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Abstract
is an obligate intracellular parasite belonging to the phylumToxoplasma gondii 

Apicomplexa that infects all warm-blooded animals, including humans. T.
 can replicate in every nucleated host cell by orchestrating metabolicgondii

interactions to derive crucial nutrients. In this review, we summarize the current
status of known metabolic interactions of  with its host cell and discussT. gondii 
open questions and promising experimental approaches that will allow further
dissection of the host–parasite interface and discovery of ways to efficiently
target both tachyzoite and bradyzoite forms of  , which are associatedT. gondii
with acute and chronic infection, respectively.

Keywords
Metabolism, intracellular parasite, metabolomics, bradyzoite

1 2

1

2

   Referee Status:

  Invited Referees

 version 1
published
30 Oct 2018

 1 2

, University ofVernon Carruthers

Michigan School of Medicine, USA
1

, University of KentuckyAnthony P Sinai

College of Medicine, USA
2

 30 Oct 2018,  (F1000 Faculty Rev):1719 (First published: 7
)https://doi.org/10.12688/f1000research.16021.1

 30 Oct 2018,  (F1000 Faculty Rev):1719 (Latest published: 7
)https://doi.org/10.12688/f1000research.16021.1

v1

Page 1 of 10

F1000Research 2018, 7(F1000 Faculty Rev):1719 Last updated: 30 OCT 2018

http://f1000research.com/collections/f1000-faculty-reviews/about-this-collection
http://f1000.com/prime/thefaculty
http://f1000.com/prime/thefaculty
https://f1000research.com/articles/7-1719/v1
https://f1000research.com/articles/7-1719/v1
https://doi.org/10.12688/f1000research.16021.1
https://doi.org/10.12688/f1000research.16021.1
http://crossmark.crossref.org/dialog/?doi=10.12688/f1000research.16021.1&domain=pdf&date_stamp=2018-10-30


 

 Martin Blume ( )Corresponding author: blumem@rki.de
  : Conceptualization, Validation, Writing – Original Draft Preparation, Writing – Review & Editing;  :Author roles: Blume M Seeber F

Conceptualization, Supervision, Visualization, Writing – Original Draft Preparation, Writing – Review & Editing
 No competing interests were disclosed.Competing interests:

 MB is funded by the Federal Ministry of Education and Research (BMBF) under project number 01KI1715 as part of theGrant information:
“Research Network Zoonotic Infectious Diseases”. FS is a senior member of the Research Training Group 2046 “Parasite Infections: From
Experimental Models to Natural Systems” and the International Research Training Group (IRTG) 2290 of the Alliance Berlin Canberra "Crossing
Boundaries: Molecular Interactions in Malaria", funded by the Deutsche Forschungsgemeinschaft (German Research Foundation) under project
numbers 251133687/GRK2046 and 2112830102/IRTG2290, respectively. Both authors are supported by the Robert Koch Institute. 
The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

 © 2018 Blume M and Seeber F. This is an open access article distributed under the terms of the Copyright: Creative Commons Attribution
, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Data associatedLicence

with the article are available under the terms of the   (CC0 1.0 Public domain dedication).Creative Commons Zero "No rights reserved" data waiver
 Blume M and Seeber F. How to cite this article: Metabolic interactions between  and its host [version 1; referees: 2Toxoplasma gondii

   2018,  (F1000 Faculty Rev):1719 ( )approved] F1000Research 7 https://doi.org/10.12688/f1000research.16021.1
 30 Oct 2018,  (F1000 Faculty Rev):1719 ( ) First published: 7 https://doi.org/10.12688/f1000research.16021.1

Page 2 of 10

F1000Research 2018, 7(F1000 Faculty Rev):1719 Last updated: 30 OCT 2018

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
https://doi.org/10.12688/f1000research.16021.1
https://doi.org/10.12688/f1000research.16021.1


Introduction
Toxoplasma gondii is an obligate intracellular parasite that  
infects all warm-blooded animals, including birds and humans, 
where it can replicate in all nucleated cells within a non-
fusogenic compartment termed the parasitophorous vacuole  
(PV). The fast-replicating tachyzoites cause the acute phase of  
the infection. However, in response to immune pressure, differ-
entiation into the slow-growing or quiescent bradyzoites, which 
is accompanied by the transformation of the PV membrane 
(PVM) into a cyst wall, marks the onset of the chronic phase. In  
general, T. gondii transmission to humans occurs via inges-
tion of tissue cysts contained in contaminated undercooked 
meat products. In addition, humans can be infected following  
exposure to oocysts shed by the definitive feline host via  
contaminated food or water. T. gondii infections are largely  
asymptomatic during both the acute and chronic phases, and 
the chronic stage persists for the life of the host. However, 
upon severe immunosuppression, rapid replication of T. gondii 
tachyzoites, derived from the reactivation of encysted 
bradyzoites, can cause severe symptoms such as encephalitis,  
which is potentially fatal. Additionally, primary infection  
during pregnancy is associated with serious consequences 
for newborns, ranging from blindness and deafness to mental  
retardation and stillbirth. However, as is the case with many 
other intracellular pathogens, the intruder is not unnoticed, as  
evidenced by transcriptomic and metabolomic disturbances  
within the host. The latter uses these cues to counteract the 
infection on biochemical as well as immunological levels (for  
review, see 1–3).

Both tachyzoites in PVs and bradyzoites in cysts integrate 
tightly with their host cells to ensure nutrient supply for optimal  
proliferation and persistence, which define the characteristics 
of the specific life cycle stage4–6. In this review, we will briefly  
outline recent findings of how T. gondii tachyzoites and 
bradyzoites interact with their host cells for the acquisition of  
essential nutrients. Recent progress in molecular genetics as 
well as biochemical and metabolomic methods has resulted in 
a better understanding of the competition for the shared pool of  
nutrients. In many respects, T. gondii exhibits metabolic traits 
similar to those of Plasmodium species, the causative agents of  
malaria, particularly with regard to the understudied hepatic  
stage. Therefore, insights from this pathogen’s metabolism can 
also instruct efforts to exploit metabolic dependencies as drug  
targets in more than one apicomplexan parasite.

Nutrient acquisition from the host cell: not only a 
transporter issue
T. gondii tachyzoites and bradyzoites replicate intracellularly 
and therefore need to acquire nutrients from their host cells. The  
parasite establishes a vacuole that is initially composed of 
host lipids but during its active invasion process excludes most  
host proteins7. The PVM is then heavily modified by parasite 
proteins that mediate protein export and the import of lipidic  
and polar metabolites. It has long been known that the PVM is  
freely permeable for molecules as large as 1,300 Da8, but only 
recently were two parasite proteins—GRA17 and GRA24— 
defined as the molecular constituents of this pore9. It is thought  

to be permissive for non-directional passive transport of small 
nutrients, such as vitamins, sugars, amino acids, nucleobases, 
nucleosides, and nucleotides. It provides a putative mechanism 
for the export of catabolites, such as lactic acid and, to a lesser  
extent, alanine and bicarbonate10. Besides this pore, an intra-
vacuolar membranous tubulo-vesicular network (membranous  
tubules and vesicles that are bridging the PVM with the  
parasite11) has been shown to be involved in the uptake of host  
proteins and lipids12–14. Whether other host metabolites can enter 
the PV via this route and likewise whether it is used on the  
other hand by the parasite as a “waste pipe” are unknown.

Most polar metabolites are imported through a range of trans-
porters in both the PVM and the parasite’s plasma membrane.  
To date, a small subset has been functionally character-
ized; hence, there likely exists a larger interaction surface and  
undiscovered redundancy. Strikingly, however, there are lower 
numbers of computationally annotated transporter families 
in the genomes of parasitic protozoa15 when comparing both  
intracellular and extracellular living parasites with unicellu-
lar free living organisms (Figure 1). This is despite the need to 
scavenge as many nutrients as possible from the environment.  
Explanations for these lower numbers could include a broader 
substrate specificity of individual transporters combined with a  
minimal need for diversification due to host niches with  
complex but predictable compositions. Several recent studies  
have started to shed light on the importance of transporter  
families and channels for parasite survival. Consequently, these 
molecular entities constitute potential drug targets, some of  
which are currently being exploited16.

Ingredients to make a tachyzoite
Global genome-based models of T. gondii metabolism can  
provide an estimated minimal set of required nutrients. These 
flux balance models (FBMs) use gene annotations to predict 
the presence of metabolic pathways and use estimated parasite  
biomass composition and ATP consumption rates to model cor-
responding fluxes. To date, two FBMs of T. gondii metabolism  
have been generated and published: iCS38217 and ToxoNet118. 
The recent, more comprehensive study by Tymoshenko et al.  
resulted in a proposed minimal set of required nutrients for 
tachyzoite growth that are illustrated in Figure 218. It should 
be emphasized that validation of nutrient dependencies is no 
easy feat for intracellular parasites, as they are in constant  
competition with the host and no apicomplexan parasite has 
yet been reported to replicate indefinitely in axenic media.  
In addition nutrients are conditionally dependent on the  
presence of other nutrients and environmental conditions.

In accordance with ToxoNet1 predictions, tachyzoite growth 
depends on successful competition for a number of co-factors 
and vitamins with the host cell. These small molecules fulfill vital  
metabolic functions in the parasite (Figure 2). We linked these 
nutrient-dependent pathways with the set of essential metabolic 
pathways as identified through FBM modelling18 and assigned 
the respective “phenotype scores” of the genome-wide CRISPR  
(clustered regularly interspaced short palindromic repeats) 
screen of Sidik et al.19 to the respective enzymes (Table S1). As  
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Figure 1. Quantitative comparison of computationally annotated transporters between parasitic and non-parasitic unicellular 
organisms. Data were extracted from TransportDB 2.020. Dark-colored bars represent the numbers of different transporter families per 
given genome, whereas the light-colored bars give the percentage of all predicted transporter proteins per entirety of open reading frames 
(ORFs). Green indicates parasitic organisms and black indicates free-living organisms. *Data are from 15 since Toxoplasma gondii is absent 
in the current release of TransportDB 2.0. The inlet provides the mean ± standard deviation of the number of families of both groups. For 
comparison, intracellular bacteria (red) and humans (blue) are also shown.

expected, these pathways contain mostly essential genes with 
exceptions such as putative phosphatidylinositol synthetase, 
NAD+ synthetase, and a sphingolipid desaturase, a loss of which  
do not cause signifcant fitness penalties 19. This may indicate 
that T. gondii is able to scavenge products of these enzymes in  
some form; it might also reflect incorrect gene annotations or  
insufficient time elapsed between gene knockout and expression  
of a fitness defect in those experiments19.

The major carbon sources of T. gondii are glucose and  
glutamine21. In addition, the parasite can use exogenous acetate  
to elongate fatty acids if available10,22.

Amino acid auxotrophies of T. gondii tachyzoites have been 
a long recurring subject of research but, to our knowledge, 
have not been systematically and comprehensively tested. 
As is true for many unicellular pathogens, T. gondii requires  
exogenous tryptophan23,24. It is also auxotroph for arginine25 
and tyrosine26. Besides glutamine, a range of amino acids are  
imported, as shown recently by gas chromatography–coupled  

mass spectrometry (GC/MS). These include alanine, valine,  
leucine, isoleucine, proline, glycine, serine, threonine, methio-
nine, and tyrosine24,27. Phenylalanine import28 was observed by 
using Raman spectroscopy. Complementarily, T. gondii has been  
shown to be able to synthesize alanine, glutamine, and aspartate 
by stable isotope-resolved GC/MS10. Recently, several amino 
acid transporters have been identified as part of a transporter  
family that appears to be specific to apicomplexans24. Arginine 
and tyrosine transport activity has been assigned to T. gondii  
apicomplexan amino acid transporter 1 and 5-3 (TgApiAT1 and 
TgApiAT5-3), respectively24,27,29. Other amino acids such as  
histidine, lysine, branched-chain amino acids, and cysteine or 
methionine have been considered to be essential18 but this remains 
to be experimentally verified.

In addition to proteinogenic amino acids, T. gondii  
tachyzoites are thought to rely on uptake of ornithine and  
spermine to reverse-synthesize polyamines30. The metabolic 
roles that are fulfilled by these compounds in T. gondii are  
still ill defined30,31.
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Figure 2. Currently known or predicted dependencies of Toxoplasma gondii tachyzoites on host cell–derived metabolites. Based 
on data from 4,18. Two T. gondii tachyzoites within a parasitophorous vacuole (light blue) are shown within a fibroblast host cell (gray). Red 
arrowheads indicate uptake of compounds that can be synthesized by mammalian cells, whereas brown arrowheads mark uptake of those 
substances for which both organisms are auxotrophic and thus they compete. Metabolites in black are scavenged when available but are not 
strictly essential whereas the pathways they are involved in are. Blue arrowheads denote the end products for which the imported metabolites 
are precursors or essential co-factors (or both) for their synthesis. Lipoic acid (pink) is special since it is synthesized in one compartment 
of the parasite (apicoplast) but apparently unable to reach another organelle (mitochondrion) where it is also required; thus, it has to be 
scavenged from the host32. 1L-Arg; L-Trp; L-His; L-Lys (or L-2-aminoadipate 6-semialdehyde); L-Ile (or (S)-3-methyl-2-oxopentanoate); L-Val 
(or 3-methyl-2-oxobutanoate); L-Leu (or 4-methyl-2-oxo-pentanoate); L-Phe (or phenylpyruvate). 2Nicotinate or nicotinate-D-ribonucleoside or 
nicotinamide. 3Putrescine, spermine, ornithine. 4D-fructose or D-glucosamine or D-glucose or D-mannose or D-ribose or D-sorbitol or 2-Deoxy-
D-ribose. 5Adenine or adenosine or guanine or guanosine or inosine or hypoxanthine or xanthine. 6Phosphatidylserine, phosphatidylcholine, 
phosphatidylethanolamine, phosphatidic acid. 7Uracil, uridine, cytidine, deoxyuridine, deoxycytidine.

Besides amino acids, purines are a major nutrient for T. gondii 
and required for nucleic acid synthesis (reviewed in 33). As a  
purine auxotroph, T. gondii imports purines in various forms  
through three transporters. TgAT1 is a low-affinity nucleoside  
transporter for adenosine and inosine34. Furthermore, the  
existence of two uncloned transporters has been postulated by  
detailed radiolabeling experiments. TgNBT1 is a high-affinity 
purine base transporter that accepts hypoxanthine, xanthine, and 
guanine as substrates. TgAT2 is a broad-spectrum nucleoside  
transporter35.

T. gondii imports a number of vitamins that are needed as  
co-factors for essential enzymes.

Biotin is a co-factor for several carboxylase reactions, includ-
ing the acetyl-CoA carboxylase (ACCase), which is essential for  
de novo fatty acid synthesis in the apicoplast (FAS2), a relict  
plastid19,36,37 (Table S1). Biotin was not mentioned as an essen-
tial co-factor in previous lists, but T. gondii appears to lack the 
canonical biotin synthesis pathway38. It is readily taken up through 
the host cell as indicated by its use for tagging proteins via a  
promiscuous ubiquitin ligase BirA39. The qualification of biotin 
as an essential vitamin for T. gondii is supported by recent data  
showing that a biotin ligase of Plasmodium falciparum, responsi-
ble for post-translational modification of its ACCase, is required 
for the development of liver stages40. Accordingly, we added 

the respective homolog of T. gondii to the list of essential genes  
in Table S1.

Folates take part in the synthesis of pyrimidines and amino 
acids and presumably are taken up through the putative TgBT1  
transporter41 and are also synthesized (reviewed in 33).

Thiamine is a co-factor for transketolases and dehydrogenases 
that act on pyruvate, alpha-ketoglutarate, and branched-chain 
keto amino acids42. To date, there is no biochemical evidence of  
thiamine uptake. Interestingly, T. gondii (M. Blume, unpublished 
data) and the related apicomplexan P. falciparum43 are sensitive 
to the analog oxythiamine, indicating that this co-factor can be  
salvaged and is incorporated into enzymes.

Similarly, lipoic acid is an essential co-factor for a number of 
dehydrogenases and is being scavenged from the host cell in 
spite of being synthesized by the parasite in the apicoplast32  
(Figure 2).

In contrast to these co-factors, tachyzoites appear unable to  
scavenge pantothenate, a precursor for coenzyme A, in  
significant amounts. Instead, they possess the entire synthesis  
machinery for pantothenate44 and parasite growth is sensitive to  
its pharmacological inhibition.
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The uptake of nicotinate or nicotinamide and riboflavin has been 
proposed to be required for growth of T. gondii18; however, to 
date, no biochemical evidence has been reported. Not surprisingly,  
FBMs also predict that T. gondii requires inorganic ions such as 
iron45,46 and phosphates. Also, their uptake mechanisms remain 
unknown.

In addition to importing small molecules that act as building  
blocks, T. gondii imports proteins from the cytosol of its host cell 
and digests them in its endolysosomal system via cathepsin L  
and other proteases12. The underlying uptake mechanism is  
unclear but may involve the intravacuolar network of tubular  
membranes as a potential delivery route. Interestingly, a tran-
sient endocytic structure in the parasite plasma membrane 
that can be triggered by excess supply of oleic acid13 has been  
implicated in lipid droplet uptake from the host and may also be  
responsible for import of host proteins.

Lipid uptake: the dose is the poison
To sustain its rapid replication, T. gondii tachyzoites need to  
synthesize large amounts of lipids and import precursors. 
Exciting new research has established that host lipid droplets 
present a mobilizable source of neutral lipids and fatty acids 
for tachyzoites. Infected cells exhibit an increased abun-
dance of lipid droplets47,48 which can be further increased 
by exogenous oleic acid13. Under these conditions, T. gondii  
scavenges oleic acid or neutral lipids (or both) from Rab7- 
positive host lipid droplets and stores excess lipids in deposits 
as triacylglycerides in its cytosol. The disruption of this storage  
pathway has been shown to be detrimental to tachyzoites and 
bradyzoites in vitro13,49. Under normal culture conditions, fatty 
acid import results in an even cellular distribution of the acquired  
fatty acids and confers enhanced growth50. Interestingly, the  
fusion of host mitochondria around the PV has been shown 
to limit access of T. gondii to host fatty acids and decrease its 
replication rate50. These studies report different intracellular  
distributions of internalized fatty acids that indicate distinct  
fates of host lipid droplet content. However, it is important 
to note that the employed fluorophore-linked lipids such as 
C4-BODIPY-C9 or BODIPY-FL-C12, though conceptually  
attractive, differ substantially in their biophysical properties  
from the lipids of interest. These include altered flip-flop rate 
and transfer between organelles compared with their parental  
lipids51. Regardless, these studies suggest that the parasite  
undertakes largely unregulated import of lipids and depends 
on control mechanisms from its host cell instead. There appears 
to be a need to fine-tune the fatty acid supply of T. gondii since 
fatty acid scavenging is supportive of growth only in low doses50 
and becomes harmful at higher concentrations13. Shielding  
parasites from fatty acid uptake by enwrapping their PV in 
host mitochondria appears to be a defense mechanism50. It will 
be important to see how general this proposed mechanism is 
operating since, in the low virulence type II strains, the host  
mitochondria do not associate with the PVM52.

The uptake of fatty acids is complemented by T. gondii’s  
comprehensive capabilities to produce fatty acids on its own.  
GC/MS-based methods revealed that the parasite can synthe-
size myristic and palmitic acid de novo via the FAS2 pathway 

in the apicoplast and also possesses a set of elongases and the  
FAS1 pathway53. In addition, GC/MS-resolved stable isotope  
labelling patterns revealed salvage of unsaturated long chain and 
very long chain fatty acids from its host54.

Other precursors for major lipids include choline, which is 
needed for phosphatidylcholine synthesis55, and this pathway can 
be poisoned with the choline analog di-methylethanolamine56. 
Phosphatidylinositol is part of the lipidome of T. gondii but its 
synthase appears non-essential (Table S1). Also, its precursor  
myo-inositol is not synthesized from glucose10, indicating that  
T. gondii can access exogenous inositol and may also import 
this phospholipid. In addition, T. gondii acquires several 
other lipids directly from its host. These include low-density  
lipoprotein-derived host cholesterol for which the parasite is  
auxotroph (reviewed in 57) and sphingolipids from Golgi- 
derived vesicles55,58.

Another important class of lipidic molecules are isoprenoids.  
These are implicated in a number of essential processes that  
include signaling, trafficking, energy metabolism, and protein 
translation (reviewed in 59). T. gondii synthesizes the precur-
sors isopentenyl pyrophosphate and dimethylallyl pyrophos-
phate in its apicoplast via the non-mevalonate pathway60. These  
molecules are the building blocks for terpenoids via a multi-
functional farnesyl diphosphate synthase (TgFPPS)61. Interest-
ingly, T. gondii also scavenges products of this enzyme, including  
farnesyl- and geranylgeranyl-pyrophosphates from its host,  
making TgFPPS knockout mutants dependent on corresponding 
host isoprenoid synthesis62.

The state of bradyzoite–host interactions: initial 
insights into a black box
Owing to their ease in cultivation, tachyzoites are clearly the  
most investigated stage of T. gondii. However, the vast majority 
of T. gondii’s lifetime in intermediate hosts is spent in the  
bradyzoite stage. Much less is known about how these stages 
interact with their host cell and which metabolic factors permit  
persistence. T. gondii tissue cysts are frequently found in  
brain, muscle, eye, and cardiac tissue63. It is unclear whether 
the parasite displays tropism toward particular cell types or  
whether some are more permissive for long-term residence.  
Interestingly, in vitro parasites display elevated spontaneous  
stage conversions in cell cycle–arrested fibroblasts64 and termi-
nally differentiated skeletal muscle cells65. This suggests that  
non-proliferating cells express an as-yet-unknown effector or 
provide a generally stressful environment. In this respect, it is  
noteworthy that proliferating cells maintain a glycolytic meta-
bolic profile, with large pools of glycolytic intermediates  
and high rates of lactic acid production, to support their  
biosynthetic activities66. This environment may equally favor 
the biosynthetic activity of growing T. gondii tachyzoites. 
Consistently, host cells that produce high levels of lactic acid  
promote tachyzoite growth over bradyzoite formation67. The 
induction of bradyzoites in vitro is considered to work by slow-
ing down tachyzoite growth via a range of stressors, such as 
limitation of arginine and bicarbonate as well as basic and acidic 
pH stress63. The resulting encysted bradyzoites adopt a spec-
trum of cell division rates68 that may introduce a degree of  
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flexibility in their need for pyrimidines for nucleic acid synthe-
sis and consequently contribute to their resistance to antifolates 
such as pyrimethamine. However, bradyzoites appear sensitive to  
inhibition of nutrient storage and turnover pathways includ-
ing autophagy69, lipid storage70, and carbohydrate storage71. 
These findings may reflect the fact that T. gondii deals with  
oversupply of nutrients by storage rather than by regulat-
ing respective import pathways. In particular, slowly dividing  
bradyzoites appear to depend on the integrity of the regulation 
of these storage pathways to avoid detrimental accumulation of  
material.

Future methods to study host–parasite interactions
As outlined above, comprehensive metabolomic approaches 
were instrumental in defining metabolic interactions72 as well as  
synthesis and import capabilities of fatty acids and amino acids 
in tachyzoites10,24. A similar approach with bradyzoites requires 
the development of efficient methods for the in vitro culture and  
purification of tissue cysts in their natural metabolic state.  
Strategic introduction of stable isotopes into parasite polymers 
such as DNA and proteins might be helpful to measure the  
activity of metabolic pathways and decrease the number of cysts  
needed73.

Comprehensive liquid chromatography–coupled mass spec-
trometry (LC/MS)–based metabolomic approaches will also 
help to define which amino acid synthesis pathways are active in  
T. gondii. By measuring the levels and turnover of intermediates 
directly, metabolomics can bridge the gap that exists between 
annotated gene sets and a functional pathway. Such associa-
tions are very indirect since function will depend on regulatory 
mechanisms at the transcriptomic, proteomic, and metabolomic  
levels74. In addition, the accuracy of functional predictions 
based on homology are limited. For instance, a putative lysine  
decarboxylase implicated in lysine degradation has been shown 
to act as a glutamate decarboxylase within the GABA shunt  
instead10.

Similar limitations apply to conclusions based on transcrip-
tomic and proteomic data. While these approaches are powerful 
to functionally associate genes and resolve differences of  
physiological states of the parasite under different conditions, 
such as host environments64 and stage conversion states75,76, 
functional implications on the phenotype level and mechanistic 
insights are constrained by functional gene annotations. Com-
bined multi-omics approaches might provide insights beyond 

the metabolic dimension of host–parasite interactions in the  
future77.

In addition to the use of metabolomic techniques to study  
parasite–host interactions, the use of more sophisticated  
cellular systems such as neurons and myotubes, organoids77, or  
mice78 holds great potential. This is illustrated by the fact that 
T. gondii and coccidian-specific genes are the least fitness- 
conferring ones for the survival in fibroblasts19.

In conclusion, there remain many open questions about how  
parasite and host metabolism interact, in particular with respect  
to dormant bradyzoites that are key for transmission and  
global prevalence of T. gondii. Future metabolomic approaches 
will be instrumental in further dissecting the host–parasite  
interface and discovering ways to efficiently target both  
tachyzoite and bradyzoite forms of T. gondii.
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