80%'7
of the obserxations lying, w-ithin the control standard dexiation.
though a sliaht broadening and left-shift of the peakl frequencies
may be perceixed (Fiaure lB and 1C). Although an analy-sis of
xariance shoxxed no significant change in the mean xalue. the
standard deviations of the groups became significantly different
at 256 Bq g- "9Pu compared xxith control (P = 0.02 at PICR and
P = 0.05 at MRC).

Figure 2A shoxxws the CFU-F for normal offspringa also to be
normally distributed. a mean X alue of 480 ± a standard dex iation

(s.d.) of 156. incorporatingr 76% of the individual assays. and there
xxas no significant difference betxxeen the distributions for PICR
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Figure 4 Aberration yields relative to untreated controls. The two high
values at 128 Bq g-I reflect the low control frequencies in these groups of
animals

Figure 3 Frequency distributions of the numbers of CFU-S per femur
among the offspring of carrier treated fathers (A) and of fathers injected with
128 Bq g-1 (B) or 256 Bq g- (C) Z3iPu. Bars show data obtained for 30
indMdual assays at PICR (U) and MRC (X) and for each set of observations
(total number of assays = 180)

compared with MRC. Ho%vexer. 128 Bq g- "9Pu in the father
caused the distribution to spread more uniformly over a greater
ranre of CFU-F per femur (Figure 2B). 58% then being outside the
normal range of 1 s.d. At 256 Bq g-' the distribution split into two

distinct groups of low and high numbers of CFIJ-F per femur.
though it should be noted that all the hiah values were reported for
one centre - MRC (Figure 2C) - the difference with PICR being
significant at P < 0.01. Of these. 70%c were outside the normal
range of 1 s.d. Ox-erall mean group values were similar. but
analysis of variance on the standard deviations showed significant
differences in the distributions at 128 Bq g-' (P < 0.01) and
256 Bq g-' (P < 0.00 ). A similar trend was evident for the femoral
CFLT-S content. Of the normal mice. 82% contained CFU-S within
1 s.d. of 546 on a mean value of 3800 per femur, with no signifi-
cant difference between results from PICR and MRC (Firure 3A).
Increasing amounts of :"9Pu to the father (Figure 3B and 3C)
caused the distribution increasinglv to flatten and extend such that
47% and 52% lay outside the normal range of 1 s.d. respectively.
In this case. results from PICR and MRC for the PPI groups were

not significantly different. Neither was the 128 Bq g-' distribution
different from the controls. At 256 Bq g-1. however. the increased
spread in the distribution (Figure 3C) was different (P = 0.01).

Cytogenetics

Chromosome aberration data are presented in Table 4. subdix-ided
into three main datasets: spleen. 2-day bone marrow cultures and
7-dav bone marrow cultures. Aberrations in all three roups w-ere
mainly gaps and breaks (predominantly chromatid-type) wvith 10I
exchanaes or less. The results can be summarized as follows:

1) At both centres there was significant evidence of differences
betw-een aberration *ields in replicate mice. This v as true

within each of the three datasets and is allo%ved for in subse-
quent statistical tests.

(2) Within each dataset there were some significant differences
in aberration yield betw een the tw o centres. but these differ-
ences w-ere not consistent. For example. for the CBAIH 6-

week group. considering spleen cells at all doses (0. 128 and
256 Bq yields at PICR were significantly lower than at

MRC (P = 0.03). In contrast. in the BDFl 6-8 week group.
yields in spleen cells were significantly higher at PICR than
at MRC (P=0.01).

(3) For bone marrow cells. there w as no sianificant difference
between results in the two mouse strains. For spleen cells.
there were differences wvithin some data subsets: for example.
at PICR. vields in BDF1 mice (all doses and ages) were.
overall. higher than in CBA mice (P = 0.02)T)

(4) For spleen cells. there was no significant difference in x ields
between animals sampled at different ages. Howex er. for
marrow cells there u as considerable heterogeneity betw-een
data subsets w-ith no consistent pattern.
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Table 4 Chromosome aberration data incduding gaps (achromatic lesions)

Aberration yield (%) at dose (Bq g-1) Ratio of yields

Cell origin Centre Strain Age (weeks) 0 128 256 128:0 256:0

Spleen PICR CBAIH 6 6.0 - 1.8 4.4- 1.6 5.2 t 1.7 0.73 0.35 0.87 0.39
12 9.6 t 2.3 9.6 2.3 5.2 1.7 1.00 t 0.34 0.54 0.22

BDF1 6 10.7 3.2 12.0 3.4 8.7 -2.9 1.12 + 0.46 0.81 z0.36
12 8.0 2.8 12.7 3.5 8.0 2.8 1.58 ± 0.70 1.00 0.49

MRC CBA"H 8 6.0 -2.1 10.4 -2.4 9.6 2.3 1.73 - 0.72 1.60 0.67
12 2.0 1.1 5.3 -2.2 4.0 -1.8 2.67 -1.81 1.99 0.14

BDF1 8 4.0- 1.5 6.0- 1.8 6.0 1.8 1.5-0.73 1.50 -0.73
12 7.6+2.1 5.6- 1.8 4.8 1.7 0.74-0.31 0.63-0.28

Overall ratios'
1.19 - 0.18 0.95 -0.15

Marrow PICR CBAJH 6 10.8 -2.5 11.6 -2.6 11.2 2.6 1.07 + 0.35 1.04 -0.34
(2 day) 12 11.6 -2.6 6.8 2.0 7.6 2.1 0.59 + 0.22 0.66 -0.23

BDF1 6 9.2 2.3 9.2 2.3 12.4 2.7 1.00 t 0.36 1.35 0.45
12 8.0 2.2 7.2 2.1 8.8 2.3 0.90 + 0.36 1.10 -0.41

MRC CBAIH 8 14.8 2.9 20.0 3.4 22.4 3.6 1.35 + 0.35 1.51 e0.39
12 4.9 - 3.0 11.0 - 2.8 13.2 2.8 2.22 + 1.45 2.67 1.71
19 16.4-3.1 28.8-4.1 29.2-4.1 1.76-0.42 1.78_0.42

BDF1 8 11.3-3.3 22.0-3.6 24.4-3.8 1.94 0.65 2.15_0.71
12 10.0-2.4 15.2 3.0 15.2-3.0 1.52-0.47 1.52 0.47
19 22.0 -3.6 24.8 3.8 38.0 -4.7 1.13 -0.25 1.73 ± 0.35

Overall ratios'
1.27 0.12 1.47 + 0.14

Marrow PICR CB"H 6 7.2 -1.6 8.7 _2.0 17.0 -2.5 1.22 0.39 2.36 _ 0.63
(7 day) 12 12.0 2.9 11.6 2.9 10.0 2.7 0.97 0.34 0.83 + 0.30

BDF1 6 6.4-2.1 8.0-2.4 12.8-3.0 1.25_0.56 2.00 0.82
12 18.8 -3.7 16.8 - 3.5 14.4 3.2 0.89 _ 0.25 0.77 0.23
19 18.0 -3.6 23.3 4.1 12.8 3.0 1.29 0.34 0.71 0.22

MRC CBAIH 8 6.0-2.1 8.0_2.4 16.43.4 1.33 0.61 2.73-1.10
12 0.8 -0.8 8.7 3.2 - 10.83 10.98 -
19 11.6 2.9 18.4 _ 3.6 16.4 - 3.4 1.59 0.50 1.41 -0.46

BDF1 8 12.7 3.9 14.0 - 3.2 13.2 -3.1 1.11 -0.42 1.04 + 0.40
12 2.0 -1.3 11.3 2.9 3.6 1.6 5.68 4.06 1.81 - 1.45
19 6.4-2.1 12.7-3.9 - 1.98-0.90 -

Overall ratios'
1.37 -0.23 1.38 t 0.24

'Assuming that aberration yields at doses 0. 128 and 256 Bq g- are in the ratio of 1 :yt:y2. each individual line of the Table yields an estmate of this rabo. The
overall ratios quoted are the maximum likelihood estimates of yt and Y2 provided by all relevant lines of the table, after first testing for heterogeneity among the
individual ratios. Individual ratios were satisfactority homogeneous in the cases of spleen and 2 day bone marrow. but were significantly heterogeneous in the
case of 7 day bone marrow. Standard errors in the latter case have been increased by the appropnate heterogeneity factor.

15) In spite of the heterogeneitv of results under 1-4. and takin-
this into account in the statistical analysis. there w-as evidence
of a sienificant increase in aberration X ields w ith dose in
marro,w cells. O erall mean ratios of x-ields for 2-dax marrou-
samples v-ere 1.00:1.27:1.47 at 0. 128 and 256 Bq g-' respec-
tivelv (Table 4 and Figure 4). the Xields show-inc a good fit
to the linear model (vield = a + BD) Awith a slope (B) of
(1.50±0.35)x O-".

For the 7-dav marrou- samples. the ratios of xields at 0. 128 and
256 Bq g- were 1.00:1.37:1.38. with evidence of saturation.
Nevertheless. the data w-ere an adequate fit to the linear model.
u-ith 3 = (1.17± 0.67) x 10-. For spleen cells there w-as no sianif-
icant exidence of an effect of dose on aberration x-ields (Tables 4
and 5).

Dose-response relationships were similar w-hether or not gaps
were included in the analxsis of chromosome aberration data
(Table S).

LymphomaAleukaemia following administration of MNU

Following a single injection of MNLT at 10 weeks of age. BDF1
mice were observed at regular intervals for the first 2 months.
duringn which time none showed adverse symptoms. and thereafter
daily. The first symptoms of disability appeared at 61 days in an

animal A-hose father receixed 128 Bq g-' "9Pu (Figure 5). Eight
day s later. it became necessarv to sacrifice the first mouse from the
256 Bq g' group. Only at 28 days later did the first of the control
group show- signs of disease. This was significantly later than for
the 128 Bq g- group (P = 0.03). but not for the higher dose group.

Subsequent animals A-ere sacrificed as symptoms of deteriorating
health appeared. In the control group. thymic lymphomas and
leukaemias accumulated at a steady rate. exactlY in agreement
Aith an earlier report (Schofield & Dexter. 19741) and by 185 days
50% had succumbed (Figure 5 and Table 6). Animals in the pluto-
nium groups had to be sacrificed at a faster rate than those in the
control group. 50%' incidences arising by 161 days (P = 0.002.
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regression analy-sis of the log-probit slopes) and by 125 days (P<
0.001) in the 256 and 128 Bq g-l groups respectixely. It is notable
that the minimum latent period xx-as shortest and the rate of inci-
dence of disease >-as greatest in the offspring of fathers xho had
receixed the loxwer amount of plutonium. The disease/incidence
data are summarized in Table 6.

In general. txwo ty pes of malignancx wxere expected and
obtained. In controls (and as prexiously reported. Dexter et al.
1974). the primary problem wxas dex elopment of thy mic
ly mphoma. characterized by a grossly enlarged thymus. but no
other tissue abnormality. Oxer a period of -1S months. about txwo-
thirds of the mice sacrificed bore thyrmic lI mphomas only. while.
accruing more slowuly. only one-third dexeloped other malignan-
cies. primarily leukaemias mx olxing bone marrow. spleen. lymph
nodes and lixver (Figure 6 ). The rates of accumulation of each type
of malignancy wxere not statisticallx different I variance analy sis on
the indix-idual times of incidence), but the shortest latent period
xxas less for the lI-mphomas than for the others (P < 0.01 ).

This pattern of disease wxas rexersed in the txx ogroups whose
fathers receix-ed plutonium. About 70%k of the mice sacrificed
xxere leukaemic. xxhile only 30%7c had disease limited to the thy mus
(Figure 6 and Table 6). Both groups of disease dexeloped with a
shortened minimum latent period. which in all cases wxas highly
sienificant (P < 0.001). The rate of onset of thymic ly-mphoma -
but not leukaemia - wxas sicnificantlx lower than that in the
controls (PF" 0.001).

DISCUSSION

Effect of PPI on Iymphoma/leukaemia induction by
MNU

In this study x-e haxe sought to inxestigate the possibility that PPI.
in the form of an intravenous injection of '"Pu. 12 xeeks before
matinsxwith a normal mouse. results in transmitted defects such
that the offspring are more susceptible to the lymphogenic/
leukaemogenic effects of a chemical carcinocen - MNU - encoun-
tered post-natally. Doses of "9Pu were chosen such that no direct
effect on fertilitv would be induced. Prexiously. 128 Bq g-' "-Pu
xas shoxxn to haxe no effect on fertilitx or litter size. despite a
spenn count reduced to 15% of control (Searle et al. 1976). In this

a)
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Figure 5 Cumulative incidence of thymic lymphomas and leukaemias with
time following a single injection of 50 mg kg- of MNU. The data are plotted
on log-probit axes. Each symbol represents one case (or group of cases
when multiple cases arose on the same day) and indicates offspnng of
carrier treated fathers (-). and fathers injected with 128 Bq g- (A) or
256 Bq g-' (U) -39Pu

studv. the higher dose of 256 Bq g-` reduced the frequency of preg-
nancies someA-hat. but as xxith 128 Bq g-3 it had no effect on litter
size (Table 1).

In a large proportion of adult mice. MINU induces primarily
thxymic lNmphomas. characterized by a grossly enlarged thymus
but no other oxert change and. dexeloping later and more slo%%-lx.
mveloid leukaemias inx olx ing the bone marroA- and spleen
(Dexter et al. 1974). These results "were reproduced exactly in our
control aroup (Figures 5 and 6). PPI modified this pattern of devel-
opment such that the minimum latent periods for both cateaories
of disease were shortened. and the more dominant dexelopment of
disease involving the bone marrow and spleen (the leukaemias)
appeared to suppress the rate of dexvelopment of thymic
lyNmphoma. Thus. all three parameters of MINU-induced mali2-
nancyxwere significantlx modified: there w-as a reduced latencx
period. an increased rate of incidence and lexel of malignancy and

Table 5 Statistical analyses of dose-response data for chromosome aberrations

Fit to linear model
Dataset' Ratios of yields Y= a + iD Sklpe Significance of slope

(x10-3)
128:0 256:0 F df. P F df. P

Spleen + gaps2 1 19-0.18 0.95-0.15 NA- NA NA
Spleen-gaps, 1.09 - 0.20 0.76-0.15 NA NA NA
Marrow (2 day) + gaps 1.27 0.12 1.48 + 0.14 0.878 19.117 0.61 1.50 - 0.35 18.6 1.117 <0 001
Marrow (2 day)-gaps 1.36+0.16 1.61 -0.18 0.912 19 117 0.57 1.80-0.42 17.99 1.117 c0.001
Marrow (7 day) + gaps 1.37 0.23 1.38 + 0.24 1.24 1.18 0.28 1.17 - 0.67 3.10 1.19 0.094
Marrow (7 day) - gaps 1.43 + 0.26 1.44 + 0.27 1.40 1.18 0.25 1.36 t 0.71 3 69 1.19 0.070

'Combined data for both centres. both mouse strains and all sampling times: 2ratios not significantly different from 1.00 [F(2.81) = 1 .17: P= 0.32]: 3rabos not
significantly different from 1.00 [F(2.81) = 1.67: P = 0.19]: -not applicable.
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Figure 6 Relative cumulative incidences of thymic tymphomas (0) and
leukaemias (A) in offspring of carmer-treated fathers (A) and fathers injected
with 128 Bq g'` (B) or 256 Bq g- (C) 239Pu. The first case (shown in B)
developed 60 days after a single injecton of MNU and is designated time-
zero on the abscissae

a sw itch from the predominant thyfmic lymphoma in the controls to
predominance of leukaemias in the offspring of plutonium-treated
fathers.

These studies therefore corroborate Nomura's ( 1983) suggestion
that offspring of PPI may have increased susceptibility to tumour
induction. Two other studies have indicated the potential of precon-
ceptional paternal irradiation to increase the sensitivitrv of their
offspring to a secondary carcinogenic insult. Vorobtsova and her
colleagrues reported the incidence of urethane-induced lung,
adenomas (Verobtsoxa & Kitaev. 1988) and of skin papillomas
induced by 1 2--tetracanovlphorbol- 13-acetate (Verobtsox a et al.
1993) in mice following a paternal dose of X-rays shortly before
mating. The defect in both cases was found to be transmitted
through at least two uenerations.

Table 6 Summary of offspnng Iymphoma/leukaemias following injection of
MNU

Control 128 Bq g- 256 Bqg-1
239Pu Pu

Number injected with MNU 55 62 41
Time to first case (days) 89 61 69
Time to 50°% incidence of 185 125a 161:

malignancy (days)
Rate of incidence 0.510 0.725 0.562

(°O per day to 500o)
Minimum latent period (days) 89 61- 69c
Lymphomas' (0O) 62 35 35
Leukaemias" (°O) 38 65 65

'Thymic invotvement only (by gross pathology). -Bone marrow. spleen (with
or without thymic) invotvement. Over 950% of the animals sacrificed
demonstrated Iymphohaemopoietic invotvement. Significance compared with
control: ap - 0.001: P = 0.002: -P = 0.03: ¢P = 0.05.

In a separate large-scale experiment. there wAas no evidence of
leukaemia induction bv :9Pu PPI alone (EB Humphrey s and VA
Stones. personal communication). It is clear. therefore. that -;9Pu
injected into the male mouse before mating - a form of contamina-
tion which results in continuous irradiation to the spermatogenic
process ( Green et al. 1975) - can result in changes in the
leukaemic susceptibility of the offspring0 to exposure to a
secondary carcinogen/mutagen. It is interestinga. however. that the
greater change occurred in the louwer 9Pu dose group. A possible
explanation was provided by Smith and Doll (1982). who
suggested that radiation could cause leukaemic lesions at both
higyh and low% doses. but that at the higher doses cell sterilization
would reduce their net development. It is possible that the higher
paternal dose of 9Pu similarly produced more spermatogenic
death. in line with the lower fertilitv rate for this group. while the
lower dose was responsible for more subtle damage which was
subsequently' transmitted to the offspring.

Effect of PPI on haemopoiesis

AWhile an altered response to MN-U x-as evident following PPI.
defined changes in haemopoiesis w-ere less obvious. Minor differ-
ences in marrow cellularitv of the control mice between the two
centres. which were projected automatically into CFU-S and
CFU-F measurements. were probably related to differences in
husbandry practices: diet. handling. environment. etc. However.
the distributions of individual mouse xalues for all parameters
were normal and similar at both centres (Figures IA. 2A and 3A).
Peripheral blood patterns suggested that the PPI offspringxwere
also haematologicallv normnal and average bone marrow cellulari-
ties were normal. with a normal distribution among the individual
mice. Progenitor cells. however. and in particular CFU-F. although
show ing no overall change. demonstrated considerably more inter-
animal differences. and it wvas clear that PPI offspring and the
controls must be considered as different populations. This corrob-
orates our limited preliminarv data on pooled groups of animals
(Lord et al. 1995). In that study. apparent dose-related responses of
the CFU-S and CFIJ-F to the lower amounts of plutonium used
were replaced by variable responses at the higher dose lexels that
were subsequently used in this studv. It is notable that. in the
current experiments. a cohort of high CFU-F results was picked up
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at MRC in the high-dose offspring. IThese mice are consistent with
those in our prelimiinary group. which showed a 73% increase in
256 Bq g-' offspring. On this occasion. results at PICR were, on
average, lower than the control values, but it must be emphasized
that under the conditions of these experiments each animal must be
considered an individual and it is probably fortuitous that the
overall average value is similar to that of the controls.

Effects of PPI on cytogenetics of haenimopieic tissue

As in the preliminary experiment. therefore, PPI results in random
perturbation of haemopoietic tissue and in at least one component
of its regulatory microenvironment. It is possibly for the same
reasons that there was a parallel tendency for chromosome damage
to be higher in PPI offspring. Alternatively, there is now abundant
evidence of radiation-induced destabilization of the genome that
can be transmitted over many generations of somatic cells and
manifested as the delayed appearance of cell death, chromosome
damage and gene mutations (reviewed by Morgan et al, 1996). Our
results suggest that such destabilization can also be transmitted
through the germ line and expressed as elevated levels of chromo-
some aberrations in bone marrow cells of PPI offspring. Similar
observations in rats have been reported by Vorobtsova (1989,
1995) and also in humans - on lymphocytes from the children of
workers involved in the clean-up after the Chernobyl nuclear acci-
dent and from children bom to parents who had received radio-
therapy for Hodgkin's disease (Vorobtsova and Voreb'eva, 1992;
Vorobtsova. 1995: Vorobtsova et al. 1995). Genomic instability
was detected as elevated levels of 'spontaneous' chromosome
damage or enhanced chromosomal radiosensitivity of lympho-
cytes of the children. Germilie-transmitted instability, but with
different end points, has also been described by Lunning et al
( 1976) for dominant lethality in mice and by Luke et al ( 1997) for
mutations in mouse transgene. In our study, the chromosome insta-
bility seen in the bone marrow of PPI offspring was not seen in
spleen cells (Table 3). It is possible that this reflects cell type
differences, as is seen in the expression of the instability pheno-
type in somatic cells (Kadhim et al, 1995; Morgan et al, 1996).

Haemopoeesis and leukaemxxenesis
In view of these perturbations in haemopoiesis, it is tempting to
speculate on their link to the changed pattern of lympho-
haemopoietic malignancy. The normal bone marrow cellularity
and committed progenitor cell levels (Lord et al. 1995) suggest
compensatory changes in proliferative activity throughout the self-
renewal, commitment and maturation processes when the multi-
potent progenitor (stem cell) population is not normal. When there
is a reduction in CFU-S, proliferation is triggered (Schofield &
Lord, 1984) and is seen, for example, when injected 39Pu reduces
the CFU-S population (Lord et al, 1991; Mason et al, 1992).
Complementary to changes in haemopoietic function is potential
damage to the stromal microenvironment for haemopoietic tissue.
Studies of renal bone capsule-forming capacity in marrow from
fetal (Lord et al, 1992; Mason et al, 1992) and adult (Lord et al,
1991) mice injected with 239Pu, or of stromal layer function in
long-term bone marrow cultures of 241Arn-treated mice (van den
Heuvel, 1990), have indicated significant involvement of damage
to stromal cells. In addition. these studies, which assess the poten-
tial of the whole haemopoietic microenvironment complex. have

been corroborated with CFU-F measurements in y-irradiated mice
(Yang et al, 1995). CFU-F. together with other components of the
stromal microenvironment, provide the appropriate balance of
growth-stimulating and -inhibiting factors. Furthermore, damage
to this system is probably a major contributor to changes in stem
cell proliferative activity. Chromosomal damage to the stem cells.
which was seen to increase in the PPI offspring, may well be
secondary to induced proliferation. Normally, the stem cell popu-
lations spend most of their time in a non-proliferative state - a time
for the 'genetic housekeeping' necessary to preserve the integrity
of the genome. Hyperproliferative activity reduces the time spent
in this state and so increases the risk of subsequent undesirable
mutations, the expression of which may be increased or acceler-
ated by encountering a secondary carcinogenic insult. We did not.
in these experiments, measure the proliferative activity of CFU-S
in the individual mice, but it might be expected that in situations of
low CFU-S number and/or low CFU-F number, they will be in this
vulnerable, highly proliferative state. The increasing rate of chro-
mosome aberrations may well argue against a simple acceleration
of the development of leukaemias that would arise anyway with
MNU. but in either case it clearly takes the secondary exposure to
the carcinogen/mutagen to expose the PPI damage which on its
own is insufficient to induce leukaemias in mice.

CONCLUSION

From its deliberations. COMARE (1996) concluded that there was
no convincing evidence of leukaemia or lymphoma from human
studies involving paternal irradiation and found inconsistencies in
the animal experiments that may in part have been due to a lack of
concurrent controls, whose periodic or cyclic variation in tumour
incidence may have been out of phase with that in the treated
animals (Cattenach et al, 1995). Concurrent controls were incorpo-
rated in these present experiments. While there are no grounds for
suggesting that these results explain the Seascale phenomenon. we
believe this current report is the first to describe the enhanced
induction of lympho-haematological disorders following precon-
ceptional paternal irradiation. Together with the urethane and
phorbol acetate studies, these observations present evidence that
offspring of an irradiated parent (male) may be at increased risk
when exposed to secondary carcinogenic noxae. This may be the
result of perurbed haemopoiesis - in the case of these present
experiments - or possibly by a mechanism involving the activation
of endogenous retroviral elements by radiation (Erfle et al, 1986;
Mitreiter et al, 1994) which, if genetically transmitted. may render
the next generation more sensitive to such secondary promoters.
There is, however, no evidence for such a mechanism in these
experiments.

Summary
(1) PPI. resulting from 'XPu injection. in mice reduces the

minimum latent period and increases the rates of incidence
and profile of lympho-haemopoietic malignancies induced by
subsequent exposure to the chemical carcinogen-mutagen -
methyl-nitroso-urea.

(2) Haematologically, the production of functional blood cells is
normal in PPI mice. At the level of the individual mouse,
however, the kinetics of haemopoiesis are modified such that
normal levels of production are maintained from abnormal
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lex-els (low or high) of pluripotent progenitor cells and/or the
stromal cell populations that regulate the process.
Chromosomal aberrations. which must be the result of trans-
mitted spermatogenic radiation damage. also increase in PPI
mice.

(3) These observations suggest a potential mechanism whereby
PPI may render specific individuals at greater risk if they are
subsequently exposed to a further carcinogenic insult. It is
possible that human populations. offspring of fathers simi-
larly exposed. albeit at considerably lower dose levels. could
also carr- such an increased susceptibility to a secondary
insult.
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