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Abstract

Best Management Practices (BMPs) are one of the most effective methods to control nonpoint source (NPS) pollution at a
watershed scale. In this paper, the use of a topography analysis incorporated optimization method (TAIOM) was proposed,
which integrates topography analysis with cost-effective optimization. The surface status, slope and the type of land use
were evaluated as inputs for the optimization engine. A genetic algorithm program was coded to obtain the final
optimization. The TAIOM was validated in conjunction with the Soil and Water Assessment Tool (SWAT) in the Yulin
watershed in Southwestern China. The results showed that the TAIOM was more cost-effective than traditional optimization
methods. The distribution of selected BMPs throughout landscapes comprising relatively flat plains and gentle slopes,
suggests the need for a more operationally effective scheme, such as the TAIOM, to determine the practicability of BMPs
before widespread adoption. The TAIOM developed in this study can easily be extended to other watersheds to help
decision makers control NPS pollution.
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Introduction

Non-point source (NPS) pollution has been identified as the

primary mechanism underlying water deterioration and biological

diversity loss [1,2]. Nowadays, the implementation of Best

Management Practices (BMPs) is considered as an effective

approach to control NPS pollution from agricultural, pasture,

forest, mining and other sources [3,4]. Generally, BMPs are

divided into non-structural practices, in terms of tillage operation

and nutrient management, and structural practices, such as filter

strips, parallel terraces and grassed waterways [5]. Previous studies

have illustrated the effects of non-structural BMPs on water

quality, as described in the Clean Water Act and other laws [6–8].

However, the design of structural BMPs is more challenging,

particularly at the regional or watershed scale.

One of the key challenges in developing an effective BMPs

program is to achieve a maximum reduction in NPS loads at a

minimal cost [7] and the target for improving cost-effectiveness is

the systematic optimization of real-world efforts [9]. Arabi et al.

[10] have showed that selection and placement of BMPs by

optimization was found to be nearly 3 times more cost-effective

than targeting methods for the same level of protection specified

pollutants. A wide range of models and decision support systems

are available for understanding the flow and pollutant transport

for structural BMPs [11]. Srivastava et al. [12] coupled the

Annualized Agricultural Non-Point Source model and a genetic

algorithm for the assignment of BMPs in the field. Bekele and

Nicklow [13] combined the Soil and Water Assessment Tool

(SWAT) with a multi-objective evolutionary algorithm to provide

tradeoffs between agricultural production and ecosystem service.

Recently, the type and location of structural BMPs are two key

decision variables that have been considered in watershed

programs [14]. Cools et al. [15] applied a cost-effective modeling

approach to an in-stream Total Maximum Daily Loads program

to reduce phosphorus (P) and nitrogen (N) loads. Kaini et al. [5]

designed the type, size, and location for several structural BMPs at

a watershed scale. Recent developments in mathematics and

computer science have also provided new techniques for

optimization designs. Several options, such as linear programming

[16], Monte Carlo simulation [17], scatter search [18], Tabu

search [19] and non-dominated sorted genetic algorithms [20],

have been addressed to develop a cost-effectiveness strategy.

Currently, the effects of structural BMPs on water quality have

been reported at both plot and field scales [21,22]. However, over

the past decade, water quality has shown little improvement at the

watershed level, even after the extensive implementation of

structural BMPs [6,23]. The lack of improvement could poten-

tially reflect improper design, insufficient investigation, poor local

characteristics, uncooperative landowner and changing weather

[24]. In the simplest terms, the optimization design should be the

systematic optimization of real-world efforts and accommodate the

desires of both the governor and the engineer (as an agency or

company). Therefore, it is necessary to determine the practicability

of BMPs before widespread adoption. All of the related factors,

including topography, land use, and accordingly the characters of
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slope are static parameters that affect the site characteristics with

relevance to construction [25–26]. Engineers consider these factors

as functions of physical site characteristics, which can be evaluated

through detailed site investigations or geographic information

systems (GIS) [25–27]. In fact, topography, as captured by a digital

elevation model (DEM), has already been used to capture

gravitational gradients and the tendency for elevation variation

at each site [26–27]. The GIS-based topography analyses are

valuable compared with inherently subjective processes, which are

susceptible to personal experience and judgment for construction

conditions, particularly when structural BMPs are designed at the

planning stage [28]. Therefore, engineers have recently argued to

add new criteria, such as land use and topography analysis, to the

cost-effectiveness goal. This highlighted a dire need for developing

a topography analysis incorporated optimization method

(TAIOM), particularly for complex watersheds.

The Three Gorges Project, situated at Sandoupin in China, is

the largest hydropower project in the world. The presence of NPS

pollution due to the massive use of fertilizers at the Three Gorges

Reservoir Region has been of concern to the public in recent years

[29]. However, the optimization design of BMPs is relatively

poorly documented in such an important watershed. The objective

of this paper is to contribute information to ongoing work on the

optimization method for the selection and placement of BMPs. A

key aim is to develop a TAIOM to provide economic,

environmental and operational effectiveness related to the

optimization method. To this end, the following tasks were

performed: 1) the baseline loads and spatial distributions of

sediment, N and P were qualified using SWAT; 2) an allele set

containing the removal efficiency and cost for each BMP

combination was developed; 3) a GIS-based topography analysis

was incorporated; and 4) these mentioned components were

integrated using a genetic algorithm program in the Yulin

watershed, China. The description of study area and related

method could be found in the next section.

Materials and Methods

Study Watershed
A sub-watershed of the Yulin River was selected as the study

area (Fig. 1). The Yulin River is located in the northeast region of

the district of Chongqing municipality, China. The river originates

from the GaoZhai Mountains with an averaged elevation of

845 m, travels a basin that includes mountain terrain and

agricultural plains, and eventually influxes to the Yangtze River,

which is one of the most significant ecosystems worldwide [29].

The water quality in this river primarily reflects the construction of

the Three Gorges Reservoir. Over the past 10 years, a large

discharge of N and P from the Yulin watershed has caused on-site

environment degradation and off-site problems associated with the

downstream eutrophication of the Three Gorges Reservoir [29].

The watershed used in this study, with a drainage area of

47.24 km2, is a mixed land use area, of which 68.66% is covered

by agricultural land (paddy and drylands), 22.38% is forest and

8.94% is bare land. Purple (15.6%), paddy (30.2%), yellow brown

(26.5%) soil types were used in this study. The subtropical climate

features of this watershed include an annual temperature ranging

from 6.3–27.5uC and precipitation of approximately 1145.86 mm.

The details of the watershed features and the authority who

issued the permission for information are listed in Table 1. We

obtained the major GIS input files and the related physical data

from Institute of Geographical and Natural Resources Research,

Institute of Soil Science and China Meteorological Administra-

tion. The periodic monitoring flow and water quality data were

obtained from local government. All necessary permits were

obtained for the input data.

Model Description
The SWAT model [30] was selected to quantify the baseline

NPS loads from each sub-watershed. To account for the spatial

heterogeneity of climate, topography, land use and soil, we divided

the study watershed into 47 sub-watersheds, with areas varying

from 0.08 km2 to 4.61 km2 and an average area of 1.01 km2. A

DEM was used to build a stream network (Fig. 1) and construct the

spatial connections between sub-watersheds [31].

The hydrologic response units (HRUs) in SWAT are defined as

the lumped areas by the land use, slope and soil type in a sub-

watershed [32,33]. As most of the equations are solved on the

HRU level, 0% land use, slope and soil thresholds were chosen to

define the HRU to capture small critical areas. A total of 141

HRUs were defined for the study watershed. To estimate the

water balance and nutrient simulation, the curve number method

and Modified Universal Soil Loss Equation were applied during

the build-up period. Weather data (daily precipitation, minimum

and maximum temperature, solar radiation and wind speed) were

obtained from 14 state weather stations located approximately

within the watershed. The pasture management information, such

as the timing of manure and fertilizer application, grazing intensity

and dates were collected from detailed interviews with local

farmers. The sediment, N and P yields from each sub-watershed

were subsequently routed through the channels to the watershed

outlet, using the QUAL2E program.

The assessment point, at which the model parameters were

evaluated [26], was placed at the Yulin station, which is situated at

the watershed outlet (Fig. 1). Sensitivity analysis was performed to

identify which parameters most influence outputs of interest. Based

on the sensitivity analysis results, 28 parameters were modified

using the Sequential Uncertainty Fitting version-2 program, which

has been incorporated into SWATcup software [34]. In the Three

Gorges Reservoir Region, the local government began periodic

monitoring of N and P with approximately monthly sampling

since 2004. Therefore, in this study, the monthly measured flow,

sediment, N and P at the Yulin station for the period from 2004 to

2007 were used in the model evaluation. The calibration and

validation was performed from January 2004 to December 2005

and January 2006 to December 2007, respectively. The Nash-

Sutcliffe coefficient was used as a criterion to evaluate the model

performance because it is the most common indicator in

evaluating the hydrologic model [35].

ENS~1{

Pn
i~1

Qsim,i{Qmea,ið Þ2

Pn
i~1

Qmea,i{Qmea

� �2
ð1Þ

Where, Qmea,i is the ith observation for the constituent being

evaluated, Qsim,i is the predicted value for the constituent being

evaluated, �QQmea is the mean value of observed data for the

constituent being evaluated, and n is the total number of

observations.

BMPs Scenarios
A calibrated SWAT program was operated for 5 years (2003–

2007), and the simulation from 2003 was considered as a warm-up

period to reduce the initial effects. The mean annual loads from 2004

to 2007 were qualified for all sub-watersheds as a baseline scenario.

In scenarios for BMPs, the NPS loads were obtained from the
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baseline NPS loads and the removal percent from a BMP database

[20,36]. The calculation of NPS loads during the post-BMP period

was numerically expressed using the following formula:

DPouti,j~Pout i,j|

P
DPouti,j{1zPareai,j

:(1{di,j)

Pout i,j{1zPareai,j

� �

|(1{hi,j)

ð2Þ

Where DPout and Pout is the NPS loads during the post- and pre-BMP

periods, respectively, Parea is the NPS load generated from the study

sub-watershed during the pre-BMP period, d and h are the respective

removal efficiencies for non-river BMP (wetland, detention pond

and vegetative filter) and river BMP (ecological ditch), j and j–1

represent the study and the upper sub-watersheds, respectively.

The structural BMPs considered in this study were detention

ponds, wetlands, vegetative filter strips and grassed waterways.

This selection was based on the history of BMPs implemented in

the Yangtze watershed. To specifically address local characteris-

tics, detention pond is designed as a permanent pool that is

effective in retaining flow and trapping sediment and nutrient for

certain time. Filter strip is designed as a uniformly-graded and

densely-vegetated area which retards the surface runoff and

controls the reel and sheet erosion. Wetland is supported to be an

Figure 1. The location of the Yulin River watershed.
doi:10.1371/journal.pone.0054520.g001

Table 1. The type and sources of available data in the Yulin watershed.

Data type Scale Resolution Data description Source

Digital Elevation Model 1:250,000 90690 m Elevation, overland and channel
slopes and lengths

Institute of Geographical and Natural Resources Research, Chinese
Academy of Sciences; National Geomatics Center of China

Land use 1:100,000 30630 m Land use classifications Institute of Geographical and Natural Resources Research, Chinese
Academy of Sciences

Soil properties 1:1,000,000 2006200 m Soil physical and chemical
properties

Institute of Soil Science, Chinese Academy of Sciences

Weather 5 stations Precipitation China Meteorological Administration; Local bureau of Meteorology

Social economic data Population, livestock rearing,
fertilizer application

Field investigation; Statistics yearbook

doi:10.1371/journal.pone.0054520.t001
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area covered partially or completely by shallow pools of water and

grassed waterway is designed as a constructed watercourse

consisting of vegetation to reduce runoff velocity, filter sediment,

and absorb chemicals from sheet erosion. In conjunction with local

characteristics, detention pond and wetland are designed to locate

in the catchments and the capacity of detention ponds and

wetlands were designed with 1- and 3-day hydraulic retention

times, respectively. Vegetative filters and grassed waterways are

planted at the riparian zone and along the watercourse of the

corresponding stream in a sub-watershed. In conjunction with

local characteristics, vegetative filters and grassed waterways were

designed as 50% and 20%, respectively, of the length of the

corresponding watercourse. The pollutant removal and cost data

for each BMP were obtained from the BMP database (Table 2),

which contains data collected from 275 BMPs [37]. The NPS

loads and respective costs derived from the combination of BMPs

were then dynamically integrated with the optimization engine at

the watershed scale [38,39].

Topography Analysis
In this study, the sub-watershed was defined as a location

variable constitutes a BMP or a set of BMPs. Therefore, the total

number of variables equal to the sum of the combinations of the

type, number and location of BMPs in each sub-watershed that

needs to be optimally placed with BMPs. This hypothesis is

reasonable because the sub-watershed is a suitable size for the

installation of structural BMPs. The topographical features, in

terms of the surface status, slope and the type of land use, were

evaluated for each sub-watershed. The surface status indicator

was defined as the degree of surface flatness, which could be

quantified using the variance of elevation among the sub-

watersheds [40]. The elevation data derived from a DEM were

refined into uniform, homogeneous square grids (90 m*90 m),

and the surface status indicator was calculated using the variance

of elevation data obtained from each unit within a specific sub-

watershed. The slope indicator was defined as the upland or

channel slope, depending on the location of the structural BMP.

The slope gradient was calculated by the elevations data and

slope length of the drainage cells at the sub-watershed level [7].

The land use indicator was directly associated with the type of

land use, which was determined from the land use - land cover

map [41,42]. In this study, the interpreted land use was classified

into forests, paddy lands, grasslands, drylands, residential areas,

bare lands and waters [29].

In the second step, these indicators were quantified using

values 1,10 in accordance with the local characteristics of

each sub-watershed. When surface fluctuations are observed,

additional land leveling and smoothing is needed; thus

constructing BMPs in these areas is much more difficult.

Therefore, a higher value was used when greater variance was

observed (Table 3). The bare area was qualified as ‘1’ due to its

convenience for engineers to implement a new structure

project, whereas the residential land was defined as ‘9’ because

it is more difficult to construct BMPs in this area (Table 4).

Additionally, the structural BMPs will reach the expected

efficiency at a range of optimal slope [37]. The literature-based

optimal slopes obtained from the BMP database were ,15u for

wetlands, 2u,6u for vegetative filters, ,10u for detention

ponds and 15u for grassed waterways (Table 5). The various

topographical indicators were used as inputs for the optimi-

zation engine.

Table 2. The information for selected BMPs based on a
database containing 275 BMPs.

BMP
Type Removal efficiency1 (%) Cost information2

Sediment TP TN

1 Wetlands 71625 56635 19629 C = 30.6V0.71

2 Detention pond 68610 5567 32611 C = 24.5V0.71

3 Vegetative filter 38631 14623 14641 $0.25–$0.50/ft2

4 Grassed watershed 54,84 225,40 20 $0.30–$0.70/ft2

1Data format: ‘‘mean 695% confidence interval.’’
2V for the design capacity of structural BMP(ft3), C for the total cost(dollars).
doi:10.1371/journal.pone.0054520.t002

Table 3. The quantified result in accordance with the surface
status.

Surface status (m) value Surface status (m) value

0,11 1 38,47 6

11,17 2 47,57 7

17,23 3 57,70 8

23,30 4 70,92 9

30,38 5 .92 10

doi:10.1371/journal.pone.0054520.t003

Table 4. The quantified result in accordance with the land
use pattern.

Landuse type value Landuse type value

Bare land 1 Forest 5

Grass land 2 Paddy land 6

Waters 3 Towns, residential 7

Dry land 4

doi:10.1371/journal.pone.0054520.t004

Table 5. The quantified results in accordance with the degree
of the slope.

Slope Wetland
Detention
pond

Vegetative
filter

Grassed
waterway

0u,3u 5 5 2 2

3u,6u 3 3 1 1

6u,9u 2 2 2 1

9u,12u 1 1 3 2

12u,15u 1 1 5 3

15u,20u 3 2 7 5

20u,35u 5 3 9 7

35u,60u 7 5 9 9

.60u 9 7 10 10

doi:10.1371/journal.pone.0054520.t005
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Genetic Algorithm
The final objective function was designed as:

F~v1
:Cpzv2

:Gpzv3
:Dp ð3Þ

Where Cp is the total cost of the BMPs implemented in a

watershed, Dp is the annual NPS load at the watershed outlet, Gp is

the sum of the topography indicators at the watershed scale; Cp, Dp

and Gp are dimensionless values from 0 to 1 that were obtained

after normalizing each objective; w are the weight values. In this

study, five scenarios were designed corresponding to the different

sets of weights. The five scenarios were as follows: 1) cost-effective-

operative purpose; 2) cost-effective purpose; 3) sediment was the

prior pollutant; 4) P was the prior pollutant; 5) N was the prior

pollutant. The corresponding values of weights for each scenario

could be seen in Table 6.

The genetic algorithm program, originally developed by Wall

[43], was coded in Matlab to derive the final optimization. The

sub-watershed was assumed as a variable coded in the form of

genes [43], which represented either a single or a combination of

BMPs (Table 7). The configuration of BMPs at the watershed scale

was coded as the population of chromosomes (Fig. 2). The initial

chromosomes were randomly generated for a given population

size determined using a sensitivity analysis [20]. The individuals in

the mating pool undergo crossover, which generates a population

that exhibits the positive characteristics of the parents [44], and a

mutation, which alters the chromosome state [45]. The solutions

were selected or transferred into the next generation based on the

following fitness equation:

Fitp,i~

2 for FitmƒFitx

2{ Fitm{Fitx
Fitm{Fits

for FitsƒFitxƒFitm

1 for FitxƒFits

8><
>: ð4Þ

Where Fitp,i (Cp, Dp and Gp) is the value of the individual fitness,

Fitm and Fits is the maximum and minimum value of the parental

population, and Fitx is the value of the present individual.

Results

The TAIOM Setup
In the first step, we calibrated the SWAT model, quantified the

topography indicator and genetic algorithm parameters to set up

the TAIOM. As shown in Fig. 3, the observed time series flow

closely matched with the simulated flow. The ENS value was 0.84

for the calibration period and 0.83 for the validation period. In the

case of sediment and total N (TN) simulation, the monthly

simulated value also matched well with the observed data in

almost all seasons. The corresponding values of ENS were 0.81 and

0.83, respectively, for the sediment prediction, 0.80 and 0.77,

respectively, for the TN simulation. However, the graphical plots

of total P (TP) showed more differences between the simulated and

measured data. The simulated peaks were lower than the observed

peaks during the wet season, which might reflect the input or

model errors [29]. The ENS values during the calibration and

validation period were 0.70 and 0.69, respectively. To reduce the

subjectivity in model evaluation, performance ratings were applied

in accordance with Moriasi et al. [46]): very good (0.75–1), good

(0.65–0.75), satisfactory (0.50–0.65), and unsatisfactory (#0.5).

Compared with other applications [29,32], the sediment and TN

predictions were very good, while the TP modeling was judged to

be good in the Yulin watershed.

The spatial distributions of the topography indicators are

illustrated in Fig. 4. The higher values of surface and slope

indicator were distributed in the western regions, containing

mountainous areas and steep gorges. Lower values were concen-

trated in eastern regions, comprising relatively flat landscapes.

With respect to the land use indicator, the values were uniformly

distributed. The relatively high values distributed in the central

part of the Yulin watershed indicated that there were more paddy

lands and human activities in these areas.

To effectively determine the final solutions, the optimal genetic

algorithm operational parameters were estimated. Initially, the

genetic algorithm operational parameters were individually

incremented using different population sizes and numbers of

generations. As can be seen in Figure 5, the fitness dropped

dramatically at 200 generations and only slight changes were

Table 6. The corresponding values of the w for each scenario.

Scenario Description w value

Cost
Pollutant
Reduction Operativity Sediment TP TN

1 Multi-object 0.33 0.33 0.33 0.33 0.33 0.33

2 Cost-effect object 0.50 0.50 0 0.33 0.33 0.33

3 Sediment prior pollutant, 0.33 0.33 0.33 0.80 0.10 0.10

4 TP prior pollutant, 0.33 0.33 0.33 0.10 0.80 0.10

5 TN prior pollutant, 0.33 0.33 0.33 0.10 0.10 0.80

doi:10.1371/journal.pone.0054520.t006

Figure 2. The population of chromosomes associated with the
structural BMPs.
doi:10.1371/journal.pone.0054520.g002
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observed when the genetic algorithm program was run for 1,000

generations. Additionally, the genetic algorithm performance

increased significantly when the population was further increased

to a population of 40, which reflects the increased freedom of the

solution space [44,45]. Finally, a total of 1,000 generations and a

population of 40 were used in the final optimization. The entire

process was completed in 30 minutes using a Centrino Duo

processor running at 2.8 GHz.

The TAIOM Results
The baseline simulated outputs and optimization results are

shown in Table 8. The spatial distributions of the NPS loads

during the pre-BMP period are further illustrated in Fig. 6, while

the locations of the selected BMPs are compared in Fig. 7. In the

baseline scenario, the sediment, TP and TN load at the watershed

outlet were 2393.00, 3.22 and 97.18 ton yr21, respectively. The

sources of sediment were unevenly distributed in the Yulin

watershed, with the highest load in the west, followed by the north

and south regions, and the least in the east area. The sources of N

and P were concentrated in the catchments of the middle- and

down-stream.

In scenario 1, the exported loads of sediment, TP and TN from

the study watershed were reduced to 40.42 ton yr21, 0.23 ton yr21

and 19.23 ton yr21, respectively, indicating respective reductions

of 98%, 92% and 80%. The respective cost and sum of the

topography indicators were $ 3.306106 and 42.33, respectively.

The selected BMPs, in terms of 8 detention ponds, 1 wetland and

1 filter, were distributed throughout the landscapes near the

watershed outlet (Fig. 7a). In scenario 2, the sediment, TP and TN

Table 7. The optimization design for the variables coded in the form of genes.

Gene Code No BMP design Gene Code No BMP design

000 1 No measure 100 5 Ecological ditch

001 2 Wetlands 101 6 Vegetative filter and Wetlands

010 3 Detention pond 110 7 Vegetative filter and Detention pond

011 4 Vegetative filter 111 8 Vegetative filter and Ecological ditch

doi:10.1371/journal.pone.0054520.t007

Figure 3. The goodness-of-fit results obtained during the calibration and verification period.
doi:10.1371/journal.pone.0054520.g003
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loads at the watershed outlet were 33.70 ton yr21, 0.20 ton yr21

and 15.20 ton yr21, respectively. Compared with those during the

pre-BMP period, the respective removal percentages were 99%,

93% and 84%. The total cost and sum of the topography

indicators were $ 7.306106 and 141.27, reflecting the combination

of 25 ponds, 2 wetlands, 3 filters and a single grassed waterway

(Fig. 7b).

As illustrated in Table 8 and Fig. 7c–7d, the effectiveness and

spatial patterns of the selected BMPs in scenarios 3 and 4 were

similar. In scenario 3, the exported sediment, TP and TN loads

were 30.90 ton yr21, 0.18 ton yr21 and 21.80 ton yr21,

respectively, with respective removal percentages of 98%, 94%

and 77%; in scenario 4, the load values were 29.40 ton yr21, 0.17

ton yr21, 21.30 ton yr21, respectively, with respective removal

percentages of 98%, 94%, 78%. In scenario 3, there were 7

detention ponds, 1 wetland and a single grassed waterway (Fig. 7c),

whereas in scenario 4 there were 6 detention ponds, 3 wetlands

and 2 grassed waterways (Fig. 7d). However, when N was chosen

as the prior pollutant (scenario 5), the exported sediment, TP and

TN loads were reduced to 53.24, 0.28 and 16.59 t yr21,

respectively, with respective reductions of 97%, 91% and 83%.

In scenario 5, 11 detention ponds, 2 wetlands and a single grassed

waterway were needed as illustrated in Fig. 7e.

Discussion

The Necessity of Topography Analysis
In this study, scenario 1 was designed to represent the TAIOM,

while scenario 2 was designed to represent the traditional cost-

effective method which had been studied for decades [5,26,28,47].

Overall, the results of scenario 1 appeared to be more cost-

effective than those of scenario 2 but greater reductions could be

Figure 4. The spatial distribution of the quantified information for surface status, land use and slope.
doi:10.1371/journal.pone.0054520.g004
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obtained in scenario 2 for all targeting pollutants. In this study, the

application area for BMPs was defined as the sum of the sub-

watershed area upon which the structural BMPs were installed

[5,48]. In scenario 2, the reduction amount per area was 0.83 t

ha21 for sediment, 1.10 kg ha21 for TP, 29.00 kg ha21 for TN,

respectively. The reduction amount per unit cost were 0.32 t $21

for sediment, 0.01 t $21 for TP and 0.11 t $21 for TN. In scenario

1, the reduction amounts per area were 2.34 t ha21, 2.90 kg ha21,

75.00 kg ha21, respectively, with respective reductions per unit

cost of 0.70 t $21, 0.01 t $21, 0.24 t $21. This indicated that when

the topography indicators were added, the optimization results

were more cost-effective than the traditional method.

Similarly, all of the selected BMPs in scenario 1 were distributed

throughout the landscapes near the watershed outlet, where

relatively flat agricultural plains and gentle slope are primarily

abundant (Fig. 7a). Therefore, the results of scenario 1 were

considered to be reasonable because the key sources of N and P

were concentrated in the same region (Fig. 6). In the Three Gorges

Reservoir Region, high levels of human activities in these areas,

such as the damage to the upper soil due to plowing and the high

application of organic fertilizers, resulted in the increased leaching

of N and P during the high-flow season [49–52]. Moreover, except

for longer hydraulic retention times, these relatively flat areas also

provide engineers with better construction conditions for the

selected BMPs [29]. In scenario 2, the selected BMPs, were more

evenly distributed in the Yulin watershed, with the most in the

west, followed by the north and south regions, and the least in the

east area (Fig. 7b). Further analysis demonstrated that the

locations of BMPs in the east and south region were associated

with the sources of sediment, which could be featured drylands

and steeper slopes (Fig. 6). A comparison between Fig. 5 and

Fig. 7a–7b showed that the slopes of these locations varied with a

wide range of 0–60u, 3–35u and 3u–35u for detention ponds,

wetlands and grassed waterways, respectively. Furthermore, 6

detention ponds and 1 wetland were distributed in the east region

in scenario 2, which featured mountainous areas. Obvious surface

fluctuations could be observed in these areas, and the engineers

would need to perform additional land leveling and surface

smoothing [40]. The results of scenario 1 were more operationally

effective, with a mean topography indicator (per BMP) of 4.2, than

the traditional method, with a value of 5 for a single BMP

implementation.

The Effect of Preference for Specific Pollutants
Scenarios 3–5 provide the descriptions of public preferences for

specific pollutants. Table 8 indicates a combination of structural

BMPs for reducing all pollutants to certain levels. Among those

listed, wetlands and detention ponds were the most preferred

BMPs in all cases. Many studies have described detention ponds

and wetlands as permanent pools that are effective in reducing

peak flow and trapping NPS pollutants [16,53,54]. As shown in

Fig. 7, grassed waterways and filter strips were the least preferred

in the Yulin watershed, as these areas are densely-vegetated areas

at the watercourse or the border of the field [5,55,56]. In the Yulin

watershed, the channel and catchment gradients were superior,

indicating that the flow passes quickly and a portion of pollutants

remain untreated, retarding flow velocity. The results of this study

support the idea that increasing the water storage capacity through

flow retention is an effective method for NPS control in the Three

Gorges Reservoir Region.

As shown in Fig. 7, the controls for sediment and P were similar,

reflecting the fact that most organic P attaches to sediment

[57,58]. Therefore, soil erosion is important for the production

and transportation of P. However, as shown in Fig. 7d–7e, the

controls for P and N were different. A comparison between

scenarios 4 and 5 inferred that if the P strategy was implemented

first, additional BMPs were required to achieve N removal in

conjunction with the P scheme. Therefore, this study supports the

idea that a single optimization result alone might not adequately

reduce all the pollutants to the required levels [25,28,59].

Figure 5. The sensitivity analysis related to genetic algorithm parameter.
doi:10.1371/journal.pone.0054520.g005
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The Applicability of TAIOM
In this study, the GIS-based topography analysis can facilitate

the rapid identification of potential locations for specific BMP

installation. Rather, the surface status, slope and land use

indicators were selected, which are essential to the Yulin

watershed. However, the topography indicator might vary among

watersheds [24–26]. The inclusion of more criteria depicting local

topography characteristics for a specific watershed mediates the

adaptation of the TAIOM to the study watershed. Certainly,

except for topography indicators, the preferences for specific

pollutants were also derived from detailed interactions with local

stakeholders and engineers. Therefore, not all biases and

subjectivity of the engineers have been removed in the process

of the TAIOM. Within the scope of this paper, the TAIOM

supports the selection process as a static state instead of subjective

personal experience and judgment [24–26,60].

Apart from the obvious advantage in terms of computational

speed [20,36], the use of the percentage removal calculation may

be a limitation for TAIOM. Clearly, the sum of sub-watershed

loads is not necessarily equal to pollutant yields at the outlet

Figure 6. The sediment, NPS-TP and NPS-TN load during the pre-BMP period.
doi:10.1371/journal.pone.0054520.g006
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Figure 7. The spatial distribution of the structural BMPs for each optimization scenario.
doi:10.1371/journal.pone.0054520.g007
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[20,36]. In the particular case of the Yulin watershed, the in-

stream process was neglected due to severe rainfall events and a

large hydrographic gradient along the channel [61]. Therefore,

the extent of the in-stream biogeochemical reaction was limited in

the Yulin watershed. However, if the nutrient loads at the outlet do

not match the total nutrient yields from the catchments in a

different watershed, the calculations of downstream pollutant

propagation should be included in the TAIOM framework.

Conclusions
In this paper, a TAIOM was designed based on the integration

of a topography analysis with the traditional cost-effective function

to provide economically, ecologically and operationally effective

solutions. Based on the results obtained from this study, the

proposed TAIOM was more cost-effective than the traditional

method. Within the TAIOM framework, all of the selected BMPs

were distributed throughout landscapes that featured by relatively

flat agricultural plains and gentle slopes, suggesting a more

operationally effective scheme when the topography indicator was

added. The TAIOM model developed in this study can be easily

extended to other watersheds to develop the Total Maximum

Daily Loads program. However, future works are required, which

incorporate new criteria and more efficient optimization tech-

niques.
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