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Abstract: Isoquinoline alkaloids-enriched herbal plants have been used as traditional folk medicine
for their anti-inflammatory, antimicrobial, and analgesic effects. They induce cell cycle arrest, apopto-
sis, and autophagy, leading to cell death. While the molecular mechanisms of these effects are not
fully understood, it has been suggested that binding to nucleic acids or proteins, enzyme inhibition,
and epigenetic modulation by isoquinoline alkaloids may play a role in the effects. This review
discusses recent evidence on the molecular mechanisms by which the isoquinoline alkaloids can be a
therapeutic target of cancer treatment.

Keywords: isoquinoline alkaloids; anticancer; cell cycle arrest; apoptosis; autophagy; epigenetic reg-
ulation

1. Introduction

Cancer is a leading cause of death worldwide and has a major impact on society. It is
a major barrier to increasing life expectancy this century [1]. The World Health Organi-
zation (WHO) estimates that cancer was responsible for an estimated 9.6 million deaths
in 2018 [2]. Treatment varies depending on the type and stage of cancer. Most people
undergo a combination of treatments, such as surgery with chemotherapy and radiation
therapy. However, adverse reactions to conventional treatment and drug resistance have
led some to use complementary and alternative medicine (CAM) in conjunction with
conventional medical treatments [3–6]. As interest in complementary therapies increases,
so has the value of natural remedies [7]. Isoquinoline alkaloids, a group of plant-derived
bioactive compounds, have traditionally been used as alternative treatments for their
anti-inflammatory, antimicrobial, and analgesic effects [8–12]. Recently, biomedical and
pharmacological developments have begun to uncover the anticancer effects and mech-
anisms of isoquinoline alkaloids. In this review, we discuss the anti-cancer effects and
mechanisms of isoquinoline alkaloids.

2. Isoquinoline Alkaloids Derived from Various Herb Extracts

Alkaloids that possess an isoquinoline moiety are one of the largest groups of natural
substances. Isoquinoline is a heterocyclic compound consisting of a benzene and pyridine
ring fused at C3/C4 of the pyridine ring [13]. The biosynthetic pathways of isoquinoline
alkaloids proceed via tyrosine generating dopamine and p-hydroxyphenylacetaldehyde
(Figure 1). Tyrosine is converted to dopamine by hydroxylation and decarboxylation, and to
p-hydroxyphenylacetaldehyde by transamination and decarboxylation [14]. Through cy-
clization, hydroxylation, and methylation, dopamine and p-hydroxyphenylacetaldehyde
are condensed to form specific scaffold molecules such as norcoclaurine, reticuline, au-
tumnaline, deacetylisoipecoside, or norbelladine, central precursors to several thousand
isoquinoline alkaloids [15,16].
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Figure 1. Synthesis of isoquinoline alkaloids.

Isoquinoline alkaloids have been used in folk medicine and have attracted attention
in the pharmacological industry and among researchers due to their potential medicinal
benefits. Most of the isoquinoline alkaloids discovered to date have been derived from
plants, such as Alangiaceae, Annonaceae, Berberidaceae, Fabaceae, Fumariaceae, Lau-
raceae, Menispermaceae, Papaveraceae, Ranunculaceae, and Rutaceae [17]. Opium poppy
(Papaver somniferum) is one of the oldest plant sources of commercial medicinal isoquino-
lines in the world. Morphine, codeine, papaverine, noscapine, and thebaine were detected
in its latex [18], and more than 40 isoquinoline alkaloids have been isolated from opium [19].
Chelidonium majus L., of the Papaveraceae family, contains sanguinarine, chelidonine, chel-
erythrine, berberine, and coptisine [20]. 8-oxoberberine, berbidine, berbamine, aromoline,
obamegine, berberine, and palmatine were obtained from Berberis vulgaris [21].

Based on the structural diversity, isoquinoline alkaloids are classified into the sub-
groups benzylisoquinoline, aporphine, protoberberine, benzo[c]phenanthridine, protopine,
phthalide isoquinoline, morphine, emetine, and pavine [17,22]. Berberine, palmatine, cora-
lyne, and coptisine are the isoquinoline alkaloids from the protoberberine class, while san-
guinarine, chelerythrine, and chelidonine are the main members of the benzo[c]phenanthridine
class. Noscapine and scoulerine belong to the benzylisoquinoline alkaloid class. The most
common examples of isoquinoline alkaloids (Figure 2) have been intensely investigated for
their phytoceutical function.
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Figure 2. Examples of isoquinoline alkaloids’ structures.

3. Biological Functions

Isoquinoline alkaloids have various biochemical properties related to their binding
to various differential biological functional ligands [23]. Isoquinoline alkaloids intercalate
with polymorphic nucleic acid structures. Berberine and palmatine bind to B-form DNA
and coralyne binds to duplex B-form DNA and a single-stranded poly(A) structure [24].
Spectroscopic and thermodynamic studies suggest that sanguinarine and berberine bind
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to the DNA and RNA double and triple helical structures [25] and sanguinarine binds to
tRNAphe [26]. Interactions between sanguinarine and chelerythrine with DNA were both
enthalpy- and entropy-favored actions [27].

Isoqinoline alkaloids inhibit the activity of some enzymes, especially acetylcholinesterase
(AChE) and butylcholinesterase (BuChE) through anticholinesterase potency of alkaloid
scaffolds [28–34]. This mechanism was uncovered via structure-based virtual screening [35].
Possible structure–activity relationship (SAR) investigations for active compounds pre-
dict that the protoberberine scaffold structure is associated with AChE inhibitory effects.
Galanthamine from the Hippeastrum species inhibited the activity of AChE more than
90% compared to the control in the hippocampus of adult Wistar rats [28]. Chelidonine,
6-ethoxydihydrosanguinarine, and 6-ethoxydihydrochelerythrine, which are abundant in
Chelidonium majus (Papaveraceae), exhibited inhibitory activity of human blood AChE and
human plasma BuChE [36].

Protoberberine and coralyne are known as topoisomerase I and II inhibitors [29,30].
They exhibit intercalative and minor groove binding to duplex DNA and are involved
in topoisomerase I poisoning [37]. In addition, corydine, parfumine, 8-methyl-2,3,10,11-
tetraethoxyberbine, and chelidonine from the Papaveraceae family inhibit cytochrome
P450 3A4 (CYP3A4) with high-affinity alkaloid interactions [31,32]. Berberine inhibited
transcriptional activity of cyclooxygenase-2 (COX-2) through the binding to DNA and RNA.

Isoquinoline alkaloids reportedly have other bioactivities, including antibacterial and
antifungal effects via the binding to DNA and RNA [38–40]. (+)-N-(methoxycarbonyl)-N-
nordicentrin, (+)-N-(methoxycarbonyl)-N-norpredicentrin, and (+)-N-(methoxycarbonyl)-
N-norglaucine in the L. cubeba extract inhibited the bacterium S. aureus and fungus A. al-
ternata and C. nicotianae [41]. Sanguinarine and chelerythrine from Sanguinaria canadensis
and berberine and β-hydrastine from Hydrastis canadensis inhibited Staphylococcus aureus
growth [42,43]. The antifungal activity of berberine and jatrorrhizine isolated from Mahonia
aquifolium was evaluated against Malassezia [44]. Berberine inhibited the growth of H1N1
influenza A [45] and the Chikungunya virus [46].

Furthermore, isoquinoline alkaloids have anti-inflammatory and antioxidant effects.
Berberine hydrochloride showed significantly low expression levels of inflammation mark-
ers and toll-like receptor 4 (TLR4) protein expression in lipopolysaccharide (LPS)-induced
mice [47]. The downregulation of inflammatory cytokines such as TNFα, IL-6, and C-
reactive protein by berberine treatment was confirmed in vitro [48]. Chelidonine, a major
compound of Chelidonium majus, also inhibited LPS-induced inflammatory responses
through TLR4/NF-κB signaling pathway suppression in RAW264.7 cells [49]. In a radical
scavenging assay, iraqiine, muniranine, and kinabaline showed antioxidant activity [50],
and stylopine, protopine, fumaritine, fumaricine, fumarophycine, fumariline, and fu-
marofine from two Algerian species of Fumaria inhibited lipid peroxidation [51].

4. Anticancer Effects of Isoquinoline Alkaloids

The anti-cancer activity of isoquinoline alkaloids is noteworthy. Isoquinoline alkaloids
and/or isoquinoline-enriched plants have been investigated as alternative regimens to com-
plement chemotherapy. They efficiently induce cell death in various cancer cell lines [52–55].
The evidence based on in vivo and in vitro models indicated isoquinoline alkaloids exert
significant anti-cancer effects through cell cycle arrest, apoptosis, and autophagy (Table 1),
leading to cell death.

4.1. Apoptosis-Mediated Cell Death

Apoptosis, programmed cell death, is a promising target for anticancer therapy. Apop-
tosis is triggered by the extrinsic and intrinsic pathways. The extrinsic pathway is trig-
gered by external stimuli. Ligand and death receptor (DR) binding interacts with the Fas-
associated death domain (FADD) and tumor necrosis factor receptor 1 (TNFR1)-associated
death domain (TRADD). A death-inducing signaling complex (DISC) is then formed and
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caspase-8 is recruited to DISC. This leads to the activation of caspase-8, which cleaves and
activates caspase-3/6/7, initiating apoptosis [56].

The intrinsic pathway is triggered by exogenous and endogenous stimuli, includ-
ing DNA damage and oxidative stress. The Bcl family members, Bax and Bcl-2, act as pro-
or anti-apoptotic regulatory proteins through binding to the mitochondrial membrane.
The release of cytochrome C in the cytoplasm recruits Apaf–1 and procaspase-9 to form the
apoptosome, which triggers downstream caspase-9/3 cascades [57].

4.1.1. Caspase-Dependent Apoptosis

Caspase activation is a central process for apoptosis. All caspases are produced
as catalytically inactive zymogens and are cleaved and activated during apoptosis [58].
Chelerythrine-induced apoptosis was accompanied by a decrease in the mitochondrial
membrane potential (MMP), the release of cytochrome c, activation of caspase-3 and
poly ADP-ribose polymerase (PARP), and downregulation of Bcl-2 in BGC-823 cells [59].
Sanguinarine inhibited tumor growth in vivo and in vitro in various cancers, including
prostate [60], cervical [61], pancreatic [62], and colorectal cancers [63]. AsPC-1 and BxPC-3
growth were suppressed via an increase in Bax, Bid, and Bak and decreases in the anti-
apoptotic Bcl-2 and Bcl-xL proteins [62]. Sanguinarine also decreased the tumor size in
orthotopical colorectal carcinoma bearing BALB/c-nu mice through increased caspase 3,
PARP, and mitochondrial reactive oxygen species (ROS) cleavage [63]. The effect of chelery-
thrine on A549 and H1299 leads to increased protein levels of cleaved PARP and cleaved
caspase 3 [64]. Chelidonine inhibited non-small cell lung cancer growth via regulating
epidermal growth factor receptor/AMP-activated protein kinase (EGFR/AMPK) signaling
pathways in vivo and in vitro [65]. Berberine induced caspase 3, 8, and 9 mediated apop-
tosis in A549 and H1299 xenograft mice models [66,67] and triple-negative breast cancer
cells [68].

4.1.2. MAPK-Mediated Apoptosis

Mitogen-activated protein kinase (MAPK) signaling pathways regulate fundamen-
tal cellular processes such as growth, proliferation, differentiation, and migration [69].
MAPK subfamilies consist of extracellular signal-regulated kinases (ERKs), c-Jun N-terminal
kinases (JNKs), and p38-MAPKs. ERKs are important for cell survival, while JNKs and
p38-MAPKs are stress-responsive and mediate apoptotic processes triggered by numerous
stimuli [70]. The major cellular receptor protein kinase C (PKC) activates the MAPK/ERK
pathway via c-Raf [71]. Berberine treatment of A549 cells showed indication of apoptosis
with increased phosphorylation of p38-MAPK and induced protein expression of p53 and
forkhead box class O 3a (FOXO3a) [72]. Berberine affected PKC, glycogen synthase kinase
3 beta (GSK-3β), ERK activity, and (NSAID) activated gene-1 (NAG-1) expression, resulting
in apoptosis in HCT-116 cells [73].

4.2. Cell Cycle Arrest

The cell cycle is regulated by several cyclin-dependent kinases and controls cell divi-
sion and proliferation. Induction of cell cycle arrest and inhibition of cell proliferation by
regulation of cell cycle checkpoints is a therapeutic target for treating cancer [74]. Berber-
ine leads to G1 cell cycle arrest with the induction of NAG1 and activating transcription
factor 3 (ATF3) expression on HCT116 cells [73]. An antitumor effect has been demon-
strated in human colorectal adenocarcinoma by inducing G2/M phase arrest in vivo and
in vitro studies [75]. Berberine treatment also caused G2 phase arrest in U251 cells and
significantly inhibited tumor progression in the glioma mouse model [76]. Chelerythrine
treatment induced S phase arrest to inhibit BGC-823 cell proliferation [59]. Moreover,
sanguinarine arrested AsPC-1 and BXPC-3 cells in the G0–G1 phase through modulation
of the Bcl-2 family [62].
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4.3. Autophagy-Mediated Cell Death

Autophagy is a response to a range of cellular stressors to maintain cellular home-
ostasis. Therefore, autophagy is a critical mechanism of cancer treatments. Mechanistic
target of rapamycin (mTOR), a molecular regulator of autophagy, is associated with cell
proliferation and is regulated by AMPK. Inhibition of mTORC1 and increased AMPK
induces autophagy [77], during which autophagosomes are formed to digest cytoplasmic
components and LC3I is converted to LC3II [78,79]. Berberine upregulated LC3-II and
induced autophagy in glioblastoma through the regulation of the AMPK/mTOR/unc-51
like autophagy activating kinase 1 (ULK1)-pathway [80] and repressed human gastric
cancer cell proliferation through inactivation of the MAPK/mTOR/p70S6K/Akt signaling
pathway in vivo and in vitro [81]. In chelerythrine-treated A549 and H1299 cells, LC3-II ex-
pression was enhanced [64]. Similarly, neferine upregulated LC3-II and downregulated the
phosphoinositide 3-kinase (P13K), Akt, and mTOR pathways, inducing autophagy [82].

Table 1. Current evidence on anticancer effects of isoquinoline alkaloids.

Mechanisms Cancer Type Effect Compounds Reference

Apoptosis

Colorectal cancer Accumulation of cells in sub G0 phase
Increase in Bax expression Berberine [73]

Breast cancer
Condensed chromatin with

fragmented nuclei
Accumulation of cells in sub G0 phase

Noscapine [83]

Gastric cancer

Decrease of mitochondrial
membrane potential

Increased release of cytochrome c
Activation of caspase-3/8/9 and PARP

Decrease in Bcl-2 expression
Increase in Bax expression

Apoptotic DNA fragmentation

Chelerythrine [59]

Breast cancer
Liver cancer
Lung cancer

Prostate cancer

Berberine [66–68,84–86]

Leukemia Berberine
Scoulerine [87,88]

Colorectal cancer Noscapine
Sanguinarine [41,63]

Breast cancer

Decrease of mitochondrial
membrane potential

Increased phosphorylation of JNK
Increased release of cytochrome c

and AIF
Activation of caspase-3

Decrease in Bcl-2 expression
Increase in Bax expression

Berberine [89]

Colorectal cancer Liensinine [90]

Lung cancer

Increased phosphorylation of
p38 MAPK

Increase in transcriptional activity
of FoxO3a

Berberine [72]

Liver cancer

Suppressed
PI3K/Akt/mTOR pathway

Increased phosphorylation of JNK
Reactive oxygen species

(ROS) generation
Increase in Bim expression and
transcriptional activity of FoxO

Berberine [91]
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Table 1. Cont.

Mechanisms Cancer Type Effect Compounds Reference

Prostate cancer

Decrease of mitochondrial
membrane potential

Decrease in Bcl-2, Bcl-XL,
and XIAP expression
Increase in Bax, Bad,

and Apaf-1 expression
Increased cytochrome c and AIF

release
Activation of caspase-3 and PARP
Suppression of PI3K/Akt pathway

Sinomenine [92]

Liver cancer Tetrandrine [93]

Lung cancer
Reactive oxygen species (ROS)

generation
Activation of caspase-3/8/9 and PARP

Endoplasmic reticulum (ER)
stress activation

Increased phosphorylation of JNK
Suppression of PI3K/Akt pathway

Chelerythrine [64]

Liver cancer
Colorectal cancer Coptisine [94,95]

Colorectal cancer Scoulerine [96]

Renal cancer

Decreased phosphorylation of ERK
and Akt

Decrease in Bcl-2 expression
Increase in Bax and p53 expression

Chelerythrine [97]

Oral cancer

Increase in FasL expression
Decrease in Bcl-2 and Bcl-xL

expression
Increase in Bax, Bad,

and Apaf-1 expression
Activation of caspase-3/8/9 and PARP

Increased phosphorylation of
p38 MAPK

Berberine [98]

Cell cycle arrest

Breast cancer
Colorectal cancer

Gastric cancer
Pancreatic cancer
Prostate cancer

G1 phase cell cycle arrest
Berberine

Sanguinarine
Chelerythrine

[57,60,61,86,99]

Colorectal cancer
Glioblastoma
Lung cancer

G1 phase cell cycle arrest
induction of p21

inhibition of cyclin D1

Tetrandrine
Berberine [59,76,100,101]

Gastric cancer
Ovarian cancer S phase cell cycle arrest Chelerythrine

Liriodenine [59]

Glioblastoma

G2/M phase cell arrest
Enhanced cyclin dependent kinase 1
(Cdk1)/cyclin B1 complex activity

Chelidonine [102]

Colorectal cancer
Liensinine
Noscapine
Berberine

[41,58,92]

Leukemia Scoulerine [88]

Breast cancer Noscapine [83]

Prostate cancer Protopine [103]

Autophagy

Breast cancer
Gastric cancer

Glioblastoma cancer
Liver cancer
Lungcancer

Enhanced expression of LC3-II
Increase of AMPK activity

Downregulated expression of PI3K,
Akt, and mTOR

Activation of Beclin-1

Berberine
Neferine

Sanguinarine
Chelerythrine

[64,80–82,86,99,100]
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5. Molecular Mechanisms of Anticancer Effects

The molecular or cellular mechanisms behind these anti-cancer effects are of great
interest. Molecular functions, such as binding to nucleic acids or proteins and enzyme
inhibition, have been suggested as potential anti-cancer mechanisms.

5.1. Binding to Polynucleic Acids

Interactions of the alkaloids with DNA and RNA may be responsible for anticancer
effects. Specific binding to nucleic acids regulates polynucleic acid stability and may be
the therapeutic target of isoquinoline alkaloids with anticancer effects. These bindings
disrupt the structure of duplex B-form DNA and affect their interaction with DNA replica-
tion, repair, or transcription-related proteins. Sanguinarine and chelerythrine preferred
double-helical regions for binding [27] and DNA adduct formed from both isoquinoline
alkaloids [101].

5.2. Binding to Microtubules

Microtubule polymerization plays a pivotal role in chromosomal segregation during
mitosis [104]. Specific binding to mitotic microtubules has been considered the ther-
apeutic target of isoquinoline alkaloids with anticancer effects. Sanguinarine caused
microtubule depolymerization and conformational changes in tubulin through tubulin
binding and inhibited cell proliferation in Hela cells [105]. Noscapine-treated MCF-7,
MDA-MB-231, and CEM cells displayed higher tubulin-binding activity and mitotic arrest
followed by apoptosis [83,106]. Chelidonine [107] and hydroxy-substituted indolo[2,1-
a]isoquinolines [108] disrupt microtubular structure and inhibit tubulin polymerization.

5.3. Inhibition of Enzyme Activity

Inhibition of enzyme activity is associated with anticancer activities. The abilities of
protoberberine and coralyne as topoisomerase I and II inhibitors are well known [29,30].
Berberrubine’s inhibition of DNA topoisomerase II induced DNA cleavage through stabi-
lization of the enzyme–DNA complexes [109,110].

Telomere shortening is evident in MCF-7 cells upon chelidonine treatment [111].
A new berberine derivative synthesized telomeric quadruplex ligands and led to inhibitory
effects on telomerase activity [112,113]. Berberine also downregulates nucleophosmin/B23
and inhibits telomerase activity and induces apoptosis of HL-60 cells [114].

Corydine, parfumine, 8-methyl-2,3,10,11-tetraethoxyberbine, and chelidonine from
the Papaveraceae family inhibit CYP3A4, indicating a high-affinity interaction with this en-
zyme and demonstrating an anticancer effect [31,32]. The binding of chelerythrine to Bcl-2
and apoptotic processes were observed in a dose-dependent manner [115,116]. Berberine in-
hibited cyclooxygenase-2 (COX-2) transcriptional activity with the regulation of I kappa B
kinase (IKK) and nuclear factor-kappa B (NF-κB), and induced apoptosis [33,34]. However,
inhibition of AChE and BuChE activity is not related to anticancer effects. Studies have
shown that AChE is upregulated in response to apoptotic induction [117]. Its inhibition is
considered a potential treatment of Alzheimer’s disease (AD). AD is characterized by a
loss of neurotransmission due to abnormal synaptic acetylcholine levels [118]. AChE and
BuChE are enzymes that break down the neurotransmitter acetylcholine and regulate
cholinergic levels in the brain [119].

5.4. Epigenetic Modulation

Epigenetics is defined as the heritable changes in gene expression without alteration
of the DNA sequence itself [120]. Epigenetic dysregulation of gene expression occurs
during stages of cell proliferation, invasion, metastasis, and cancer development [121–123].
DNA methylation and histone modifications, as main epigenetic mechanisms, induce chro-
matin remodeling followed by changes in cellular phenotypes [124]. These mechanisms
regulate proto-oncogene, tumor suppressor gene, and DNA repair gene expression.
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Natural products including the secondary metabolites found in plants are reported
to reverse cancer progression through modulation of epigenetic events, such as modu-
lation of the activities of DNA methyltransferases (DNMTs) and histone deacetylases
(HDACs) [125,126]. Remarkably, isoquinoline alkaloids act as putative targets in cancer
drug development by affecting epigenetic modulation (Table 2).

Particularly, berberine’s anticancer effects have been associated with DNA and histone
modifications [127–130]. In berberine-treated HepG2 cells, inhibition of DNA methylation
in promoter regions of the cytochrome P450 2B6 (CYP2B6) and CYP3A4 genes mediated an
anti-proliferative effect [127]. In U266 cells, berberine induced apoptosis by suppression
of NF-κB nuclear translocation through Set9-mediated lysine methylation and decreased
miR21 levels [129]. Treatment with berberine affected DNMT1, DNMT3A, DNMT3B,
miR-152, miR-429, and miR-29a expression, which are critical regulators of colon cancer
initiation and progression [130]. Berberine also repressed HDAC activity and triggered sub-
G0/G1 cell cycle arrest in A549 cells [128]. Sanguinarine inhibited H3K9, H3K4, and H3R17
methylation in vivo and in vitro [131].

Table 2. Epigenetic modulation in isoquinoline-induced cell death.

Tumor Type Compounds Effect Reference

Liver cancer Berberine
Reduced DNA methylation level in
promoter regions of CYP2B6 and
CYP3A4 genes

[127]

Myeloma Berberine

Increased the level of Set9 (lysine
methyltransferase)
Increased the level of methylation of
the RelA subunit
Inhibited NF-κB nuclear
translocation and
miR-21 transcription
Hypomethylation of p53 promoter

[129,132]

Colorectal cancer Berberine

Increased the level of DNMT1,
DNMT3A, DNMT3B
Increased the level of miR-152,
miR-429, miR-29a

[130]

Lung cancer Berberine

Decrease of HDAC activity
Hyperacetylated histones H3 and H4
Decreased level of tumor necrosis
factor-α (TNF-α), COX-2, MMP-2,
and MMP-9
Increased the level of p21 and p53

[128]

Cervical cancer Sanguinarine Reduced H3K9, H3K4,
and H3R17 methylation [131]

6. Conclusions

Current evidence demonstrates that isoquinoline alkaloids have anticancer effects
such as induction of cell cycle arrest, apoptosis, and autophagy (Figure 3), suggesting their
potential as a cancer therapeutic agent. The effects are, at least in part, attributed to
their binding to DNA or proteins, inhibition of enzyme activity, or epigenetic modulation.
Further studies are needed to fully discover the underlying mechanisms of isoquinoline
alkaloid-mediated cell death against cancer.
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Abbreviations

AChE Acetylcholinesterase
AD Alzheimer’s disease
AMPK AMP-activated protein kinase
ATF3 Activating transcription factor 3
BuChE Butylcholinesterase
CAM Complementary and alternative medicine
CDK1 Cyclin Dependent Kinase 1
COX-2 Cyclooxygenase-2
CYP2B6 Cytochrome P450 2B6
CYP3A4 Cytochrome P450 3A4
DISC Death-inducing signaling complex
DNMT DNA methyltransferase
DR Death receptor
EGFR Epidermal growth factor receptor
ERK Extracellular signal-regulated kinase
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FADD Fas-associated death domain
FOXO3a Forkhead box class O 3a
GSK-3β Glycogen synthase kinase 3 beta
HDAC Histone deacetylase
IKK I kappa B kinase
JNK Jun N-terminal kinase
LPS Lipopolysaccharide
MAPK Mitogen-activated protein kinase
mTOR Mechanistic target of rapamycin
NAG-1 (NSAID) activated gene-1
NF-κB Nuclear factor-kappa B
PARP Poly ADP-ribose polymerase
PI3K Phosphoinositide 3-kinase
PKC Protein kinase C
ROS Reactive oxygen species
SAR Structure–activity relationship
TLR4 Toll-like receptor 4
TNFR1 Tumor necrosis factor receptor 1
TNF-α Tumor necrosis factor-α
TRADD TNFR1-associated death domain protein
ULK1 Unc-51 Like Autophagy Activating Kinase 1
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