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Abstract: Background: Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder with
early onset in utero or childhood. Environmental exposure to six metals (Pb, Hg, As, Cd, Mn, Al)
is believed to be associated with ASD directly or interactively with genes. Objective: To assess the
association of ASD among Pakistani children with the six metals and genotype frequencies of three
GST genes (GSTP1, GSTM1, GSTT1). Methods: We enrolled 30 ASD cases, age 2–12 years old,
and 30 age- and sex-matched typically developing (TD) controls in Karachi, Pakistan. We assessed
associations of ASD status with various factors using Conditional Logistic Regression models. We
also used General Linear Models to assess possible interaction of blood Mn and Pb concentrations
with the three GST genes in relation to ASD status. Results: The unadjusted difference between
ASD and TD groups in terms of geometric mean blood Pb concentrations was marginally significant
(p = 0.05), but for Al concentrations, the adjusted difference was marginally significant (p = 0.06).
Conclusions: This is the first study reporting six blood metal concentrations of Pakistani children
with ASD. Estimates provided for possible interactions of GST genes with Mn and Pb in relation to
ASD status are valuable for designing future similar studies.

Keywords: autism spectrum disorder; interaction; GST genes (GSTP1, GSTM1, GSTT1); metals;
Pakistan

1. Introduction

Autism Spectrum Disorder (ASD) is a complex neurodevelopmental disorder that
manifests in early childhood. ASD affects language development, communication, imag-
ination, and social interactions. Some features of ASD include repetitive, stereotyped
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behaviors [1,2]. The prevalence of ASD appears to be on the rise in developed coun-
tries [3–8]. Public attention to ASD has increased through the 1990s in the US and Europe,
and efforts are now underway to close gaps in the existing epidemiologic data [9]. However,
reliable epidemiologic data on ASD in developing countries are rare. The prevalence of
ASD in Pakistan is unknown, but a school-based study reported a prevalence of 1 in 500
for students with special needs, including ASD; however, this could be severely underes-
timated because many children with ASD are kept away from attending schools due to
social stigma [10]. Additionally, there is no organized effort at the government level, which
specifically serves the needs of children with ASD [10,11]. Only private institutions work
in this area. On the other hand, some parents may not feel comfortable seeking help for
their children with ASD due to the social stigma of ASD [12,13].

In 2007, Rahbar et al. (2010) conducted a survey of 348 general practitioners in
Karachi, Pakistan, and reported that only 44% had heard of ASD [14]. Another study in
Lahore, Pakistan, demonstrated that although significantly more physicians had reported
encountering youth with ASD in their clinical practice, other healthcare providers, such
as psychologists and speech therapists, were significantly more likely to correctly identify
characteristics associated with an ASD diagnosis according to the DSM-IV-TR [15]. In
addition, a study focused on primary school teachers in different districts of Karachi
showed that 55% of the teachers have learned about ASD through the media, and only 9%
had formal training through workshops related to Autism [16]. Although Bailey et al. [17]
and Samms-Vaughan [18] have recognized the global need for ASD research, and some
recent epidemiologic studies of the etiology of ASD have been reported from developing
countries, no large-scale studies focused on the etiology or prevalence of ASD have been
conducted in Pakistan.

The etiology of ASD is believed to be multifactorial and associated with environmen-
tal factors [19] either additively or interactively with genes [20]. Exposure to a variety
of environmental contaminants has been associated with developmental toxicity in hu-
mans [21–27]. In particular, several studies have investigated the possible association
between exposure to environmental toxins (e.g., heavy metals) and ASD [28–38].

The glutathione S-transferase (GST) enzymes play an important role in the cellular
detoxification and excretion of environmental pollutants. For example, GST enzymes
mediate the detoxification of heavy metals and other xenobiotic compounds by catalyzing
the conjugation of glutathione (GSH) to compounds, including xenobiotics. In addition,
GST enzymes can conjugate GSH to compounds containing an electrophilic center and
thus play an important role in protecting against oxidative stress [39]. Several studies
have linked oxidative stress, the imbalance between levels of reactive oxygen species
(ROS) and antioxidant levels in the body, with ASD [40]. Levels of GSH, the major cellular
antioxidant [41], as well as the ratio of reduced to oxidized GSH, were lower in children
with ASD compared to children without ASD [42–44], suggesting the involvement of
oxidative stress in the disorder. Other studies have linked markers of oxidative stress,
such as increased lipid peroxidation [45] and altered vascular characteristics [46], to ASD.
Therefore, variants in the genes coding for these GST enzymes may be associated with ASD.

From our Epidemiological Research on Autism in Jamaica (ERAJ) and ERAJ-Phase
2, we reported a lack of associations between ASD status and each of six metals (lead
(Pb), arsenic (As), manganese (Mn), cadmium (Cd), mercury (Hg), and aluminum (Al)) in
additive models [47–52]. However, our recent findings from Jamaica indicated that ASD
status is potentially an effect modifier of the relationship between each of the GST genes
(GSTP1 and GSTT1) and some blood heavy metals concentrations. For example, Rahbar
et al. reported a significant interaction between GSTP1 and blood Mn concentrations,
indicating that among children who had the Ile/Ile genotype for GSTP1, those with
Mn ≥ 12 µg/L had about four times higher odds of ASD than those with Mn < 12 µg/L,
(p = 0.03) [53]. Moreover, they found that the interaction between Mn and GSTP1 in relation
to ASD remained significant with a similar magnitude of association after adjusting for
the mixture of four other metals (Pb, Hg, As, and Cd) based on an estimated mixture
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score using Weighted Quantile Sum (WQS) [54]. While exploring interactive associations
between each of the three GST genes and a mixture of the six metals in relation to ASD,
Lee et al. developed a generalized WQS (gWQS) regression model that takes into account
possible interactions between elements used in a mixture or with other covariates using
dependent matched paired data. Using the gWQS method developed, Lee et al. reported
the association of a mixture of three metals (Pb, Hg, and Mn) with ASD appeared to differ by
GSTP1 genotype with a marginally significant interaction effect (p = 0.07) [55]. Furthermore,
they found a significant interaction between Mn (categorized into four quartiles) and GSTT1
in relation to ASD (p = 0.02) [56]. In addition, Rahbar et al. reported a significant interaction
between GSTP1 and ASD status in relation to blood Hg concentrations either in codominant
or dominant genetic models for GSTP1 (p < 0.001, p = 0.01, respectively) [57]. Interestingly,
they also found an interaction between ASD and GSTP1 in relation to concentrations of
Al, As, and Hg in separate models, suggesting that detoxification of these metals may be
different between ASD cases and typically developing (TD) controls. Rahbar et al. also
reported an interaction between the GSTP1 and GSTT1 genes in relation to ASD with a
matched odds ratio of 2.97 [58], though they have suggested replication of these results in
other populations, where the level of environmental exposure and genetic susceptibility
are different from those in Jamaica.

Elevated blood Pb concentrations in Pakistani children are a concern [59] and have
been reported in previous studies [60–64]. In addition, some studies reported elevated
As [65–67], Mn [68], Cd [69], Hg [70,71], and Al [72] levels in children and adults in
several communities in Pakistan. Considering that Pakistan has five ethnic groups and
is genetically diverse, it is an ideal population for conducting studies focused on genes,
environment, and potential interactions among these factors in relation to ASD.

As the first step in conducting a comprehensive study of the interaction between
each of these three GST genes with any of the six metals, we conducted a pilot study to
demonstrate the feasibility and obtain the necessary information about the distributions
of each of these six metals and the distributions of the genotypes of these GST genes in
Pakistani children. We also planned to perform exploratory analyses to estimate various
effect sizes that are needed to determine the sample size needed to detect the observed
effect sizes with adequate statistical power (e.g., 80%) in future studies.

2. Materials and Methods
2.1. General Description

In order to extend our autism research in Jamaica (ERAJ) [48,55,73] to other popula-
tions living in developing countries with different environments, dietary intake, ethnic
background, and ancestries, our team with multidisciplinary researchers led by Dr. Rahbar,
who has extensive experience in maternal and child health issues in Pakistan, [14,60,61,74]
collaborated with a team at the Aga Khan University (AKU), led by Dr. Shahnaz Ibrahim.
Dr. Ibrahim is an experienced pediatric neurologist who has established a database of
children with ASD at the AKU child development program. In collaboration with our col-
leagues at AKU, we conducted a pilot age- and sex-matched case-control study to develop
and evaluate the capacity for creating a database of genetic and phenotypic information
in Pakistan among ASD cases and TD controls and evaluate the feasibility of shipping
biological specimens from Pakistan to the United States for assessment of heavy metals
and genetics analyses.

2.2. Study Design and Populations of ASD Cases and TD Controls

The Vineland Adaptive Behavior Scales (VABS) (Vineland-3) [75] was administered
to parents of a group of Pakistani children between 2–12 years old who visited Pediatrics
clinics affiliated with AKU, to evaluate adaptive functioning (daily life skills) with respect
to age norms. If the subdomain v-scale (Mean = 15, SD = 3) was under 13, the child
was classified as potentially having intellectual and developmental disabilities. For these
children (v-scale < 13), the Childhood Autism Rating Scale (CARS) [76] was administered
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to determine whether the initial clinical criteria for ASD as evaluated by the neurologist
were met. Based on the CARS cutoff ≥ 30 and Diagnostic and Statistical Manual of Mental
Disorders, Fourth Edition Text Revision (DSM-IV-TR) [77], we identified 30 ASD cases.
For each case, we sampled one age- and sex-matched (age ± 6 months) control without
developmental disabilities (according to scores on the VABS). As a result, we selected
30 typically developing (TD) controls (children ages from 2 to 12 years) with a subdomain
v-scale greater than or equal to 13.

Each parent/guardian was asked to consent to a developmental and behavioral
assessment of their child aged 2–12 years, and the child’s assent was also taken in a few
typically developing children who were 7–12 years old. Parents also completed a food
frequency questionnaire and socioeconomic status (SES) questionnaire.

After the interview, we collected about 4–6 mL of whole blood and 2 mL of saliva
from children for assessing exposure to the six heavy metals and frequency of genotypes
for the three GST genes (GSTP1, GSTM1, and GSTT1).

The study protocol was prepared in accordance with the Declaration of Helsinki and
approved by the Institutional Review Board (IRB) of the University of Texas Health Science
Center at Houston (UTHealth) (HSC-GEN-15-0201) and the Ethical Review Committee
(ERC #: 3572-Ped-ERC-15) of AKU. Furthermore, the requirements of the government
of Pakistan for human-derived biological samples (HDBS) banks were followed while
handling these specimens at UTHealth. The release and/or transfer of the samples was
based on the Material Transfer Agreement (MTA) signed by AKU and UTHealth after
approval of the grant by the AKU Research Council.

2.3. Sample Processing and Shipment

The whole blood samples were initially processed by the Infectious Disease Research
Lab (IDRL) at the Department of Pediatrics and Child Health for storage at AKU, using two
different methods. They were stored in a freezer by maintaining two different temperatures
in the same laboratory. First, about 2–3 mL of whole blood was processed for heavy metals
and then frozen at −20 ◦C. The remaining 2–3 mL of blood were processed and stored
frozen at −80 ◦C as a buffy coat and two plasma aliquots within 24 h of collection. All
samples were shipped by AKU team to the University of Texas School of Public Health
(UTSPH) Human Genetics Center (HGC) in Houston, Texas, USA, for storage during the
pilot phase, to assess the feasibility of shipping samples from Pakistan to the US. The
UTSPH-HGC assayed 2–3 mL of blood (plasma aliquots) for genotyping GSTP1, GSTM1,
and GSTT1 genes and shipped the remaining 2–3 mL of whole blood to the Trace Metals
Lab at the Michigan Department of Health and Human Services (MDHHS) in Lansing,
Michigan, a Centers for Disease Control and Prevention (CDC)-certified lab, USA, for
assessment of the six metal concentrations. Samples were shipped under safe conditions
and three different procedures that included (1) the heavy metals samples packed on dry
ice, (2) saliva sample at room temperature, (3) buffy coat and two plasma aliquots samples
by Cryoport® dry vapor shippers (Irvine, CA, USA).

2.4. Assessment of Metal Exposures

The samples shipped to the Trace Metals Lab at MDHHS were assayed for six heavy
metals (Pb, Mn, Al, Hg, As, and Cd). The limits of detection (LoD) for Pb, Mn, Al, Hg, As,
and Cd were 0.25 µg/dL, 2.5 µg/L, 5.0 µg/L, 0.25 µg/L, 1.3 µg/L, and 0.13 µg/L, respec-
tively. All Pb and Mn concentrations were above the LoD. The percentage of concentrations
below LoD for Al, Hg, As, and Cd were 83.3%, 51.7%, 66.7%, and 43.3%, respectively.

2.5. Genetic Analysis

Methods for genetic analysis of the GSTP1 Ile105Val polymorphism (rs1695; C-
3217198_20) have been described in detail previously [53,55,57]. Genomic DNA was
isolated from the buffy coat using the Gentra PUREGENE Blood Kit (Qiagen, N.V., Venlo,
The Netherlands).
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The choice of assays used for the three genes (GSTP1, GSTM1, and GSTT1) was related
to the type of polymorphism that was investigated. The genetic variant in GSTP1 is a single
nucleotide polymorphism (SNP) that results in an amino acid change at position 105 of
the encoded protein (Ile105Val). There are three different possible genotypes, and all of
them can be distinguished from each other: Ile/Ile, Ile/Val, and Val/Val. We reported
the GSTP1 gene using different genetic models, including the dominant (Val/* vs. Ile/Ile)
and the codominant model (Ile/Ile, Ile/Val, and Val/Val), and analyzed GSTP1 using the
dominant model. For the GSTM1 and GSTT1 genes, a deletion/insertion polymorphism
was evaluated. Since the assay does not distinguish between a normal homozygote (I/I)
and a heterozygote (I/D), we considered only a recessive model using a binary variable to
represent the genotype: I* and DD.

2.6. Data Management

For data management, we used Research Electronic Data Capture (REDCap) [78]. All
information and data collected for the study were entered into REDCap. We performed
double data entry to minimize data entry errors. The first round of data entry was per-
formed by our team in Pakistan. Then the forms were scanned and sent to the US, through
an UTHealth secure, shared drive. Since the information in the complete forms was in the
Urdu language, we trained a Graduate Research Assistant at UTHealth who was familiar
with Urdu to perform the second round of data entry in REDCap. We performed data
cleaning and data quality assurance procedures on the data in order to identify missing
data as well as data that were out of range or did not comply with the code-book and to
resolve the discrepant data before they were analyzed.

2.7. Statistical Analysis

As part of descriptive analyses, we compared the distribution of demographic charac-
teristics, socioeconomic characteristics, dietary factors, and environmental factors between
ASD cases and TD controls using conditional logistic regression (CLR) models. To mini-
mize the influence of measurements below the limits of detection (LoD) and/or skewed
distributions of metals in our study, concentrations of each of the six metals that were below
the LoD were replaced by the LoD/

√
2. Since the distribution of blood concentrations of

the six metals (Pb, Hg, As, Cd, Mn, and Al) was skewed, we transformed the data using
the natural logarithm (ln) in order to produce distributions that better approximated a
normal distribution. The means of the log-transformed blood metal concentrations were
transformed back to their original scale by applying the natural exponential function,
herein called geometric means.

For GSTT1 and GSTM1, as the genotyping assay does not differentiate between a
normal homozygote (I/I) and a heterozygote (I/D), we used a recessive model using
a binary variable: I/* (I/I or I/D) and DD (null allele). As for the GSTP1 Ile105Val
polymorphism, there are three genotypes (Ile/Ile, Ile/Val, and Val/Val). As the Val/Val
level had only three cases for ASD and zero cases for TD control, we assumed a dominant
genetic model (Ile/Ile vs. Val/*), and combined Ile/Val and Val/Val levels into one group.

Univariable General Linear Models (GLMs) with the log-transformed blood metal
concentrations were used to identify possible associations between ASD status and the
concentrations of the metals for the two metals that have no data below LoD, namely Pb
and Mn. For the remaining four metals with data below LoD, Al, As, Hg, and Cd, we
have utilized LoD divided by the square root of two. In multivariable GLMs for Pb and
Mn, we assessed the relationship between ASD status and the concentrations of metals
while controlling for potential confounding variables (based on our previous publications)
that included maternal age, paternal education level, and SES (i.e., car ownership by the
family) and dietary consumptions. Similarly, in multivariable GLMs for Al, As, Hg, and
Cd, we utilized LoD divided by the square root of two. In all GLMs, we controlled for the
clustering effect of matching by including an appropriate number of dummy variables that
represented the matched pairs (e.g., 29 dummy variables for 30 matched pairs). We fitted
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GLM models unadjusted and adjusted for potential confounders and reported geometric
mean concentrations by ASD status along with P-values.

In multivariable CLR, we also assessed potential interactive associations between each
of the GST genes and Pb and Mn concentrations in relation to ASD status. For Pb and Mn,
all concentrations were above LoD, so the median (50th quantile) was used as the cutoff
(above 50th quantile vs. below 50th quantile). In our previous studies in Jamaica, we used
the 75th percentile as the cutoff for Pb and Mn [55], but due to the exploratory nature of
this study, the sample size was limited, and thus the median was used as the cutoff.

3. Results

At the time of enrollment, the mean ages of ASD cases and TD controls were 78.3 months
and 78.5 months, respectively. Eighty percent (80%) of both the ASD cases and TD controls
were male. More than half (53.3%) of the ASD cases and TD controls were Urdu speaking.
Similarly, 58.3% of mothers and 51.7% of fathers were Urdu speaking. A higher proportion
of both the mothers (20.7%) and fathers (41.4%) of ASD cases were age 35 or greater at
the time of the child’s birth compared to the mothers (10.7%) and fathers (31.0%) of TD
controls. Similarly, the mothers (96.3%) and fathers (96.4%) of ASD cases had higher levels
of education than the mothers (71.4%) and fathers (77.8%) of TD controls. ASD cases were
of a lower SES compared to TD controls, with 86.7% of case families owning a car versus
93.3% of car ownership by control families. The frequencies of GSTT1, GSTM1, and GSTP1
genotypes were not significantly different between ASD cases and TD controls (all p > 0.44).
The frequencies of characteristics of children and their parents are shown in Table 1.

A comparison of dietary factors between ASD cases and TD controls revealed that a
significantly lower proportion of ASD cases reported eating liver/kidney (Matched Odds
Ratio (MOR) = 4.33, 95% CI: (1.24, 15.21), p = 0.02). ASD cases had significantly lower
consumptions of dairy products/eggs, including yogurt (MOR = 5.33, 95% CI: (1.55, 18.30),
p = 0.01), eggs (MOR = 8.00, 95% CI: (1.00, 63.96), p = 0.05) and cheese (MOR = 6.50, 95%
CI: (1.47, 28.80), p = 0.01). Root vegetables, such as carrot, pumpkin (MOR = 4.67, 95%
CI: (1.34, 16.24), p = 0.02) and yam or sweet potato (MOR = 10.00, 95% CI: (1.28, 78.12),
p = 0.03) showed significantly lower proportion in ASD cases as well. Among the leafy
vegetables, cauliflower and broccoli revealed a significantly lower proportion of ASD
cases (MOR = 9.00, 95% CI: (1.14, 71.04), p = 0.04). In addition, compared to ASD controls,
ASD cases consumed significantly lower servings of almost all fruits (all p ≤ 0.05, except
figs (p = 0.05), banana (p = 0.14) and other melon (p = 0.10)). Moreover, a comparison of
environmental factors between ASD cases and TD controls revealed that a significantly
lower proportion of ASD cases reported drinking piped water.

There were dietary differences between ASD cases and TD cases that showed a
marginal significance, which may be due to the smaller sample size. The proportion of
ASD cases in regard to the consumption of river fish (MOR = 2.75, 95% CI: (0.88, 8.64),
p = 0.08), and canned food (MOR = 4.50, 95% CI: (0.97, 20.83), p = 0.05) was marginally
significant compared to TD controls. The frequency distributions of eating other types of
food in ASD and TD children are shown in Table 2.



Int. J. Environ. Res. Public Health 2021, 18, 8625 7 of 18

Table 1. Characteristics of children and their parents by ASD case status (30 matched pairs).

Variables Categories ASD Case
N (%)

TD Control
N (%)

Matched OR
(95% CI) p-Value p-Value c

Child’s sex Male 24 (80.0) 24 (80.0) 1.00 (0.28, 3.54) 1.00 1.00

Child’s age
(months)

Age < 72 13 (43.3) 13(43.3)
1.00 (0.06, 15.99) 1.00 1.00Age ≥ 72 17 (56.7) 17 (56.7)

Child’s ethnicity

Sindhi and Saraeki 7 (23.3) 6 (20.0) 2.24 (0.32, 15.64) 0.61

0.86
Punjabi 5 (16.7) 4 (13.3) 2.37 (0.30, 18.60) 0.58

Urdu speaking 16 (53.3) 16 (53.3) 1.87 (0.33, 10.59) 0.90
Other 2 (6.67) 4 (13.3)

Maternal age <35 years 23 (79.3) 25 (89.3)
2.00 (0.50, 8.00) 0.33 0.33(at child’s birth) ≥35 years 6 (20.7) 3 (10.7)

Paternal age <35 years 17 (58.6) 20 (69.0)
1.60 (0.52, 4.89) 0.41 0.41(at child’s birth) ≥35 years 12 (41.4) 9 (31.0)

Maternal ethnicity

Sindhi and Saraeki 4 (13.3) 5 (16.7) 1.05 (0.16, 6.96) 0.87

0.88
Punjabi 4 (13.3) 5 (16.7) 1.01 (0.17, 6.11) 0.80

Urdu speaking 19 (63.3) 16 (53.3) 1.64 (0.33, 8.17) 0.41
Other 3 (10.0) 4 (13.3)

Paternal ethnicity

Sindhi and Saraeki 4 (13.3) 7 (23.3) 1.22 (0.16, 9.41) 0.53

0.48
Punjabi 5 (16.7) 4 (13.3) 2.48 (0.33, 18.89) 0.51

Urdu speaking 18 (60.0) 13 (43.3) 2.96 (0.54, 16.31) 0.20
Other 3 (10.0) 6 (20.0)

Maternal
education a Up to high school 1 (3.7) 8 (28.6)

10.4 (1.20, 90.09) 0.02 0.02
(at child’s birth) Beyond high school 26 (96.3) 20 (71.4)

Paternal
education a Up to high school 1 (3.6) 6 (22.2)

7.71 (0.86, 69.10) 0.05 0.05
(at child’s birth) Beyond high school 27 (96.4) 21 (77.8)

Parental
education Both up to high school 0 (0.0) 5 (17.9)

NR b 0.99 0.99 *

(at child’s birth) At least one beyond high
school 28 (100.0) 23 (82.1)

Socioeconomic
status (SES) Car ownership 26 (86.7) 28 (93.3) 0.50 (0.09, 2.73) 0.42 0.42

Home live in Owned 23 (76.7) 21 (70) 1.50 (0.42, 5.32) 0.53 0.53

GSTT1 de I * 24 (82.8) 26 (86.7)
0.80 (0.22,2.98) 0.74 0.74DD 5 (17.2) 4 (13.3)

GSTM1 d I * 15 (50.0) 18 (60.0)
0.70 (0.27,1.84) 0.47 0.47DD 15 (50.0) 12 (40.0)

GSTP1
(codominant)

Ile/Ile 14 (46.7) 17 (56.7)
NR b

1.00
0.87 *Ile/Val 13 (43.3) 13 (43.3) 1.00

Val/Val 3 (10.0) 0 (0.0)

GSTP1
(dominant)

Ile/Ile 14 (46.7) 17 (56.7)
0.67 (0.24, 1.87) 0.44 0.44Val/* 16 (53.3) 13 (43.3)

a Calculated with Fisher’s exact test due to limited sample size in at least one of the cells. b NR = Not reported due to unstable estimates
caused by having a zero cell in at least one of the cells. c The p-values were based on Wald’s test in conditional logistic regression models
that compares the distribution of independent variables between ASD case and TD control groups. d I/I or I/D indicate the homozygote
(I/I) or a heterozygote (I/D) for GSTT1 and GSTM1. e GSTT1 was missing for 1 ASD case. * p-values may be affected by the cell with the
frequency of zero.
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Table 2. Comparison of dietary factors between ASD case and TD controls using Conditional Logistic Regression (CLR)
based on 60 children (30 matched pairs).

Exposure
Variables Category ASD Case

N (%)
TD Control

N (%) MOR (95% CI) * p-Value

Source of
drinking water Piped water 4 (13.3) 13 (43.4) 0.18 (0.04, 0.82) 0.03

Seafood

Lake/Pond fish (catfish, crappie) 7 (23.3) 12 (40.0) 2.50 (0.69, 7.36) 0.18
Bay fish (speckled trout, redfish,

flounder) 11 (36.7) 8 (26.7) 0.57 (0.17, 1.95) 0.37

River fish (bass, trout) 7 (23.3) 14 (46.7) 2.75 (0.88, 8.64) 0.08
Offshore fish (tuna, snapper, whiting) 5 (16.7)) 5 (16.7) 1.00 (0.25, 4.00) 1.00

Shellfish (lobster, crab, crawfish) 3 (10.0) 3 (10.0) 1.00 (0.14, 7.10) 1.00

Meat/Organ

Beef as main dish 18 (60.0) 23 (76.7) 2.25 (0.69, 7.31) 0.18
Lamb as main dish 2 (6.7) 3 (10.0) 1.50 (0.25, 8.98) 0.66
Goat as main dish 24 (80.0) 25 (83.3) 1.25 (0.34, 4.66) 0.74

Chicken as main dish 30 (100.0) 28 (93.3) NR ** 1.00
Liver, kidney 4 (13.3) 14 (46.7) 4.33 (1.24, 15.21) 0.02

Dairy
products/eggs

Milk 25 (83.3) 29 (96.7) 5.80 (0.63, 53.01) * 0.20
Yogurt 11 (36.7) 24 (80.0) 5.33 (1.55, 18.30) 0.01
Eggs 22 (73.3) 29 (96.7) 8.00 (1.00, 63.96) 0.05

Cheese 8 (26.7) 19 (63.3) 6.50 (1.47, 28.80) 0.01

Root vegetables Carrot, pumpkin 12 (40.0) 23 (76.7) 4.67 (1.34, 16.24) 0.02
Yam, sweet potato 2 (6.7) 11 (36.7) 10.00 (1.28, 78.12) 0.03

Leafy vegetables

Lettuce 10 (33.3) 10 (33.3) 1.00 (0.38, 2.66) 1.00
Cauliflower, broccoli 9 (30.0) 17 (56.7) 9.00 (1.14, 71.04) 0.04

Cabbage 10 (33.3) 15 (50.0) 2.67 (0.71, 10.05) 0.15
Turnip 4 (13.3) 10 (33.3) 3.00 (0.81, 11.08) 0.10

Spinach 16 (53.3) 15 (50.0) 0.86 (0.29, 2.55) 0.78

Fruits

Oranges 14 (46.7) 26 (86.7) 13.00 (1.70, 99.38) 0.01
Tangerine 7 (23.3) 22 (73.3) 8.50 (1.96, 36.79) <0.01

Grapes 12 (40.0) 26 (86.7) 15.00 (1.98, 113.56) <0.01
Apples 15 (50.0) 27 (90.0) 13.00 (1.70, 99.38) 0.01

Pineapples 2 (6.7) 9 (30.0) 8.00 (1.00, 63.96) 0.05
Figs 1 (3.3) 7 (23.3) 8.82 (1.01, 76.96) * 0.05

Peach 6 (20.0) 20 (66.7) 5.67 (1.66, 19.34) <0.01
Plums 3 (10.0) 17 (56.7) 15.00 (1.98, 113.56) <0.01

Strawberry 6 (20.0) 23 (76.7) 9.50 (2.21, 40.79) <0.01
Blackberry 1 (3.3) 8 (26.7) 8.00 (1.00, 63.96) 0.05

Banana 22 (73.3) 26 (86.7) 5.00 (0.58, 42.80) 0.14
Watermelon 10 (33.3) 22 (73.3) 7.00 (1.59, 30.80) 0.01
Other melon

(cantaloupe, honeydew) 10 (33.3) 17 (56.7) 2.40 (0.85, 6.81) 0.10

Other food
related questions

Canned food 6 (20.9) 13 (43.3) 4.50 (0.97, 20.83) 0.05
Aluminum foil 1 (3.3) 1 (3.3) 1.00 (0.06, 15.99) 1.00
Unpeeled fruits 7 (23.3) 19 (63.3) 13.00 (1.70, 99.38) 0.01

Animal fat 2 (6.7) 0 (0.0) NR ** 1.00

* Calculated with Fisher’s exact test due to limited sample size in at least one of the cells. ** NR = Not reported due to unstable estimates
caused by having a zero cell in at least one of the cells.

Our results from the unadjusted GLM, reported in Table 3, showed a marginally signif-
icant higher geometric mean blood lead (Pb) concentration for TD controls in comparison
to ASD cases (7.68 µg/dL vs. 6.37 µg/dL; p = 0.05). In the GLM, after adjusting for maternal
age, paternal education level, and SES, we did not find a significant association between
blood lead concentrations and ASD status (7.11 µg/dL for ASD cases vs. 8.48 µg/dL for TD
controls; p = 0.16). While the difference between the unadjusted geometric mean of blood
aluminum (Al) concentrations between ASD cases and TD was not significant (4.05 µg/L
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for ASD cases vs. for TD controls 3.92 µg/L; p = 0.68), the adjusted mean difference was
marginally significant (4.49 µg/L for ASD cases vs. 3.69 µg/L for TD controls; p = 0.06),
after adjusting for maternal age, paternal education level, SES, and consumption of root
vegetables (yam, sweet potato, or dasheen). In addition, the univariable unadjusted GLMs
also showed no significant differences between geometric mean blood metal concentrations
of ASD cases and TD controls for arsenic (1.15 µg/L vs. 1.12 µg/L; p = 0.74), mercury
(0.29 µg/L vs. 0.29 µg/L; p = 0.96), cadmium (0.14 µg/L vs. 0.15 µg/L; p = 0.84), and
manganese (13.97 µg/L vs. 13.93 µg/L; p = 0.97). In the GLMs, for the aforementioned four
metals after adjusting for maternal age, paternal education level, SES, and metal-specific
dietary consumption of the child, we did not find a significant difference between geometric
mean blood metal concentrations of the ASD cases and TD controls (all p > 0.30).

Table 3. Geometric mean of blood metal concentrations based on univariable and multivariable General Linear Models
(GLMs) that account for four possible confounders and potential clustering effects of the matched pairs of ASD cases and
TD controls (30 matched pairs or 60 children).

Metal
Limits of
Detection

(LoD)

% Below
LoD

Geometric Mean a

(Based on Univariable GLMs)
Adjusted Geometric Mean a

(Based on Multivariable Adjusted GLMs) *

ASD
Cases

TD
Controls

Mean
Difference b p Value c ASD Cases TD

Controls
Mean

Difference b p Value c

Al d 5.0 µg/L 83.3% 4.05 3.92 0.13 0.68 4.49 3.69 0.80 0.06

As e 1.3 µg/L 66.7% 1.15 1.12 0.03 0.74 1.47 1.29 0.18 0.30

Hg f 0.25 µg/L 51.7% 0.29 0.29 –0.00 0.96 0.24 0.20 0.05 0.40

Cd g 0.13 µg/L 43.3% 0.14 0.15 –0.00 0.84 0.16 0.16 –0.00 0.88

Pb h 0.25 µg/dL 0.0% 6.37 7.68 –1.32 0.05 7.11 8.48 –1.37 0.16

Mn i 2.5 µg/L 0.0% 13.97 13.93 0.04 0.97 12.75 12.25 0.50 0.70

a We reported geometric mean (Exp. (Mean (ln metal concentrations))); For calculation of means we used “Least Square (LS) means”.
b Mean differences indicate the difference between mean blood metal concentrations in ASD cases and TD controls. c The P-values in this
table are for testing H0: Exp. (Mean (ln metal concentrations for the ASD group)) = Exp. (Mean (ln metal concentrations for the TD control
group)) using GLMs. d For Al, LoD cutoff line was used, and factors adjusted for included: maternal age, paternal education level, SES,
and consumption of root vegetables (yam, sweet potato, or dasheen). e For As, the LoD cutoff line was used, and factors adjusted for
included: maternal age, paternal education level, SES, and consumption of cabbage. f For Hg, the LoD cutoff line was used, and factors
adjusted for included: maternal age, paternal education level, SES, and frequency of seafood consumption. g For Cd, the LoD cutoff line
was used, and factors adjusted for included: maternal age, paternal education level, SES, and consumption of root vegetables (yam, sweet
potato, or dasheen). h For Pb, factors adjusted for included: maternal age, paternal education level, and SES. i For Mn, factors adjusted for
included: maternal age, paternal education level, SES, and consumption of offshore fish. * For adjusted models, there was one missing
value in maternal age for ASD cases, two missing values in maternal age for TD controls, two missing values in paternal education level for
ASD cases, and three missing values in paternal education level for TD controls.

Table 4 displays the unadjusted and adjusted associations between metals and GSTT1
genotypes in relation to ASD status based on interactive CLR models. We did not find a
significant interaction between blood metal concentration and GSTT1 genotypes. However,
there was a meaningful interaction between Manganese (Mn) and GSTT1 genotype (DD)
(Unadjusted MOR = 0.22, 95% CI: (0.01, 4.01), p = 0.31, p-value for interaction = 0.31;
Adjusted MOR = 0.16, 95% CI: (0.01, 3.46), p = 0.24, p-value for interaction = 0.27). p-value
for the MOR for blood Pb concentration and GSTT1 genotypes (I*) was meaningful for both
adjusted (p = 0.31) and unadjusted (p = 0.24) model.
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Table 4. Potential interaction of GSTT1 genotypes with blood Lead (Pb), Manganese (Mn) concentration in relation to ASD
in Pakistani children based on CLR model. (N = 30 matched pairs or 60 children).

Metal Binary GSTT1
Genotype (s) a

Unadjusted b Adjusted c

Matched OR
(95% CI) p Value d

p-Value for
GSTT1*Metal

Interaction

Matched OR
(95% CI) p Value d

p-Value for
GSTT1*Metal

Interaction

Pb
>50th vs. ≤50th I * 0.48 (0.15, 1.55) 0.22

0.99
0.41 (0.12, 1.40) 0.15

0.99
>50th vs. ≤50th DD NR NR NR NR

Mn
>50th vs. ≤50th I * 1.18 (0.30, 4.63) 0.81

0.31
1.04 (0.26, 4.24) 0.95

0.27
>50th vs. ≤50th DD 0.22 (0.01, 4.01) 0.31 0.16 (0.01, 3.46) 0.24

NR = Not reported due to unstable estimates caused by a frequency of zero in at least one of the cells. a GSTT1 was missing for 1 ASD case.
b CLR unadjusted Model 1: logit p (ASD = 1) = β1 (Metal > cutoff) + β2 (GSTT1 DD) + β3 (Metal > cutoff *GSTT1 DD). c Adjusted for SES.
d p-values were based on Wald’s test in conditional logistic regression models.

Multivariable CLR was used to investigate the interaction of blood Pb and Mn concen-
trations with GSTP1 genotypes in relation to ASD (Table 5). In addition to the variables
in the unadjusted model, we adjusted for SES. Due to the limited sample size, we used
the dominant genetic model (Val/* vs. Ile/Ile) instead of a codominant model (Val/Val
vs. Ile/Val vs. Ile/Ile) for GSTP1 genotypes. Although in the model displayed in Table 5
we did not find a statistically significant interaction between blood metal concentrations
and GSTP1 genotypes, we estimated the MOR based on an interaction between manganese
(Mn) and GSTP1 genotype (Val/*) (Unadjusted MOR = 0.57, 95% CI: (0.11, 3.06), p = 0.51,
p-value for interaction = 0.40).

Table 5. Interaction of GSTP1 genotypes with blood Lead (Pb), Manganese (Mn) concentration (under a dominant genetic
model) in relation to ASD in Pakistani children based on CLR model. (N = 30 matched pairs).

Metal Binary GSTP1
Genotype (s) a

Unadjusted b Adjusted c

Matched OR
(95% CI) p Value d

p Value for
GSTP1*Metal

Interaction

Matched OR
(95% CI) p Value d

p Value for
GSTP1*Metal

Interaction

Pb
>50th vs. ≤50th Val/* 0.69 (0.16, 2.99) 0.62

0.74
0.67 (0.15, 2.93) 0.59

0.73
>50th vs. ≤50th Ile/Ile 0.48 (0.10, 2.41) 0.38 0.46 (0.09, 2.35) 0.35

Mn
>50th vs. ≤50th Val/* 0.57 (0.11, 3.06) 0.51

0.40
0.56 (0.10, 3.06) 0.50

0.53
>50th vs. ≤50th Ile/Ile 1.40 (0.29, 6.74) 0.68 1.12 (0.22, 5.88) 0.89

a GSTP1 Val/* = Ile/Val or Val/Val. b CLR unadjusted Model 2: logit p (ASD = 1) = β1 (Metal > cutoff) + β2 (GSTP1 Val/*) + β3 (Metal >
indicator function for the metal being above cutoff *GSTP1 Val/*). c Adjusted for SES. c p-values were based on Wald’s test in conditional
logistic regression models.

As shown in Table 6, we investigated the interaction of each metal (Pb and Mn) con-
centration with GSTM1 genotypes in relation to ASD. Although there were no significant
interactions detected, the p-values to test MOR for blood Pb concentration at GSTM1 DD dis-
played meaningful magnitude and direction of the associations (Unadjusted MOR = 0.48,
95% CI: (0.10, 2.21), p = 0.34; Adjusted MOR = 0.43, 95% CI: (0.09, 2.11), p = 0.30).

Table 6. Interaction of GSTM1 genotypes with blood Lead (Pb), Manganese (Mn) concentration (under a dominant genetic
model) in relation to ASD in Pakistani children based on the CLR model. (N = 30 matched pairs).

Metal Binary GSTM1
Genotype (s) a

Unadjusted a Adjusted b

Matched OR
(95% CI) p-Value c

p-Value for
GSTM1*Metal

Interaction

Matched OR
(95% CI) p-Value c

p-Value for
GSTM1*Metal

Interaction

Pb
>50th vs. ≤50th I * 0.65 (0.16, 2.69) 0.56

0.75
0.62 (0.15, 2.61) 0.51

0.73
>50th vs. ≤50th DD 0.48 (0.10, 2.21) 0.34 0.43 (0.09, 2.11) 0.30

Mn
>50th vs. ≤50th I * 0.71 (0.15, 3.28) 0.66

0.69
0.56 (0.11, 2.87) 0.49

0.62
>50th vs. ≤50th DD 1.04 (0.23, 4.72) 0.96 0.93 (0.20, 4.36) 0.92

a CLR unadjusted Model 1: logit p (ASD = 1) = β1 (Metal > cutoff) + β2 (GSTM1 DD) + β3 (Metal > cutoff * GSTM1 DD). b Adjusted for
SES. c p-values were based on Wald’s test in conditional logistic regression models.
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4. Discussion
4.1. Association of Blood Metal Concentrations in Relation to ASD

The main hypothesis in our ASD study in Pakistan involves comparisons of the blood
concentrations of each of the six metals between ASD cases and TD controls. As shown
in Table 3, in univariable GLMs Pb was the only metal that had a marginally significant
lower blood concentration in ASD cases compared to that of TD controls (p = 0.05). How-
ever, after adjusting for potential confounding variables, maternal age, father’s education
level, and socioeconomic status, this difference was no longer statistically significant at
a 5% level of significance, (p = 0.16). In addition, the difference in the geometric mean
of blood aluminum concentration between ASD cases and TD controls was marginally
significant after adjusting for maternal age, father’s education level, socioeconomic status,
and consumption of root vegetables (yam, sweet potato, or dasheen) (p = 0.06). For the
other metals, including Hg, the difference in blood metal concentrations between ASD
cases and TD control groups were not significant in either univariable or multivariable
GLMs that adjusted for the aforementioned confounding variables. These findings are
consistent with our findings from our ERAJ study in Jamaica [47–52]. Although there was
no conclusive evidence of additive associations between exposure to each metal and ASD
status, the unadjusted and adjusted geometric mean of blood metal concentrations for both
ASD cases and TD controls in Pakistani children provide a valuable reference for future
studies in similar populations.

4.2. Association of GST Genes in Relation to ASD

In this study, we reported the genotype distribution of the three GST genes (GSTP1,
GSTM1, and GSTT1) in Pakistani children with and without ASD. Reporting of such
frequency distributions of GST genotypes is the first for children in Pakistan and one of the
very few in child populations with and without ASD in South Asian countries.

For example, the distribution of GSTP1 in Pakistan showed a lower proportion of
Val/Val genotype (for children with ASD: 10.0%, for TD controls: 0.0%), which differs from
findings from our Jamaican study at the GSTP1 Val/Val genotype (for children with ASD
19.4%, for TD controls 23.3%) [57]. However, a study conducted in Lagos, Nigeria with
children (4–14 years old) with ASD and age-matched TD cases showed findings closer to
the Pakistani study, reporting 19.0% of ASD cases and 4.4% of TD cases with the GSTP1
Val/Val genotype [79]. In contrast, the frequency of GSTP1 Ile/Ile genotype was higher in
the Pakistani study (ASD 46.7%, TD 56.7%) than that in the Jamaican study (ASD 25.9%,
TD 24.4%), and the Nigerian study (ASD 38.1%, TD 47.8%) [79]. GSTM1 in our study in
Pakistan displayed different distributions from those in studies from different countries. In
our study, the percentage of GSTM1 DD genotype in the ASD cases and TD controls were
50.0% and 40.0%, respectively, whereas, for the same genotype, the proportions were 29.7%
and 23.6% in the Jamaican study [57]. This also differs from the finding from the Nigerian
study, where it was reported that 33.3% of ASD cases and 13.0% of TD cases had the GSTM1
DD genotype [79]. A case-control study in a youth population (2–18 years old) in Semerang
and Solo, Indonesia with 51 ASD cases 45 unrelated TD controls reported that 11.8% of
ASD cases and 6.7% of TD controls had the GSTM1 DD genotype [80]. The proportion of
ASD cases and TD controls with GSTT1 DD genotype in our Pakistani study was 17.2%
and 13.3%, respectively, while in the Jamaican study, it was 26.6% and 24.8%; [57] in the
Nigerian study, 11.9% and 4.3% [79], and in the Indonesian study, 39.2% and 31.1% [80].
The differences in the frequency of the three GST genes in our Pakistani population relative
to other populations support the need for additional studies in the region.

Furthermore, the distribution of genotypes of GST genes between ASD cases and TD
control groups can serve as a valuable reference for study designs with a larger sample size
that involves additive or interactive associations of GST genes with ASD status in the same
or similar populations. Our comparisons of the distribution of genotypes of GST genes
between ASD cases and TD control groups revealed no significant differences (all p ≥ 0.44).
This finding is in line with findings from a study with children (3–16 years old) with ASD
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cases (n = 90) and age- and sex-matched TD controls (n = 76) conducted in Pakistani cities
(Islamabad, Khanewal, and Lahore), where GSTT1 (unadjusted OR (95% CI): 1.81 (0.82,
4.03); p = 0.14) and GSTM1 (unadjusted OR (95% CI): 1.23 (0.66, 2.29); p = 0.51) showed
similar results [81]. However, our reported relative frequency or Matched Odds Ratio
(MOR) of the genotypes for these three GST genes can be used to design future studies that
involve the assessment of the effects of GST genes and environmental exposure to the six
heavy metals.

4.3. Interactive Association of GST Genes and Blood Concentrations of Heavy Metals in Relation
to ASD

Although our study in Pakistan was not initially geared towards investigating the
interactive effects of GST genes and blood concentration of six heavy metals, findings
regarding the magnitude of the effect size assessed through the MORs provide relevant
information to design such studies in the future. For example, the unadjusted and adjusted
geometric mean of blood metal concentrations and the frequency of genotypes for the
three GST genes (GSTP1, GSTM1, and GSTT1) in Pakistani children with and without
ASD reported from this pilot study can be used to design new studies to determine the
interactive association between GST genes and blood metal concentration in relation to
ASD among children in Pakistan or other countries in the South Asian subcontinent that
have similar genotype distributions for the three GST genes.

Due to the limited sample size of this pilot study, we believe there was not sufficient
statistical power to detect a significant interaction between Mn and GSTT1 genotype (DD)
in relation to ASD status. However, the magnitude and the direction of the association
(Unadjusted MOR = 0.22, 95% CI: (0.01, 4.01), p = 0.31, p-value for interaction = 0.31;
Adjusted MOR = 0.16, 95% CI: (0.01, 3.46), p = 0.24, p-value for interaction = 0.27) are
in line with our previous reported findings from the ERAJ study that showed a signif-
icant interaction between GSTT1 genotypes and blood metals concentrations (BMC) in
relation to ASD by Rahbar et al. (Range 3 (2nd quartile ≤Mn < 3rd quartile) vs. Range
1 (Mn < 1st quartile): Unadjusted MOR = 0.52, 95% CI: (0.20, 1.38), p = 0.19, p-value for
interaction = 0.02; Range 3 vs. Range 1: Adjusted MOR = 0.58, 95% CI: (0.21, 1.58), p = 0.29,
p-value for interaction = 0.01) [56]. Similarly, the magnitude and the direction of the associ-
ation in Pakistani children (Unadjusted MOR = 0.48, 95% CI: (0.15, 1.55), p = 0.22; Adjusted
MOR = 0.41, 95% CI: (0.12, 1.40), p = 0.15) was in agreement with the findings from the
Jamaican study (Range 2 (1st quartile ≤ Pb < 2nd quartile) vs. Range 1 (Pb < 1st quartile):
Unadjusted MOR = 0.51, 95% CI: (0.28, 0.93), p = 0.03; Range 3 vs. Range 1: Unadjusted
MOR = 0.41, 95% CI: (0.22, 0.73), p < 0.01; Range 4 (Pb ≥ 4th quartile) vs. Range 1 (Pb < 1st
quartile): Unadjusted MOR = 0.42, 95% CI: (0.22, 0.78), p < 0.01) [55] regarding the MOR
for blood Pb concentration and GSTT1 genotypes (I*) in relation to ASD.

The magnitude and the direction of the association between Mn and GSTP1 genotype
(Val/*) (Unadjusted MOR = 0.57, 95% CI: (0.11, 3.06), p = 0.51, p-value for interaction = 0.40)
in our Pakistani study was higher than the findings from our Jamaican study, where signifi-
cant interaction between blood Mn concentration and GSTP1 in relation to ASD is observed
(Unadjusted MOR = 0.77, 95% CI: (0.47, 1.25), p = 0.29, p-value for interaction = 0.03) [55].
This is because reciprocal of the reported unadjusted MOR (1/0.57) in our Pakistani study
was 1.75, whereas the reciprocal of the unadjusted MOR (1/0.77) in our Jamaican study
was 1.30. The unadjusted MOR and 95% CI for blood Pb concentrations at GSTP1 Ile/Ile
were 0.48 (0.10, 2.41) with p = 0.38 for unadjusted model, which was in agreement but with
lower reciprocal of MOR (1/0.48 = 2.08) than the those (Range 2 (1st quartile ≤ Pb < 2nd
quartile): vs. Range 1 (Pb < 1st quartile): 1/0.48 = 2.08; Range 3 (2nd quartile ≤ Pb < 3rd
quartile) vs. Range 1 (Pb < 1st quartile): 1/0.25 = 4.00; Range 4 vs. Range 1: 1/0.25 = 4.00)
of the results in Rahbar et al. (2020) [55], where the unadjusted MOR and 95% CI is 0.48
(0.16, 1.50), 0.25 (0.09, 0.76), and 0.25 (0.08, 0.77), for Range 2 vs. Range 1, Range 3 vs. Range
1, Range 4 vs. Range 1, respectively. p-values for the MORs were p = 0.21, p < 0.01, and
p < 0.01. These examples demonstrate the utility of findings from this pilot study in future
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investigations on the association of GST genes and blood concentrations of heavy metals in
relation to ASD in similar populations.

In Rahbar et al. (2020) [55], the unadjusted MORs and their 95% CIs for blood Pb
concentrations at GSTM1 DD were 0.30 (0.11, 0.84) with p = 0.02 for Range 3 vs. Range 1,
and 0.29 (0.11, 0.75) with p < 0.01 for the Range 4 vs. Range 1. However, in this study the
unadjusted MOR blood Pb concentration at GSTM1 DD displayed findings that were not
significant in the unadjusted model, (Unadjusted MOR = 0.48, 95% CI: (0.10, 2.21), p = 0.34).
This difference could be partly explained by a much larger sample size in the Jamaican
study than this study.

4.4. Blood Concentrations of Metals in Pakistani Children with and without ASD

Although reports of the blood concentrations of some of these six metals, such as
Pb, are scarce in the literature for Pakistani children under 12 years old, [61,62,64,82,83]
some of the findings regarding blood concentrations of metals, such as Al, Cd, or Hg, are
reported for the first time. New reports on such blood metal concentrations in Pakistani
children with ASD serve as a valuable resource to further investigate this population
or other populations in South or Southeast Asia. The new information reported on TD
controls regarding blood metal concentrations could serve as a valuable reference for
further research on Pakistani children, as well as being useful to public health officials in
future studies and potential interventions.

Blood concentrations of Pb and Mn were found to be higher in our Pakistani TD
controls than Jamaican TD controls with age 2–8 years, respectively (Pb: 7.68 µg/dL vs.
2.34 µg/dL; Mn: 13.93 µg/L vs. 10.30 µg/L). Blood concentrations of As and Cd were
similar for TD controls in both populations (As: 1.19 µg/L vs. 2.29 µg/L; Cd: 0.15 µg/L vs.
0.20 µg/L). Blood concentrations of Hg and Al were reported to be lower in our Pakistani
TD controls than Jamaican TD controls (Hg: 0.32 µg/L vs. 0.81 µg/L; Al: 4.02 µg/L
vs. 9.74 µg/L) [55]. These differences in blood metal concentrations between the two
populations may be due to various dietary, environmental, genetic, or socioeconomic
factors, which will be subject to further investigation.

5. Limitations

We acknowledge that blood may not be the most suitable biomarker for assessing
exposures to all six metals reported here. For example, hair specimens are better than
blood for assessment of Hg [84] and Mn [85]. Urine is considered a better biomarker for
the assessment of exposure to As (and speciation) [86] and Cd [87]. However, blood is
considered a good biomarker for the assessment of Pb [88] and Al [89].

We also acknowledge some other limitations in this study. Although we used Condi-
tional Logistic Regression and LoD cutoffs to minimize the potential bias in the estimation
of geometric mean blood concentrations of metals, such as Al, As, Hg, and Cd, we under-
stand that substituting blood concentrations below LoD by LoD/

√
2 may still cause some

bias in the estimation of means, as well as their respective standard deviations. The bias
may also be caused by the percentage below LoD for Al, As, Hg, and Cd (43.3–83.3%) and
the overall limited size of the sample (i.e., 30 matched pairs: 60 children).

We also acknowledge that the limited sample size of this pilot study (n = 60; 30 pairs)
may not have provided adequate power, resulting in marginal or non-significant associa-
tions found in this pilot study, particularly the interactive associations between exposure
to each metal and ASD status. However, our limited sample size had a lesser impact on the
findings in effect size estimates provided for assessing interactions between each of the
metals and the GST genotypes; hence, these estimates could be useful in designing future
studies. Additional studies with greater sample sizes can clarify the interactions between
each GST genotype and the blood metal concentrations of Pakistani children with and
without ASD, enabling comparison with the findings from similar populations in different
regions or countries.
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6. Conclusions

Although there was no conclusive evidence of any additive associations between
exposure to each metal and ASD status, the geometric means of blood metal concentrations
for ASD cases and TD controls from the univariable and multivariable GLMs provide useful
information on children with and without ASD from Pakistan. In addition, reporting on
the genotype distribution of the three GST genes (GSTP1, GSTM1, and GSTT1) in Pakistani
children with and without ASD is the first in the population and one of the few reported
from studies in Pakistani children with and without ASD in the South Asian subcontinent.
The distribution of GST genes differed from the findings in other studies of children with
and without ASD in other regions. Similarly, to our knowledge, we are one of the first to
report the effect size and direction of association between each of the two heavy metals (Pb
and Mn) and GST genes in relation to ASD status in children from Pakistan. These findings
are in agreement with previous literature, including the potential interaction between each
of the two heavy metals (Mn, Pb) and GSTP1 or GSTT1 genes in relation to ASD status. Our
findings in relation to additive or interactive associations of heavy metal and GST genes in
relation to ASD serve as a reference for future epidemiologic studies in this population or
other similar populations to uncover further possible additive or interactive associations
between heavy metals, GST genes, and ASD status.
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