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Present study was undertaken to study the effect of 

cypermethrin on oxidative stress after chronic dermal 

application. The insecticide was applied dermally at 50 

mg/kg body weight in different groups of Wistar rats of 

either sex weighing 150∼200 g. Significant (p ＜ 0.05) 

increase in catalase activity was observed after 30 days of 

exposure. However, the superoxide dismutase activity 

declined significantly after 60 days of exposure. The activity 

of glutathione peroxidase and blood glutathione levels 

declined significantly (p ＜ 0.05) after 30 days of 

cypermethrin dermal application. However, the activity of 

glutathione S-transferase increased significantly (p ＜ 0.05) 

in all groups after 60 days of dermal exposure. Significant 

increase in lipid peroxidation was observed from 30 days 

onwards and reached a peak after 120 days of application. 
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Pesticides have detrimental effects on mammals and 
their persistency in the environment is a serious public 
health concern [8]. However, cypermethrin as well as other 
pyrethroids have hepatotoxic, neurotoxic and immuno-
suppressive potential in mammals and insects [7,36,37]. 

Accidental exposure with pyrethroids in humans and 
animals result from its advertent use [23]. The cytotoxic and 
genotoxic potential has also been reported in higher 
vertebrates [12,14] due to the induction of oxidative stress 
and free-radical-mediated lipid peroxidation [18]. Oxidative 
stress reduces the activity of ATP-dependent Na+ channels  
[5]. In parasites like Paramecium tetraurelia, pyrethroids 
increases intracellular concentration of Ca++ ions [34] or 
energy deficits resulting in the inability of cells to remove 
cytosolic Ca++ ions [31]. Increased cytosolic Ca++ ions lead 

to free radical-mediated cell damage or cytotoxicity [17]. 
Oxidative stresses induce diverse pathological conditions 

varying from aging to Parkinson’s disease due to the 
surplus release of reactive oxygen species [20,25,35]. The 
mammalian body has endogenous enzymatic defenses to 
fight oxidative stress such as superoxide dismutase (SOD), 
catalase (CAT), glutathione peroxidase (GSH-Px), glutathione 
S-transferase (GST) and non-enzymatic components like 
reduced glutathione (GSH), ascorbic acid, vitamin E, etc 
[3]. Therefore, the present study was undertaken to study 
the effect of cypermethrin on the oxidative stress and lipid 
peroxidation following its chronic dermal application in 
rats.

Wistar rats (150∼200 g) of either sex were procured from 
Indian Institute of Integrated Medicine Jammu (CSIR, 
India). The animals were fed a commercial diet and 
provided water ad lib. The animals were divided randomly 
into five groups with each group comprising of 6 rats. 
Group A served as the control group and received no 
treatment while groups B, C, D and E had cypermethrin 
applied dermally at the dose rate of 50 mg/kg b. wt. at inter- 
scapular region [28] daily for 30, 60, 90 and 120 days, 
respectively. The selected daily dose was 1/10th of 
reported dermal LD50 for cypermethrin [21]. Blood was 
collected from retro-orbital sinus in sterile heparinized 
tubes 24 h after the last dose. 

Erythrocyte lysate was used at 1% for the CAT, SOD, 
GSH-Px, and GST assay, and 33% for the determination of 
lipid peroxidation. The activities of SOD and CAT were 
measured as per the method described by Marklund & 
Marklund [22] and Aebi [1], respectively. The GSH-Px 
and GST activities were assayed by the methods described 
by Hafeman et al. [15] and Habig et al. [13], respectively. 
The extent of lipid peroxidation was estimated as the 
concentration of thiobarbituric acid reactive product 
malondialdehyde (MDA) by the method of Ohkawa et al. 
[26]. Whole blood was used for the estimation of blood 
glutathione as per method described by Beutler et al. [4]. 



258    Rajinder Raina et al.

Table 1. Effects of chronic dermal application of cypermethrin on enzymes, blood glutathione and lipid peroxidation in Wistar rats

Parameters
Days after dermal application

Control 30 days Control 60 days Control 90 days Control 120 days

CAT (μmol of H2O2   16.23 ± 2.44a    35.52 ± 6.18b    14.53 ± 2.23a    45.25 ± 7.24b    19.23 ± 2.64a   59.51 ± 13.27b    19.42 ± 2.65a    65.27 ± 10.45b

  decom.min−1 mg.Hb−1)
SOD (Umg.Hb−1)   0.025 ± 0.005a    0.266 ± 0.021b    0.035 ± 0.004a    0.026 ± 0.009c    0.031 ± 0.006a   0.015 ± 0.012c    0.028 ± 0.004a    0.014 ± 0.010c

GSH-Px (Umg.Hb−1)     7.70 ± 0.65a     3.35 ± 0.37c       8.60 ± 0.55a       2.93 ± 0.19c       5.50 ± 0.23a       2.71 ± 0.11c       8.75 ± 0.45a       2.59 ± 0.23c

GST (μmol of conjugate 0.0054 ± 0.001a 0.0057 ± 0.0032a 0.0051 ± 0.002a 0.0286 ± 0.009b 0.0054 ± 0.003a 0.2207 ± 0.008b 0.0054 ± 0.002a 0.2692 ± 0.0345b

  of  min−1 mg.Hb−1)
GSH (nmol.mL−1) 105.79 ± 14.74a    27.76 ± 7.45b 100.56 ± 15.74a    26.35 ± 6.59c 112.79 ± 18.34a    21.57 ± 5.12c    98.79 ± 17.77a    18.85 ± 2.67b

LPO (nmol of  MDA     1.35 ± 0.31a       3.34 ± 0.68b        1.65 ± 0.42a       4.06 ± 0.96b        1.79 ± 0.43a        3.93 ± 0.89b       1.99 ± 0.42a       5.05 ± 0.33b

  gm Hb−1 h−1)

Values are expressed as mean ± SE. (n = 6). a,b,cMeans with different superscripts are significantly different between groups (p ＜ 0.05). CAT: catalase, SOD:
superoxide dismutase, GSH-Px: glutathione peroxidase, GST: glutathione S-transferase, GSH: reduced glutathione, LPO: lipid peroxidation, MDA: 
malondialdehyde .

Statistical analyses were done using one-way ANOVA 
followed by Dunnet’s test with p ＜ 0.05 as a limit of 
significance. 

 A significant increase (p ＜ 0.05) in the catalase activity 
was observed in all groups (Table 1). Also, a significant 
increase (p ＜ 0.05) in SOD activity was observed in group 
B, but the activity was reduced significantly (p ＜ 0.05) in 
the other groups compared to control. GSH-Px activity was 
significantly reduced (p ＜ 0.05) in all groups compared to 
the control group. Similar finding have been reported in 
other study during oxidative stress [24]. No significant 
changes in GST activity was seen up to 30 days, but 
thereafter, a significant increase was noticed up to 120 
days. There was significant decrease in the GSH after 30 
days and similar pattern followed up to 120 days (p ＜ 
0.05). Significant increase in lipid peroxidation indicated 
lipid membrane damage from 30 days onward. 

Pyrethroids are metabolized in liver via cytochrome P450 
oxidative pathways yielding reactive oxygen species  
[9,19]. Oxidative stress takes advantage of the available 
mitochondrial electron to make molecular oxygen, resulting 
in excess superoxide production in most tissues [2]. These 
superoxide anions are converted to hydrogen peroxide and 
water with the help of a group of SOD [10]. A significant 
drop in erythrocyte SOD levels indicates a decrease in the 
tissues’ ability to handle excessive free radicals [2]. 
However, an increase in catalase activity enhances the 
scavenging ability of erythrocytes to handle the hydrogen 
peroxide to molecular oxygen and water [11,29].

GSH-Pxs catalyze the peroxides and reduce the 
glutathione to form oxidized glutathione and water [30]. A 
significant reduction in GSH-Px activity may be due to 
over production of free radicals [24]. Similarly, GST 
catalyzes the conjugation of the reduced glutathione to 
electrophiles and protects cellular components from 

oxidative damage [16]. Increased activity of GST was 
reported in Drosophila melanogaster after insecticide 
exposure [27]. Elevated GSTs were reported in 
Nilaparvata lugens, a pyrethroid insecticide resistant 
strain of insect [38]. GST levels were also increased 
significantly after 30 days of exposure to protect RBCs 
from oxidative damage. Further significant decreases in 
GSH levels in our study may be due to either the inhibition 
of GSH synthesis or increased utilization of GSH for 
detoxification of toxicant induced free radicals [33]. The 
decrease in SOD, blood GSH and GSH-Px suggests that 
the dermal exposure of cypermethrin may lead to excessive 
free radical generation. These free radicals might be 
attacking the thiol group of cysteine residuse and poly-
unsaturated fatty acids of biological membranes [6]. Free 
radical-induced lipid peroxidation resulting in the 
deterioration of biological membranes [32]. 

In conclusion, the changes suggest that the accumulation 
of excess free radicals may be responsible for the increased 
lipid peroxidation which sensitizes the cells to various 
degenerative diseases. 
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