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ABSTRACT

Motivation: RNA-seq has become the method of choice to quantify

genes and exons, discover novel transcripts and detect fusion genes.

However, reliable variant identification from RNA-seq data remains

challenging because of the complexities of the transcriptome, the

challenges of accurately mapping exon boundary spanning reads

and the bias introduced during the sequencing library preparation.

Method: We developed RVboost, a novel method specific for RNA

variant prioritization. RVboost uses several attributes unique in the

process of RNA library preparation, sequencing and RNA-seq data

analyses. It uses a boosting method to train a model of ‘good quality’

variants using common variants from HapMap, and prioritizes and

calls the RNA variants based on the trained model. We packaged

RVboost in a comprehensive workflow, which integrates tools of vari-

ant calling, annotation and filtering.

Results: RVboost consistently outperforms the variant quality score

recalibration from the Genome Analysis Tool Kit and the RNA-seq

variant-calling pipeline SNPiR in 12 RNA-seq samples using ground-

truth variants from paired exome sequencing data. Several RNA-

seq–specific attributes were identified as critical to differentiate true

and false variants, including the distance of the variant positions to

exon boundaries, and the percent of the reads supporting the variant

in the first six base pairs. The latter identifies false variants introduced

by the random hexamer priming during the library construction.

Availability and implementation: The RVboost package is imple-

mented to readily run in Mac or Linux environments. The software

and user manual are available at http://bioinformaticstools.mayo.

edu/research/rvboost/.

Supplementary information: Supplementary data are available at

Bioinformatics online.
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1 INTRODUCTION

RNA-seq has become popular with the decreasing cost and its

potential to quantify exon/transcript levels over a large dynamic

range, discover novel transcripts, identify various splicing

mechanisms and detect fusion genes (Costa et al., 2013)

(Asmann et al., 2011). However, while the variant identification

from DNA sequencing is becoming a routine practice, the vari-

ant detection from RNA-seq remains challenging because of the

complexity of the transcriptome, the ambiguities in mapping

exon boundary spanning reads and the artifacts introduced in

RNA-seq library protocols (Piskol et al., 2013a). Because

expressed genetic variants have more immediate impact on the

protein function compared with the DNA variants, we were

motivated to develop a reliable RNA-seq variant prioritization

method.

In general, variant detection from massive parallel sequencing

data involves two steps. First is variant calling, which outputs

all positions with any evidence of alternative alleles compared

with reference. An essential next step is variant prioritization and

filtering to obtain reliable variants of high confidence. For DNA

sequencing data, the most widely used variant prioritization

method is a mixture model-based classifier, variant quality

score recalibration (VQSR), within the Genome Analysis

Toolkit (GATK) (DePristo et al., 2011). VQSR integrates

multiple attributes/annotations of the variants, all of which

are based on features of sequencing, including the depth of

coverage, strand bias, mapping qualities and variant position

bias toward the end of the reads. VQSR uses variants reported

in HapMap as the training source to calculate a filtering

criterion, and then predicts true ‘novel’ variants. Another

method SNPiR proposes a series of arbitrary hard thresholds

to filter and reduce the number of false variants (Piskol et al.,

2013b).
After careful examination of the RNA-seq variant detection

process, we proposed to include RNA-specific attributes/anno-

tations for the variant prioritization model in addition to the

features included in GATK. Furthermore, we observed that

the Gaussian mixture model and the parameter selection used

in VQSR are not ideal for modeling these features and proposed

to use a boosting method that uses generalized linear models as

its base learners. This method, called the RNA Variant Boosting

(RVboost), is a ranking machine to (a) train a model based on

common variants in HapMap and (b) rank the variants

accordingly.
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We implemented a comprehensive workflow using the frame-
work of GATK that incorporates RVboost to facilitate reliable
RNA-seq variant prioritization (Fig. 1). This workflow outputs

called variants with detailed annotations in both the standard
variant calling format (VCF) and the tab-delimited text format.
We have shown that RVboost outperforms VQSR in 12 RNA-

seq samples with paired exome sequencing data. We also intro-
duced a key concept of ‘train-set quantile score’, or the train-Q
score, to help users determine their preferred precision/recall

trade-off.

2 FEATURES

2.1 Attributes selection

After testing, six attributes were included in RVboost. We kept
three attributes fromGATK’s Unified Genotyper, which are rou-
tinely used in VQSR: (i) Quality score over depth, (quality by

depth, QD); (ii) Positional bias (ReadPosRankSum); and (iii)
Fisher’s exact test-based Strand bias (FS). In addition, we added
three novel attributes that are specific and unique forRNA-seq: (i)

the percent of variant-supporting reads with variant positions in
the first six bases of the reads (PctExtPos). This is to model the
false variants introduced during the random hexamer priming of

the cDNA synthesis step during the RNA-seq library protocol.
The mismatches allowed between the hexamer primers and the
RNA templates resulted in substantial amount of false variants

(Fig. 1 of the Supplementary Material); (ii) distance to the exon–
intron boundary (DJ); and (iii) the uniqueness of the read map-

ping in the genome and transcriptome (ED). More details are
available in Supplementary Section 1.1.

2.2 Input, output and major modules

RVboost takes an aligned RNA-seq BAM file [e.g. the BAM file
generated by TopHat (Trapnell et al., 2009)] and processes it
through three major components (Fig. 1): (i) Unified

Genotyper from GATK for raw variant calling in the target
region and generation of the annotations including all GATK

classic annotations and the three novel attributes described
above in Section 2.1; (ii) annotation of each variant with

additional attributes, including all functional annotations from

SnpEff (Cingolani et al., 2012), and whether the variant position

is a known RNA-editing site according to a RNA-editing data-

base (Ramaswami and Li, 2014); (iii) Variant prioritization and

ranking using RVboost. This module includes two components:

a novel boosting method to train the variant classifying model

using high-confidence variants (e.g. common variants in

HapMap as GATK recommended); and ranking of the likely

true variants using a confidence score (details in the method

section below). The output is a VCF file of all variants, with

full annotations. Users can also generate a text file with selected

attributes.

2.3 Description of the variant prioritization methods

With the selection of six attributes, we formulated the variant

prioritization as a ranking problem where only likely true vari-

ants (e.g. common variants from HapMap) are used for model

training. We describe it as a mathematical process to find a good

F(.), which outputs ranking score y from data X with minimum

error defined by a loss function L(.):

FoptðXÞ=arg min
Fð�Þ

Lðy;FðXÞÞ; ð1Þ

where elements of y is 1 or 0 to indicate likely true or false variants,

respectively, X is a variant by attribute matrix used to rank true

variants and ‘arg min’ stands for the argument of the minimum

error of the loss function. Different from mixture model-based

VQSR, in which the construction of F(.) requires explicitly

the number of Gaussian kernels and the percent of worst variants

that are used as negative sets, we proposed to use a more

flexible boosting method to rank variants. Boosting methods

construct such a function F(X) by additive combinations of

M ‘base’ learners h(X) (e.g. linear regression models)

FðXÞ=
XM

m=1
�mhðX; �mÞ, with corresponding combination

coefficients �m and parameters �m of m-th learner (Friedman,

2001; B €uhlmann andHothorn, 2007). By leveraging implemented

boosting methods in R package ‘gbm’, we chose three boosting

options for which response variable values range from 0 to 1:

‘adaboost’ with AdaBoost exponential loss function, ‘bernoulli’

with logistic regression loss function, and ‘huberized’ with mod-

ified Huber loss function (Ridgeway, 2005). It is often found that

these three distribution options lead to similar performance and

converge well before 20 000 iterations. Hence, we chose AdaBoost

model and 20 000 iterations as default settings for RVboost.

2.4 Expected recall rate and train-set quantile score

After training, the user needs to choose a prioritization score as

the threshold to call ‘true variants’. In practice, it is often difficult

to interpret a prioritization score derived from a complex

computational model and its implications for precision/recall

trade-off. To address this problem, we explicitly defined a mono-

tonic transformation independent of ranking methods, which

depends on training set of likely true variants

train-Q½j�=eCDFtrain-setðscore½j�Þ ð2Þ

where score[j] is score generated by method from high to low

indicating the likelihood of the j-th variant to be a true variant.Fig. 1. The overall workflow of RVboost
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eCDFtrain-setð�Þ is the empirical cumulative density function learnt
from the training dataset.
The train-Q score is intuitive to users, as it directly uses the

expected recall rate from the provided training dataset. For

example, a cutoff of the train-Q scores of 20% means that
using this cutoff, 80% of the variants within the training set
will be retained, i.e. we have a 80% expected recall. Through

our comparison studies, we suggest a moderate expected recall
rate, e.g. 90 or 95%, instead of an aggressive 99%, which is the
recommended default by VQSR.

2.5 Comparison studies

We compared specificity and sensitivity of RVboost to VQSR
(GATK version 1.6.9) and SNPiR (Piskol et al., 2013b), using
the concordance between RNA and DNA variants from eight

follicular lymphoma tumor samples and four replicates of
MCF-7 cell lines (details described in Supplementary Material
1.4). To make unbiased comparisons, we evaluated the recall/

precision on a subset of novel variants that (i) are not in the
positive training set and (ii) have at least 10-fold coverage in
both RNA-seq and exome-seq. We regarded the genotype calls

from exome-seq as the ground truth and computed precision/
recall accordingly, under the assumption that RNA-editing
sites are a small percentage of RNA-seq variants (Piskol et al.,
2013a).

Overall, RVboost consistently outperforms both VQSR and
SNPiR in all the tested samples in terms of AUC (Area Under
the Curve) of precision/recall curves, and demonstrates superior

precision in low train-Q score cutoffs, or equivalently, with high
expected recall rates (details in Supplementary Material 2.2). We
also investigated the contribution of individual attribute to dis-

tinguish true versus false variants, suggesting that the percent of
reads supporting the variants in the first six base pairs and QD
are the most informative features (details in Supplementary

Material 2.3).

3 CONCLUSIONS

We developed RVboost, a software package designed to reliably

prioritize and call variants from RNA-seq data. The output of

our workflow provides comprehensive annotations to facilitate

biological understanding. Variant prioritization is based on a

proposed boosting method, which not only outperforms two

other methods (SNPiR and VQSR) in overall performance, but

also provides great flexibility to users for adjusting of the preci-

sion/recall trade-off, and it is superior to ad hoc hard-threshold

approaches, such as SNPiR. The major modules are wrapped as

a comprehensive package.
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