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Abstract

Background: P-glycoprotein is responsible for the ATP-dependent export of certain structurally
unrelated compounds including many chemotherapeutic drugs. Amplification of P-glycoprotein
activity can result in multi-drug resistance and is a common cause of chemotherapy treatment
failure. Therefore, there is an ongoing search for inhibitors of P-glycoprotein. Observations that
cyclosporin A, and certain other substances, inhibit both the proteasome and P-glycoprotein led us
to investigate whether anthracyclines, well known substrates of P-gp, also inhibit the function of
the proteasome.

Methods: Proteasome function was measured in cell lysates from ECV304 cells incubated with
different doses of verapamil, doxorubicin, daunorubicin, idarubicin, epirubicin, topotecan,
mitomycin C, and gemcitabine using a fluorogenic peptide assay. Proteasome function in living cells
was monitored using ECV304 cells stably transfected with the gene for an ubiquitin/green
fluorescent protein fusion protein. The ability of the proteasome inhibitor MG-132 to affect P-
glycoprotein function was monitored by fluorescence due to accumulation of daunorubicin in P-
glycoprotein overexpressing KB 8-5 cells.

Results: Verapamil, daunorubicin, doxorubicin, idarubicin, and epirubicin inhibited 26S
chymotrypsin-like function in ECV304 extracts in a dose-dependent fashion. With the exception of
daunorubicin, 20S proteasome function was also suppressed. The proteasome inhibitor MG-132
caused a dose-dependent accumulation of daunorubicin in KB 8-5 cells that overexpress P-
glycoprotein, suggesting that it blocked P-glycoprotein function.

Conclusion: Our data indicate that anthracyclines inhibit the 26S proteasome as well as P-
glycoprotein. Use of inhibitors of either pathway in cancer therapy should take this into
consideration and perhaps use it to advantage, for example during chemosensitization by
proteasome inhibitors.

Background that codes for an ATP-dependent, transmembrane P-glyc-
Multi-drug-resistance (MDR) is a common reason for  oprotein (P-gp) efflux pump pathway, which rapidly
chemotherapy treatment failure in breast cancer, leuke-  exports man structurally un-related drugs from the cell,

mia, and non-Hodgkin lymphoma patients. MDR can  including anthracyclines [1,2].
often be attributed to over-expression of the mdrl gene
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Numerous pre-clinical and clinical studies using P-gp
modulating compounds like verapamil, cyclosporin A,
reserpine, staurosporine, propafenone, phenoxazine,
chloroquine, phenothiazine and their derivates have been
undertaken to overcome MDR and several substances
have been identified that are effective in vitro (reviewed in
[3])- However, to revert MDR in vivo, most MDR-modulat-
ing drugs require serum concentrations that have unac-
ceptable toxicity and therefore they are currently not used
in standard chemotherapy regimens. The development of
better, less toxic inhibitors might be aided by insights into
the specificity of these inhibitors for other molecules and
the spectrum of molecules bound by P-glycoprotein.

Two of the most commonly used MDR-modulating sub-
stances are verapamil and cyclosporin A (CsA), or their
derivates. Interestingly, CsA has recently been identified
as an inhibitor of the 26S proteasome [4]. The 26S protea-
some is a highly conserved multicatalytic protease respon-
sible for ATP- and ubiquitin-dependent degradation of all
short-lived and 70-90% of all long lived proteins includ-
ing cyclin A, B and E, p21 and p27, p53, cJun, cFos, and
IkB. As such, the 26S proteasome controls cell cycle, signal
transduction pathways, apoptosis and major functions of
the immune system. Indeed some of the immunosuppres-
sive properties of CsA, such as decreases in the expression
of MHC-I molecules on the surface of target cells [5] and
apoptotic death of lymphocytes through inhibition of the
transcription factor NF-xB [6], may be due to its inhibi-
tory effect on proteasome function. Vinblastine, a known
P-gp substrate has also been shown to inhibit proteasome
activity [7]. And, remarkably, the HIV protease inhibitor
ritonavir was identified as an inhibitor of P-gp [8] and the
proteasome [9]. Since CsA and ritonavir have been shown
to inhibit both proteasome and P-gp activities, we ques-
tioned whether there was cross specificity between P-gp
and proteasome activities. Cross specificity might explain
effects of P-gp inhibitors on multiple cellular parameters
that seem extrinsic to a pumping function of P-gp.
Insights into substrate cross specificity of P-gp could offer
a basis for the development of more selective P-gp inhib-
itors. They could also indicate reasons for the toxicity of
these inhibitors, and why they affect cellular functions
other than those related to P-gp.

Using an in vitro model, we show that anthracyclines and
verapamil both inhibit proteasome function. Addition-
ally, we demonstrate that the proteasome inhibitor MG-
132 inhibits P-gp function, thereby increasing the uptake
of doxorubicin in the cytoplasm and the nucleus.

Methods
Cell culture
KB 8.5 human epitheloid carcinoma cells that overexpress
P-gp were a generous gift from Dr. Peter Hafkemeyer
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(University Clinic Freiburg, Germany). Every 21 days P-
gp-positive KB 8.5 cells were selected by addition of colch-
icine (10 ng/ml, Sigma). 24 hours before drug treatment
cells were plated into 6-well plates (Costar) at a density of
106 cells/well.

EVC 304 human bladder carcinoma cells and PC-3 pros-
tate cancer cells were obtained from the German Microor-
ganism and Tissue Culture Collection (German collection
of microorganism and cell cultures, DSMZ, Braunsch-
weig). Cells were grown in 75 cm? flasks (Falcon) at 37°C
in a humidified atmosphere at 5 % CO, in DMEM
medium (Sigma) supplemented with 10 % heat inacti-
vated FCS (Sigma) and 1 % penicillin/streptomycin
(Gibco BRL).

Drug treatment

Stock solutions of all cytotoxic drugs were obtained from
the hospital pharmacy of the University Clinic Freiburg.
MG-132 (Calbiochem) was dissolved at 10 mM in DMSO
and stored as small aliquots (10-30 pl) at -20°C. In drug
accumulation assays doxorubincin (10 uM), daunoru-
bicin (2-16 uM) or MG-132 (0.5-50 uM, 0.5% DMSO)
were added to cells at the indicated times. Control cells
were subjected to DMSO treatment alone (0.5 %).

Proteasome function assays

20S and 26S proteasome function was measured as
described previously (20). Briefly, cells were washed with
PBS, then with buffer I (50 mM Tris, pH 7.4, 2 mM DTT,
5 mM MgCl,, 2 mM ATP), and pelleted by centrifugation.
Glass beads and homogenization buffer (50 mM Tris, pH
7.4, 1 mM DTT, 5 mM MgCl,, 2 mM ATP, 250 mM
sucrose) were added and vortexed for 1 minute. Beads and
cell debris were removed by centrifugation at 1,000 x g for
5 minutes and 10,000 x g for 20 minutes. Protein concen-
tration was determined by the BCA protocol (Pierce). One
hundred g protein of each sample was diluted with
buffer I to a final volume of 1000 pl and the fluorogenic
proteasome substrate SucLLVY-7-amido-4-methylcou-
marin (chymotrypsin-like, Sigma) was added in a final
concentration of 80 UM in 1% DMSO. To access 20S func-
tion, buffer I was replaced by an ATP-free buffer contain-
ing SDS (20 mM HEPES, pH 7.8; 0.5 mM EDTA, 0.03%
SDS) [10]. Cleavage activity was monitored continuously
by detection of free 7-amido-4-methylcoumarin using a
fluorescence plate reader (Gemini, Molecular Devices) at
380/460 nm and 37°C. As controls for drug studies, 7-
amido-4-methylcoumarin (AMC, 2 uM) was incubated
with drugs in buffer I without cell extracts and measure-
ments of proteasome function were corrected when
necessary.
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Drug accumulation assay

Total cellular daunorubicin content and accumulation of
doxorubicin in the cytoplasm and nucleus were deter-
mined as described elsewhere [11] with some minor mod-
ifications. Growth medium on cells was replaced by PBS
for 40 minutes at 37°C. This was replaced by fresh PBS
containing daunorubicin or doxorubicin and MG-132 or
anthracyclines alone. In some experiments, cells were
washed with PBS after daunorubicin treatment and incu-
bated in PBS containing MG-132 for an additional 40
minutes at 37°C. After drug treatment, the cells were
washed twice with PBS, re-suspended in either 4 ml lysis
buffer (0.3 M sucrose, 0.05 mM EGTA pH 8.0, 60 mM
KCl, 15 mM NaCl, 15 mM HEPES pH 7.5, 150 uM sper-
mine, 50 UM spermidine) containing 20 ul triton X-100
for nuclear isolation or 400 pl of 50% ethanol in 1 M HCI
(v/v) for whole cell lysis. For the latter, cells were vortexed
and diluted with water to a final volume of 1.4 ml. The
cells in lysis buffer were mixed and left on ice for 15 min-
utes before centrifuging. The nuclei (pellet) were then vor-
texed with 400 ul HCl/isopropanol. Fluorescence derived
from daunorubicin or doxorubicin was measured in
quadruplicates of 200 pl using a fluorescence plate reader
(Gemini, Molecular Devices) at 480/575 nm.

Transfection

ECV304 cells were plated at a density of 250.000 cells/
well into six-well plates twelve hours before transfection.
Cells were transfected with 5 ug of a plasmid (pEGFP-N1,
Clontech) coding for an ubiquitin (Ub)-R-GFP fusion
protein under control of a CMV promoter [12] (a kind gift
from Dr. M. Masucci, Karolinska Institute, Sweden) using
the Superfect transfection kit (Qiagen) and following the
manufacturer's instructions. Transfected cells were main-
tained in DMEM (10 % FSC, 1 % penicillin/streptomycin)
supplemented with 500 pg/ml G418 (Sigma) and clones
were obtained. Expression of Ub-R-GFP was analyzed by
flow cytometry (FL1-H, FACSCalibur, Becton Dickinson)
using CellQuest Software before and after treatment with
the proteasome inhibitor MG-132 (50 uM) for 10 hours
at 37°C. Clone #10 (ECV304/10), which showed low
background and high MG-132-induced expression of Ub-
R-GFP, was used for inhibition experiments.

Statistics

Experimental data are presented as mean =+ standard error
of the mean from at least three independent experiments.
A p-value <0.05 in a two-sided student's t-test was consid-
ered as 'statistically significant'.

Results

Verapamil is an inhibitor of 20S and 26S proteasome
function

In order to test the hypothesis that the P-gp inhibitor ver-
apamil inhibits proteasome function, proteasome extracts
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Verapamil is an inhibitor of 26S proteasome function. Incubation
of crude extracts of ECV304 cells containing proteasomes
with different doses of verapamil (50, 60, 80, 100, 200 uM)
inhibited proteolysis of the chymotrypsin-like substrate
SucLLVY-AMC in a dose-dependent manner, indicating inhi-
bition of 26S proteasome function.

of ECV304 and PC-3 cells were incubated with different
concentrations of the drug (0, 50, 100 and 200 uM) and
immediately tested for their chymotrypsin-like activity
against the fluorogenic substrate SucLLVY-7-amido-4-
methylcoumarin. There was a dose-dependent inhibition
of MG-132-sensitive 26S (Fig. 1A) and 20S (data not
shown) proteasome function, consistent with a direct
inhibitory effect of verapamil on the proteasome.

Anthracyclines inhibit 20S and 26S proteasome function in
a dose-dependent manner

Since verapamil, vinblastine, and CsA have been found to
inhibit 20S and 26S proteasome function and vinblastine
and CsA serve as substrates of P-gp [3], we asked if anthra-
cyclines in general have an inhibitory effect on this pro-
tease. When crude extracts of ECV304 cells were incubated
with different doses (0 - 100 uM) of the anthracyclines
doxorubicin, daunorubicin, idarubicin and epirubicin we
observed dose-dependent inhibition of 26S proteasome
function with IC., values of 65.5 uM for doxorubicin,
13.7 uM for daunorubicin, 38.6 uM for idarubicin and
29.2 uM for epirubicin (Table 1). Topotecan, mitomycin
C, and gemcitabine had no measurable effect on 26S pro-
teasome function (data not shown). 20S proteasome
function was inhibited by doxorubicin (ICg, 5.8 uM), ida-
rubicin (ICsy 92 uM), epirubicin (ICs, 12.5 uM) but not
by daunorubicin (Table 2).
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Table I: Chymotryptic 26S Proteasome Activity in Lysates from ECV 304 Cells

http://www.biomedcentral.com/1471-2407/5/114

uM Doxorubincin Daunorubicin Epirubicin Idarubicin
0 | | | |
6.25 0.92 + 0.03* 0.85 + 0.05* 0.79 £ 0.1 ns. 0.97 + 0.03 n.s.
12.5 0.84 + 0.05* 0.53 +0.11* 0.57 £ 0.31 nss. 0.96 + 0.02 n.s.
25 0.72 £ 0.04** 0.22 + 0.09** 0.59 £ 0.14* 0.79 £ 0.12 nss.
50 0.59 + 0.1* 0.12 + 0.06** 0.36 + 0.2* 0.28 + 0.09 **
100 0.36 + 0.03*#+* 0.11 + 0.06** 0.27 £ 0.17* 0.1 £ 0.06 **
n.s. not significant, *p < 0.05, *p < 0.01, ***p < 0.00| (two-sided student's t-test)
Table 2: Chymotryptic 20S Proteasome Activity in Lysates from ECV 304 Cells
uM Doxorubincin Daunorubicin Epirubicin Idarubicin
0 | | | |
6.25 049 £ 0.1* 0.62 +0.19 nss. 0.71 £0.21 ns. 0.67 + 0.07*
12.5 0.28 + 0.09+* 0.64 + 0.07 ns. 0.46 £ 0.2 ns. 0.67 + 0.08*
25 0.28 £ 0.13* 0.81 + 0.05 ns. 0.37 + 0.08*+* 0.69 + 0.05**
50 0.24 + 0.06** 0.95 + 0.04 ns. 0.33 + 0.07+* 0.67 + 0.05 **
100 0.25 £ 0.07** 1.05 £ 0.1 n.s. 0.35 £ 0.07** 049 £ 0.11*

n.s. not significant, *p < 0.05, **p < 0.01, **p < 0.001 (two-sided student's t-test)

In order to demonstrate if this inhibition could be
observed in living cells, we incubated ECV304/10 cells,
stably transfected with an expression plasmid for an Ub-
GFP fusion protein with doxorubicin (100 uM) for 12
hours. When analyzed by fluorescence microscopy, the
cells showed perinuclear accumulation of doxorubicin
while GFP accumulated throughout the cytoplasm, indi-
cating inhibition of proteasome function (Fig. 2).

MG-132 treatment reverts multi-drug-resistance in P-gp
expressing KB 8-5 cells

The human epitheloid carcinoma cell line KB 8-5 is a well-
characterized tumor cell line that over-expresses mdr-1
with associated MDR. Preliminary experiments showed
that treatment of KB 8.5 cells with the reversible proteas-
ome inhibitor MG-132 (3.125 to 50 uM) induced apopto-
sis within 24 hours. This is in accord with numerous
studies reporting induction of apoptosis in cancer cells by
proteasome inhibitors [13], and indicated that MG-132
enters KB 8-5 cells and that they are not abnormally resist-
ant to its effects based on enhanced P-gp function. After
45 minutes of incubation with MG-132 (50 uM), no mor-
phological signs of toxicity were observed. KB 8-5 cells
treated with different doses of MG-132 and daunorubicin
(10 uM) for 45 minutes showed increased, dose-depend-
ent accumulation of daunorubicin in the cytoplasm (e.g.

a 4-fold increase at 50 uM MG-132, Fig. 3) indicating that
MG-132 could block P-gp function. This was further sup-
ported by the observation that incubation of ECV304 cell
with MG-132 (25 uM) caused an increased uptake of dox-
orubicin in the cytoplasm and in the nuclear fraction of
the cells (Fig. 4).

Discussion

The observations that CsA [4] and vinblastine [7] have
inhibitory effects on the cleavage activity of the 26S pro-
teasome led us investigate the effects of anthracycline anti-
cancer agents and verapamil on the activity of this
protease. Verapamil caused a concentration-dependent
inhibition of 20S and 26S function. Additionally, we
found a concentration-dependent inhibition of 26S pro-
teasome function for all four anthracyclines tested. Com-
parable results showing doxorubicin to be a non-
competitive inhibitor of the proteasome have been
reported previously [14]. With the exception of daunoru-
bicin, anthracyclines also inhibited 20S chymotryptic
function in a dose-dependent manner. It is known that
doxorubicin is co-transported into the nucleus along with
proteasomes [15,16] but our observation of a general
direct inhibitory effect of anthracycline anticancer agents
on the proteasome sheds a totally new light on the actions
of these drugs.
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Figure 2

Anthracyclines are inhibitors of proteasome function. Incubation
of ECV304 cells stably transfected with an Ub-GFP fusion
protein with daunorubicin (100 uM, 16 h), caused accumula-
tion of GFP throughout the cytoplasm (lower picture), indi-
cating proteasome inhibition in living cells while untreated
controls cells showed only little accumulation of GFP (A/B).
Daunorubicin accumulated in the perinuclear region (C).

The inhibitory effects of the reversible inhibitor of the
proteasome, MG-132, on P-glycoprotein function, sup-
ports the view that P-glycoprotein and the proteasome can
both be targeted by this new class of chemotherapeutic
drugs. This was further supported by the observation that
verapamil, another established inhibitor of P-gp, inhib-
ited the chymotryptic 20S and 26S function of the protea-
some. The fact that both P-glycoprotein and proteasome
activities can both be regulated by pro-inflammatory
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Figure 3

MG-132 treatment of KB 8-5 causes intracellular accumulation of
anthracyclines. Incubation of KB 8-5 cells, which overexpress
P-gp, with increasing doses of MG-132 (0, 6.25, 12.5, 25, 50
UM) caused a dose-dependent accumulation of daunorubicin,
as measured by fluorescence, indicating inhibition of P-gp
function by this proteasome inhibitor.
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Figure 4

Accumulation of doxorubicin in the presence or absence of
MG-132 (25 uM) in the cytoplasm and the nuclear fraction of
ECV304 cells.

cytokines and oxidative stress suggests [17-21] that studies
on co-ordinate regulation of these activities might be
illuminating.

These findings lead to interesting possibilities with respect
to the possible use of proteasome inhibitors, which are
just entering their first clinical trials [22,23], in combina-
tion therapy, as well as to the mechanism of action and
toxicity of P-gp inhibitors. Using an in vitro system, we
showed that the proteasome inhibitor MG-132 caused
intracellular accumulation of anthracyclines, indicating
inhibition of P-gp function. Proteasome inhibitors may
interfere with drug-resistance at additional levels as P-gp
and also topisomerase II are degraded in a proteasome-
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dependent manner and degradation is blocked by protea-
some inhibitors [24,25]. However, given the long half-life
of P-gp of 14-24 hours [26], the effects observed in our
study after short-time incubation of the cells with MG-132
are probably not caused by an increased degradation of P-
gp. The extent of the increase of anthracyclin accumula-
tion in mdrl-overexpressing KB-8.5 treated with 25 uM
concentrations of MG-132 cells in our study was compa-
rable to the effect of verapamil at 50 UM [27]. Future stud-
ies have to clarify if similar effects can be obtained using
clinically used proteasome inhibitors at concentrations
typically reached in the serum of patients.

Tumor cells in general exhibit altered patterns of expres-
sion of proteasome subunits and their distribution
between cytoplasm and nucleus often differs from normal
cells [28-30]. This may explain why specific proteasome
inhibitors like PS-341 are usually clinically well tolerated.
Inhibition of proteasome function induces apoptosis of
tumor cells [31-34] and sensitizes the surviving tumor
cells to the actions of both chemotherapy [35] and radia-
tion therapy [36,37]. Therefore, proteasome inhibitors
might overcome P-gp-related MDR, with accompanying
chemo- and radiosensitizing effects. Also, since tumor
microvasculature expresses high levels of mdr-1 [38,39],
the possibility exists that the neovasculature is a target for
these drugs in vivo. On the other hand, direct inhibition
of proteasome function might be an additional major
mechanism of action for anthracyclines. Such inhibition
could contribute to their ability to enhance the efficacy of
other chemotherapeutic drugs, independent of their abil-
ity to reverse MDR.
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