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Background. Lung adenocarcinoma (LUAD) is the most common pathological type of lung cancer. The purpose of this study is to
search for genes related to the prognosis of LUAD through methylation based on a linear mixed model (LMM). Methods. Gene
expression, methylation, and survival data of LUAD patients were downloaded from the TCGA database. Based on the LMM
model, the GEMMA algorithm was used to screen the predictive genes related to LUAD survival. The Cox model was used to
further screen the predicted genes, and then, protein-protein interaction (PPI) network was constructed. Through the software
plugin Cytoscape MCODE 3.8.0, the most closely related genes in the PPI network module were selected for in-depth biological
function analysis to further explore the interaction and correlation between genes. Results. We screened out 97 predictive genes
from 18,834 genes and eliminated one gene associated with lung squamous cell carcinoma from previous studies, leaving 96
genes. The MCODE and the Kaplan-Meier curve analysis were used to finally identify two genes ASB16 and NEDD4 that are
related to the prognosis of LUAD. Conclusions. The newly identified two genes associated with the prognosis of LUAD may
provide a basis for the treatment of patients.

1. Introduction

Global cancer data show that the incidence and mortality
rates of lung cancer again top the list [1]. Approximately
520,000 new cases are reported annually in men and
267,000 in women. Nearly 61% of the pathological subtypes
of lung cancer are lung adenocarcinoma (LUAD), and lung
cancer poses a serious threat to human health [2]. Patholog-
ically, different types of cancer cells originate from different
sites in the lung. LUAD refers to the mucus-secreting epithe-
lial cells that originate from the smaller bronchial mucosa, so
most adenocarcinomas are located in the peripheral part of
the lung in a spherical mass close to the pleura. Unlike squa-
mous cell lung cancer, LUAD ismore likely to occur in women
and nonsmokers [3]. However, smoking remains a major
environmental risk factor for lung cancer [4]. Causes of high
mortality from LUAD include the lack of sensitive and specific

early biomarkers, high likelihood of drug resistance, and
metastasis [5]. In recent years, some prognostic genes related
to LUAD have been found, which provide an effective crite-
rion for early molecular diagnosis of LUAD and greatly pro-
mote the treatment of patients. The survival rate of lung
cancer is on the rise gradually. In China, the 5-year relative
survival rate is about 40.5%. That is up about 10 percent from
a decade ago. In this study, the new predictive gene screening
model and bioinformatics analysis are used to identify the
driver genes associated with LUAD survival and to provide
an effective criterion for early molecular diagnosis of LUAD.

Traditional treatments for LUAD usually include sur-
gery, chemotherapy, radiation therapy, and targeted therapy
[6]. In the past few years, the research on LUAD has been
focused on molecular targeted therapy, controlling the
metastasis of LUAD cells, and identifying the target genes
[7] regulated by LUAD stem cells. In previous studies, SNP
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was mainly used to predict gene expression, and it has a good
performance in predicting gene expression. Previous studies
have shown that genes associated with LUAD survival are
concentrated in regions such as 5p15.33 and 15q.

Methylation was used to predict gene expression in order
to obtain methylation-driven genes associated with LUAD
prognosis. DNA methylation is one of the core elements of
epigenetic modification and an important signal transduc-
tion tool for regulating genome function [4]. In addition,
the change of methylation state is an important factor leading
to tumor genesis, including the decrease of the methylation
level in the whole genome and the abnormal increase of the
local methylation level in the CpG island, which leads to
the instability of the genome and the nonexpression of tumor
suppressor genes. Therefore, methylation can provide an
important basis for early diagnosis and prognosis of cancer
and provide a new idea for further clinical application. TCGA
is the cancer and tumor gene mapping project initiated by the
United States in 2005. The purpose of the project is to study
the genome changes in cancer by using genome analysis tech-
nology. A large-scale genome sequencing has been done,
including more than 30 kinds of cancers. TCGA has laid a
foundation for the classification and in-depth study of the
molecular pathogenesis of LUAD [8].

To search for genes associated with the prognosis of
LUAD, we used an open cancer genome atlas database The
Cancer Genome Atlas (TCGA) to obtain genetic and epige-
netic data on LUAD [9]. LMM is a multigene model because
it assumes that all mutations have a nonzero effect on gene
expression. We used the effective GEMMA algorithm to fit
the LMM using the limited maximum likelihood method.
The gene expression value was predicted by methylation,
and predictive genes were screened (defined as genes with
R2 ≥ 0:05) [10]. The COX model was used to further screen
the predictive genes to obtain the genes related to the progno-
sis of LUAD and to identify the relationship between methyl-
ation drive and LUAD. Protein-protein interaction network
analysis was performed on these genes to understand the role
of methylation in the development and progression of
LUAD. The core genes with the highest scores in the highest
clusters were extracted by MCODE in Cytoscape software.
GO enrichment analysis was performed on the core genes,
and Kaplan-Meier curve analysis was drawn.

2. Methods and Materials

2.1. Data Processing and Analysis. Gene expression, methyla-
tion, and clinical data of LUAD were obtained from UCSC
Xena (https://xenabrowser.net/). Samples soaked in
formalin-fixed paraffin-embedded tissues were excluded.
Quantile conversion was performed by using the qqnorm
function in R software. The original gene expression data
included 20,530 genes and 515 samples, and the methylation
data came from 458 samples. Firstly, quality control was car-
ried out on the gene expression data, and more than 50% of
the zero expression was eliminated. DNA methylation levels
in a group of 500 kb genes were then filtered by combining
gene expression levels with DNA methylation levels. Com-
bining the gene expression and methylation data according

to the sample name, 18,834 genes and 450 samples were
obtained.

A total of 450 samples were included in our analysis, and
the clinical variables included age, gender, and annual smok-
ing volume. For details, basic clinical information of patients
with LUAD were summarized in Table 1. The missing values
were replaced by the median.

Table 1: Basic clinical information of patients with LUAD.

Clinical parameters Number of cases

Age (years)

>67 193

≤67 257

Sex

Male 209

Female 241

Number-pack-years-smoked

>37 151

≤37 299

Table 2: Abstracts of articles related to LUAD.

PMID Year
N

(case/control)
POP Genes Ref

18385676 2008 1,154/1,137 European 6 [11]

18385738 2008 1,989/2,625 European 5 [12]

18780872 2008 194/219 European 5 [13]

18978787 2008 5,095/5,200 European 3 [14]

18978790 2008 3,259/4,159 European 2 [15]

19654303 2009 1.952/1,438 European 4 [16]

19836008 2009 5,739/5,848 European 7 [17]

20304703 2010 328/407 European 1 [18]

20700438 2010 584/585 East Asian 2 [19]

20871597 2010 1,004/1,900 Japanese 2 [20]

20876614 2010 1,425/3,011 Korean 1 [21].

21725308 2011 2,331/3,077 Han Chinese 4 [22]

21866343 2011 426/497 Korean 3 [23]

22797724 2012 1,695/5,333 Japanese 4 [24]

22899653 2012 14.900/29,485 European 1 [25]

23143601 2012 5,510/4,544 East Asian 9 [26]

24325914 2013 2,331/3,077 Han Chinese 4 [27]

24658283 2014 2,383/3,160 Han Chinese 5 [28]

24880342 2014 11,348/15,361 European 4 [29]

25145502 2014 354 Han Chinese 1 [30]

27393504 2016 1,737/3,605
African
American

6 [31]

27501781 2016 663/4,367 Japanese 6 [32]

28604730 2017 11,273/55,483 European 208 [33]

29924316 2018 775/31,563 European 18 [34]

30104567 2018 4,972/5,501 European 1 [35]

31326317 2019 27,120/27,355 Han Chinese 3 [4]

N : initial sample size; POP: population ethnicity.
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Figure 1: Continued.
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2.2. Two-Step Identification of Genes Associated with the
Prognosis of LUAD

2.2.1. Predictive Genes Were Identified Using LMM.We bring
the data into the linear mixed model. Let us first assume that
all the markers are normalized to mean 0 and variance 1. Let
Ei be an n-vector of the expression level of the ith gene
measured on n individuals, Li is the n × p matrix of DNA
methylation. The simple linear model that relates DNA
methylation to gene expression level is Ei = Lici, where ci is
the p-vector effect value corresponding to the ith gene. The
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Figure 1: (a) Circular Manhattan diagram of all reported SNPs in GWAS. (b) The number of reported SNPs within 1Mb window size in
GWAS. (c) The most frequently reported genes in these articles.

Table 3: Correlation R2 values for top ten genes.

Gene CHR R2 Gene CHR R2

FLJ42875 1 0.904 FBXL16 16 0.917

LOC441869 1 0.931 MSLN 16 0.952

KCNQ1 11 0.940 H3F3B 17 0.923

MUC5B 11 0.903 ZNF750 17 0.918

CBFA2T3 16 0.904 ADAMTSL5 19 0.913
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square correlation coefficient (R2) of the predicted value is
used to measure the performance. The predicted gene expres-
sion values can be regarded as the potential effect of DNA
methylation. The R2 ≥ 0:05 gene is thought to be methylation
driven, and these genes are retained for further analysis.

2.2.2. Cox Regression Analysis Identified the Prognostic Genes.
The Cox regression model was used to further analyze the
predictive genes screened by the linear mixed model and to
explore the relationship between methylation-driven genes
and the prognosis of LUAD [36]. It is still assumed that all
the markers may be involved in the development of LUAD,
and the effect size of each gene should follow a normal distri-
bution:

h ti ∣ Ei, Lið Þ = h0 tið ÞeETi β+L
T
i
γ

, γ ~N 0, σ2� �
, ð1Þ

where h0ðtÞ is the arbitrary baseline risk function corre-
sponding to the reference level of the covariates, and β is
the effect size of gene i, and γ = ðγ1, γ2,⋯, γmÞ is the m
-dimensional vector of the random effect size of DNA meth-
ylation; σ2 is the variance of DNA methylation. We used the

false discovery method to adjust the p value results
(FDR < 0:01).

2.3. Protein-Protein Interaction Network and Module
Analysis. In order to mine the core regulatory genes, we con-
structed the protein interaction network by using the STRING
database (version 11.0). We also implemented signaling path-
ways for these genes through Cytoscape software (version
3.8.0) and visualized them through CluePedia. Through the
MCODE plugin of Cytoscape software, the most closely con-
nected modules were selected from the constructed PPI net-
work for in-depth biological function analysis [37]. The
genes contained in the modules are the core genes.

2.4. Kaplan-Meier Curve Analysis. Kaplan-Meier curve anal-
ysis was used to analyze the correlation between core genes
and survival. We used the original expression values of genes
and the predicted expression values of methylation to calcu-
late their effects on survival, respectively. The prognosis
genes were screened with p < 0:05 as statistically significant
difference.

2.5. Gene Set Enrichment Analysis (GSEA). In order to ana-
lyze the biological characteristics of prognosis genes and their
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Figure 2: Results of protein-protein interaction network analysis.
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roles in the development of LUAD, the prognosis genes
selected by Kaplan-Meier Curve analysis were analyzed by
gene set enrichment analysis. GSEA package, clusterProfiler
package, and GSEA function were used in R software to
obtain the enrichment results of KEGG pathway and GO
pathway, respectively. The number of permutations was set
to 1,000, and a false discovery rate ðFDRÞ < 0:25 was recog-
nized as statistically significant.

3. Results

3.1. Description of Previous Studies. Before October 2019, we
searched the GWAS directory with “lung cancer, lung adeno-
carcinoma” as the search term and conducted a systematic

literature search on EBI to preliminarily understand the pre-
vious research achievements of LUAD pathogenic genes. A
total of 26 articles were included, and these studies were
mainly carried out in European populations. Details of the
26 articles we have included are shown in Table 2 and
Figure 1, published from 2008 to 2019. A total of 314 genes
were reported. The genes associated with LUAD survival
were mainly located in 5p15.33, 6p21.3, 15q25, and
17q24.3. By analyzing the GO and KEGG pathways of genes
related to LUAD in GWAS, the results showed that gene
enrichment molecule functions were mainly identical protein
binding, and the biological processes were mainly positive
regulation of transcription from RNA polymerase II pro-
moters, and the components mainly included integral
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Figure 4: Continued.
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component of membrane. There were altogether 22 path-
ways in KEGG. Several articles confirmed that genes TP63,
TERT, and CLPTM1L were related to the prognosis of
LUAD.

3.2. Results of Linear MixedModel and Cox Regression Model.
After placing 18,834 genes into a linear mixed model, we
measured their performance by using the predicted square

correlation coefficient (R2). The results showed that there
were 18,495 genes with R2 greater than or equal to 0.5.
Table 3 showed information about the ten genes with a
higher R2 value. A total of 114 prognostic genes were
screened by Cox regression model to eliminate the
nonprotein-coding genes. Finally, 97 prognostic genes were
obtained. After searching on EBI, we excluded DTNBP1,
which was linked to lung squamous cell carcinoma in

p = 0.880.00

0.25

0.50

0.75

1.00

0 50 100 150 200 250
Time (months)

Su
rv

iv
al

 ra
te

 

ASB18
High risk
Low risk

(e)

0 50 100 150 200 250
Time (months)

0.00

0.25

0.50

0.75

1.00

Su
rv

iv
al

 ra
te

 

p = 0.44

ASB18 pred
High risk
Low risk

(f)

0 50 100 150 200 250
Time (months)

0.00

0.25

0.50

0.75

1.00

Su
rv

iv
al

 ra
te

 

p = 0.77

MYLIP
High risk
Low risk

(g)

0 50 100 150 200 250
Time (months)

0.00

0.25

0.50

0.75

1.00

Su
rv

iv
al

 ra
te

 

p = 0.44

MYLIP pred
High risk
Low risk

(h)

Figure 4: Kaplan-Meier curve analysis results. (a, b) The combination of gene ASB16 expression and methylation. (c, d) The combination of
gene NEDD4 expression and methylation. (e, f) The combination of gene ASB18 expression and methylation. (g, h) The combination of gene
MYLIP expression and methylation. pred is the gene expression predicted by methylation.
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previous studies [38]. In addition, we have identified a
smoking-related gene, ASB18, which may further influence
the development of lung cancer [39].

3.3. Protein-Protein Interaction Network and Selection of
Core Genes. In this study, the protein interaction network
was built by using the STRING database (version 11.0). We
put 96 genes into STRING, and the species chooses to be
Homo sapiens. The PPI score parameter is set at 0.400 (indi-
cating moderate confidence). The network contains 96 nodes
and37 edges, and we hide the unconnected nodes in the net-
work. It is worth noting that there is a strong association
between the genes of ASB16, ASB18, MYLIP, NEDD4, and
ZDHHC2. The result is shown in Figure 2.

Links between genes are visualized through CluePedia, as
shown in Figure 3. Through the MCODE plugin of Cytos-
cape 3.8.0 software (setting parameters as degree cut − off =
2, node score = 0:2, k − core = 2, and maximumdepth = 100
), the most closely connected modules were selected from
the constructed PPI network for in-depth biological function
analysis. It was found that the genes included in the most
compact modules in the cluster were NEDD4, ASB18,
MYLIP, and ASB16, and the highest scoring node in the
cluster was ASB16.

3.4. Kaplan-Meier Curve Analysis Results. We used Kaplan-
Meier curves to describe the survival analysis of the four
selected genes, and, respectively, analyzed the original gene
expression data and the gene expression data predicted by
methylation. The results showed that the genes of ASB16
and NEDD4 had a definite effect (p < 0:05) on the prognosis
of LUAD regardless of the original value or the predictive
value, while the genes of ASB18 and MYLIP had no signifi-
cant effect. The specific results are shown in Figure 4.

3.5. GSEA Results. The GSEA analysis showed that the main
functions of the ASB16 gene were covalent chromatin modi-
fication, histone methylation, and extracellular transport; the
main enrichment pathways were taste transduction, DNA
replication, and nucleotide excision repair. The main func-

tions of the NEDD4 gene were positive regulation of multior-
ganism process, regulation of cytoskeleton organization, and
divalent inorganic cation homeostasis; the mainly enrich-
ment pathways were MAPK signaling pathway and pathway
in cancer. The most significantly enriched signaling path-
ways based on their NES are shown in Table 4; partial enrich-
ment results are shown in Figure 5.

4. Discussion

Lung cancer, as a malignant tumor with high morbidity and
mortality in the world, is not only difficult to determine the
cause of the disease but also has a poor survival rate. LUAD
is the most common pathological classification of lung can-
cer, so it is of great research value to improve the survival rate
of LUAD. The previously identified genes associated with
lung cancer and LUAD survival are located mainly on chro-
mosome 6. The enrichment analysis of these genes showed
that the molecular function was mainly to selectively and
noncovalently interact with the same protein or protein,
and the biological process was mainly a process of activating
or increasing the transcription frequency, rate, or degree of
RNA polymerase II promoter. The component composition
mainly included the integral component of the membrane.

In recent years, studies on the survival rate of patients
with LUAD have mostly focused on the prediction of genes
related to prognosis, the manipulation of the immune system
in the treatment of LUAD [6], the study of smoking and the
occurrence of LUAD, and the use of SNP to predict the prog-
nosis of LUAD. This study is intended to use the new model
to screen the prognostic genes associated with LUAD. The
resulrs showed that the two genes were associated with prog-
nosis of LUAD and predictive genes were selected by linear
mixed model and Cox regression model. Due to too many
screened genes, there was excessive analysis of biological
functional analysis of signaling pathways. Therefore, we use
the MCODE plugin to connect many genes with a number
of genes extracted and then to separate biology related anal-
ysis. Gene NEDD4 also enriched in multiple pathways. Previ-
ous studies have found that the loci associated with LUAD

Table 4: The most significantly enriched signaling pathways.

Gene MSigDB collection Gene set name NES p val FDR

NEDD4

c2.cp.kegg.v7.1.symbols.gmt

KEGG_FOCAL_ADHESION 2.666 0.002 0.008

KEGG_REGULATION_OF_ACTIN_CYTOSKELETON 2.523 0.002 0.008

KEGG_ECM_RECEPTOR_INTERACTION 2.511 0.002 0.008

c5.bp.v7.1.symbols.gmt

GO_GRANULOCYTE_MIGRATION 2.562 0.002 0.011

GO_DEFENSE_RESPONSE_TO_VIRUS 2.511 0.002 0.011

GO_SUBSTRATE_ADHESION_DEPENDENT_CELL_SPREADING 2.462 0.002 0.011

ASB16

c2.cp.kegg.v7.1.symbols.gmt

KEGG_TASTE_TRANSDUCTION 1.701 0.002 0.088

KEGG_ABC_TRANSPORTERS 1.605 0.006 0.088

KEGG_LINOLEIC_ACID_METABOLISM 1.518 0.031 0.139

c5.bp.v7.1.symbols.gmt

GO_MRNA_SPLICE_SITE_SELECTION 1.935 0.001 0.133

GO_HISTONE_H3_K27_METHYLATION 1.893 0.001 0.133

GO_EXTRACELLULAR_TRANSPORT 1.871 0.001 0.133

NES: normalized enrichment score; FDR: false discovery rate.
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Figure 5: Continued.
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are mostly located on chromosome 5, 6, 15, and 17. In this
study, the genes were ASB16 (17q21.31) and NEDD4
(15q21.3).

The protein encoded by ASB16 gene is a member of the
protein family which contains the SOCS box-containing
(ASB) and the repeated sequence of anchor proteins. They con-
tain the repeat sequences of anchored protein and the SOCS
box domains. Ankyrin repeat sequence is a kind of protein
sequences widely existing in the organism of the dead body.

The NEDD4 gene is a founding member of the HECT
ubiquitin ligase NEDD4 family, which plays a role in the

protein-degrading ubiquitin proteasome system. According
to a new study, the important role of the ubiquitin-
proteasome system also is after it is make full use of, can met-
abolic toxins such as garbage, fat, and cancer cells; the human
body; and metabolic energy can stimulate cell reproducing
itself in order to complete the self-metabolism of the human
body repair function.

In this study, we identified two prognostic genes associ-
ated with LUAD survival, and it provided a basis for improv-
ing the survival rate of LUAD. Although the gene ASB18 has
not been determined to be associated with the prognosis of
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Figure 5: (a, b) The combination of gene ASB16 GO and KEGG results. (c, d) The combination of gene NEDD4 GO and KEGG results.
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LUAD, it has been shown that it is related to smoking. Smok-
ing is an environmental risk factor for LUAD,which can be
further studied.

5. Conclusion

Our study identified several genes that may be associated
with the survival of lung adenocarcinoma, in particular two
new genes (ASB16, NEDD4)) that provide evidence for the
prognosis of lung adenocarcinoma, and further studies are
needed to confirm our findings.
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