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A B S T R A C T

Background: Over the recent years there has been a growing debate regarding the extent and nature of the
overlap in neuropathology between schizophrenia (SZ) and autism spectrum disorder (ASD). Dynamic functional
network connectivity (dFNC) is a recent analysis method that explores temporal patterns of functional con-
nectivity (FC). We compared resting-state dFNC in SZ, ASD and healthy controls (HC), characterized the asso-
ciations between temporal patterns and symptoms, and performed a three-way classification analysis based on
dFNC indices.
Methods: Resting-state fMRI was collected from 100 young adults: 33 SZ, 33 ASD, 34 HC. Independent com-
ponent analysis (ICA) was performed, followed by dFNC analysis (window=33 s, step= 1TR, k-means clus-
tering). Temporal patterns were compared between groups, correlated with symptoms, and classified via cross-
validated three-way discriminant analysis.
Results: Both clinical groups displayed an increased fraction of time (FT) spent in a state of weak, intra-network
connectivity [p < .001] and decreased FT in a highly-connected state [p < .001]. SZ further showed decreased
number of transitions between states [p < .001], decreased FT in a widely-connected state [p < .001], in-
creased dwell time (DT) in the weakly-connected state [p < .001], and decreased DT in the highly-connected
state [p= .001]. Social behavior scores correlated with DT in the widely-connected state in SZ [r=0.416,
p= .043], but not ASD. Classification correctly identified SZ at high rates (81.8%), while ASD and HC at lower
rates.
Conclusions: Results indicate a severe and pervasive pattern of temporal aberrations in SZ (specifically, being
“stuck” in a state of weak connectivity), that distinguishes SZ participants from both ASD and HC, and is as-
sociated with clinical symptoms.

1. Introduction

Schizophrenia (SZ) and autism spectrum disorder (ASD) are severe
psychiatric conditions characterized by marked social disability
(Couture et al., 2010). Though presently conceptualized as separate
clinical entities based on their typical age of onset and clinical pre-
sentation, the two disorders constituted a single common diagnosis
until DSM-III (Chisholm et al., 2015). Recently, the debate regarding

the extent and nature of overlap has been rekindled, with the re-
cognition of the dimensional nature of these disorders (King and Lord,
2011), as well as the acknowledgment of the significant role of social
deficits in both (Sugranyes et al., 2011; Chung et al., 2013). The two
disorders have been shown to share multiple impairments in social
cognition and functioning (Couture et al., 2010), co-occur in families at
elevated rates (Sullivan et al., 2012), and share genetic (Gandal et al.,
2018; Kushima et al., 2018) as well as environmental (Chisholm et al.,
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2015) risk factors. Consequently, they have been suggested to be closely
related, and possibly lying on an etiological and neurodevelopmental
continuum (Owen and O'Donovan, 2017; Stefanik, 2017). Notwith-
standing, differences between the disorders exist, and several models
have been proposed, including independent as well as diametrical
etiologies (Stefanik, 2017; Crespi, 2018; Crespi and Badcock, 2008).
Understanding the shared vs. distinct neural substrates of these dis-
orders is thus crucial for clarifying their etiology, nosology and classi-
fication, as well as developing and tailoring treatments (Sasson et al.,
2011). However, few studies have compared the neural underpinning of
ASD and SZ directly.

Structural neuroimaging evidence indicates both commonalities and
distinctions between the two disorders. Katz et al. (2016) found shared
white matter aberrations in SZ ASD, and opposite gray matter changes,
in relation to healthy controls (HC). Mitelman et al. (2017) report op-
posite changes in both gray and white matter volumes, in ASD and SZ.
Park et al. (2018) examined neuroanatomy across autism, ADHD, and
schizophrenia. Both SZ and ASD displayed abnormal cortical thickness
of the fronto-parietal and limbic networks, while other aberrations were
common to ADHD and either SZ or ASD. Stefanik et al. (2018) char-
acterized similarity networks in participants with ASD, SZ and bipolar
disorder (BP), based on a combination of structural brain imaging,
demographic, and behavioral data. While few structural differences
were found between diagnostic groups, data-driven trans-diagnostic
groups showed substantial neuroanatomical differences, suggesting that
current diagnostic boundaries between ASD and SZ may not best reflect
neuroanatomical distinctions.

Functional neuroimaging data were mostly collected under task
conditions. A meta-analysis examining studies that used social tasks in
either SZ or ASD (Sugranyes et al., 2011) indicated reduced superior
temporal sulcus (STS) and fronto-limbic engagement in both SZ and
ASD, as well as various disorder-specific differences. However, varia-
tion in results may partially reflect differences in tasks, group char-
acteristics, and study design, rather than true differences. Three studies
directly compared ASD and SZ participants using social tasks. Eack
et al. (2017) reported that compared to SZ, ASD had greater local or-
bitofrontal connectivity, and reduced activity in the temporo-parietal
junction and medial-prefrontal regions during a visual perspective-
taking task. Ciaramidaro et al. (2014) used a mentalizing task and de-
monstrated reduced STS activation in ASD and paranoid SZ, as well as
unique aberrations in each of the groups. Pinkham et al. (2008) found
that individuals with ASD and paranoid SZ shared reduced activation in
the amygdala, fusiform and ventrolateral prefrontal cortex (VLPFC),
compared to HC during a trustworthiness task. ASD and paranoid SZ
also displayed lower VLPFC activation compared to non-paranoid SZ.
Finally, results from a recent positron emission tomography (PET) study
(Mitelman et al., 2018) conducted during a verbal learning task, suggest
that SZ and ASD are associated with a similar pattern of metabolic
abnormalities in the social brain, and opposite changes in somatosen-
sory cortex, anterior cingulate and hypothalamus.

Resting-state functional connectivity (FC) is a powerful and reliable
analysis method in which synchronous activity of brain regions can be
examined in task-free conditions (Woodward and Cascio, 2015). It thus
enables generalization of results beyond the particulars of specific tasks.
Importantly, it probes neural networks known to play a central role in
social cognition ((Schilbach et al., 2012), e.g. the default mode network
(DMN; Spreng and Andrews-Hanna, 2015; Hyatt et al., 2015)). Over-
whelming evidence indicates that resting-state FC is altered in in-
dividuals with both schizophrenia (Viviano et al., 2018) and ASD (Hull
et al., 2017). The extent and nature of the overlap, however, is unclear
(Woodward and Cascio, 2015). A single study to date compared resting-
state FC in ASD and SZ (Chen et al., 2017a), using two different datasets
and two separate classification analyses: one analysis examined ASD vs.
HC, and the other examined SZ vs. HC. Comparison of the results by the
authors indicated both shared and distinct atypical brain connections in

the DMN and the salience network (SN). Shared alterations were related
to the severity of social deficits in ASD. Though this study reveals va-
luable information, the fact that classifications were conducted sepa-
rately (and on heterogeneous multisite datasets) impedes conclusions
regarding group differences, and precludes classification of SZ from
ASD. No combined classification based on brain function has been
conducted to date, nor has there been a direct comparison of resting-
state brain function in these populations.

Dynamic functional connectivity is a recent expansion of FC analysis
that explores temporal changes in whole-brain FC (Calhoun et al.,
2014a). Until recently, most fMRI studies assumed that FC is relatively
static throughout the scan period (typically 5–30min). This assumption
is likely an oversimplification, as recent evidence indicates that resting-
state FC fluctuates, and connectivity dynamics can capture recurring
patterns of interactions among intrinsic networks (Calhoun et al.,
2014a; Allen et al., 2014a; Hutchison et al., 2013a; Sakoglu et al.,
2010). Several approaches have been developed to examine the time-
varying properties of FC, the most widely used being Dynamic Func-
tional Network Connectivity (dFNC). Similar to traditional “static” FC,
connectivity is estimated as synchronized activity of distinct brain re-
gions (and calculated as a cross-correlation matrix). However, rather
than averaging across the entire scan duration, dFNC uses a sliding
time-window to calculate a separate FC matrix for each time unit (for
each participant). This results in a specific representation of the con-
nectivity in each and every time segment. Then, to identify the re-oc-
curring patterns of connectivity, data-driven clustering (k-means) is
applied to all FC matrices of all participants. The identified re-occurring
patterns represent states of functional connectivity, that individuals
shift between during the scan (Calhoun et al., 2014b).

Dynamic FC states (often termed simply “states”) are very struc-
tured (Allen et al., 2014a; Abrol et al., 2017; Choe et al., 2017;
Hutchison et al., 2013b) and highly replicable as evident by multiple
independently-analyzed datasets of 7500 rest scans (Abrol et al., 2017),
and supported by multimodal studies incorporating simultaneous EEG
(Damaraju et al., 2018; Allen et al., 2017; Chang et al., 2013; Grooms
et al., 2017). These states, and the patterns of transitions between them
convey unique information regarding the temporal dynamics of the
brain. They have been shown to evolve from early childhood to
adulthood (Faghiri et al., 2018), underlie cognitive flexibility and ex-
ecutive function (Nomi et al., 2016), and be altered in psychiatric dis-
orders (Kaiser et al., 2016; Zhi et al., 2018; de Lacy and Calhoun, 2018),
brain injury (Gilbert et al., 2018; Vergara et al., 2018), and sleep
(Damaraju et al., 2018). Altered dynamic connectivity was reported in
both ASD (de Lacy et al., 2017; Rashid et al., 2018; Chen et al., 2017b)
and SZ (Damaraju et al., 2014; Rashid et al., 2014; Du et al., 2017a; Du
et al., 2017b; Lottman et al., 2017), and results mostly suggest that both
groups spend increased time in FC states that are characterized by weak
or absent connectivity, as compared to HC. However, cross-study
comparison is hindered by methodological differences between studies
(e.g., the SZ studies report only some aspects of temporal dynamics,
states differ between studies, age-ranges vary considerably, etc.). A
direct comparison of the two populations has not been conducted, and
the association between neuropathological findings and clinical symp-
toms is scarcely reported.

The present work compared multiple aspects of whole-brain resting-
state temporal dynamics in young adults with SZ and ASD, and HC,
providing a detailed account of convergence and divergence. We then
performed a three-way classification analysis based on the dFNC in-
dices, providing the first fMRI-based classification of SZ from ASD.
Finally, we characterized the association between the identified brain
aberrations to social and clinical manifestations, to examine whether
the heterogeneity of symptom, and the symptomatic overlap between
the diagnostic groups, could be explained by brain-behavior association
patterns.
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2. Methods and materials

2.1. Participants

One-hundred young adults (age 18–35), without intellectual dis-
ability (IQ > 80) were included in the analyses: 34 HC, 33 ASD, and 33
SZ (including six diagnosed with schizoaffective disorder). Participants
were recruited via Olin Neuropsychiatry Research Center (ONRC) and
Yale University School of Medicine. Data were selected from a larger
collected sample so that groups matched on age and sex. Inclusion/
exclusion criteria are provided in Appendix 1.

2.2. Clinical assessment

Severity of positive and negative symptoms and general psycho-
pathology were assessed using the Positive and Negative Syndrome
Scale (PANSS; (Kay et al., 1987)) in patients. To assess sub-clinical
symptoms in HC, the self-report Schizotypal Personality Questionnaire
(SPQ, (Raine, 1991)) was used. Social behavior was assessed using the
Autism Diagnostic Observation Schedule module 4 total score (ADOS-T;
(Lord et al., 2000)). IQ was estimated using the Wechsler Adult In-
telligence Scale (WAIS-III; (Wechsler, 1997))- vocabulary and block
design subscales.

2.3. Imaging data acquisition

All fMRI scans were performed on a Siemens Skyra 3 T scanner at
ONRC. Participants lay with eyes open, fixating on a centrally presented
cross for 7.5min. Blood oxygenation level dependent (BOLD) signal was
obtained with T2*-weighted echo planar imaging (EPI) sequence: TR/
TE=475/30msec, flip-angle= 600, 48 slices, multiband (8), inter-
leaved slice order, 3 mm3 voxels. Datasets portraying head motion>
10mm were discarded.

2.4. Preprocessing

fMRI data were preprocessed using SPM8 (www.fil.ion.ucl.ac.uk/
spm/software/spm8/). Each individual's dataset was realigned to the
first T2* image using the INRIAlign toolbox (https://www-sop.inria.fr/
epidaure/Collaborations/IRMf/INRIAlign.html), coregistered to their
high signal-to-noise single-band reference image (sbREF; (Glasser et al.,
2013)), spatially normalized to the Montreal Neurological Institute
(MNI) standard template (Friston et al., 1995), and spatially smoothed
(9mm3).

2.5. Group ICA and post-processing

Imaging data were decomposed into independent components (ICs)
in a data-driven manner, using group-level spatial ICA (Calhoun et al.,
2019; Calhoun and Adali, 2012), via the GIFT toolbox ((Calhoun and
Adali, 2004); http://mialab.mrn.org/software/gift). High-order model
(100 components) was used, and subject-specific data-reduction prin-
ciple component analysis (PCA) was set to 150, in accordance with
Erhardt et al. (Erhardt et al., 2011). The Infomax group ICA (Calhoun
et al., 2001) algorithm was iterated using ICASSO (Himberg et al.,
2004) and the most central run was selected for further analysis (Ma
et al., 2011). Subject-specific spatial maps (SMs) and time-courses were
estimated using the GICA3 back-reconstruction method (Erhardt et al.,
2011).

Out of the 100 components obtained, we identified 56 components
as physiologically relevant ICNs (rather than noise), based on the fol-
lowing: peak cluster locations in gray matter with minimal overlap with
either white matter, ventricles or edges of the brain, and a high ratio of
low-frequency/high-frequency activity (Allen et al., 2011). Components
were then labeled using the Desikan-Killiany-Tourville (DKT) atlas
(Klein and Tourville, 2012), the Allen Brain Atlas (Hawrylycz et al.,

2012) and the Automated Anatomical Labeling (AAL) atlas (Tzourio-
Mazoyer et al., 2002) as implemented in xjview (http://www.
alivelearn.net/xjview8), in addition to MRICron (http://www.
mccauslandcenter.sc.edu/mricro/mricron) for visualization of results.

ICs were organized into functional networks, in a data-driven
manner: pairwise correlations were computed between ICs' time-
courses in GIFT, reflecting static functional network connectivity
(sFNC). The sFNC matrix was then partitioned using the community
Louvain algorithm from the brain connectivity toolbox (https://sites.
google.com/site/bctnet/), which maximizes within-group edges, and
minimizes between-group edges.

2.6. Motion correction

Following the exclusion of high-motion participants from the ana-
lysis, the following steps were taken: ICA artifact rejection served as the
first denoising step. ICA has been shown to successfully remove motion-
related noise from fMRI data (e.g. (Uddin, 2017; Middlebrooks et al.,
2017; Beckmann, 2012; Pruim et al., 2015)) and has the added benefit
of leaving the integrity of the fMRI time-series intact. Subsequently, IC
time-courses were detrended and despiked using 3D-despike (Cox,
1996) via AFNI (https://afni.nimh.nih.gov/), and low-pass filtered with
0.15 Hz cutoff. Despiking replaced data points larger than the absolute
median deviation with a third order spline fit to the clean portions of
the data. This is similar to the “scrubbing” method (Power et al., 2012),
with the advantage that it does not eliminate volumes that would dis-
rupt temporal continuity which is crucial for a dFNC analysis (Nomi
et al., 2017). Previous research has shown that despiking decreases
outlier impact on FC analyses (Allen et al., 2014b). Motion was then
regressed out of the data during dFNC processing using six realignment
parameters. The combination of these strategies provides an effective
combination of linear and non-linear motion reduction. To rule out an
association between extent of motion to our parameters of interest at
the individual level, we conducted spearman's correlations between
dFNC indices and participants' mean framewise-displacement (root
mean square; appendix 3). Finally, we repeated our main analyses
controlling for framewise-displacement, to ensure that results were not
driven by group differences in motion.

2.7. Dynamic functional network connectivity (dFNC)

dFNC was computed using a sliding window approach, instantiated
in the dFNC toolbox in GIFT (as illustrated in Fig. 1). Window size was
set to 70 TRs (33.25 s), with a step-size of 1 TR. Covariance was then
calculated per window, between all pairwise ICs for each participant.

The optimal number of distinct connectivity states was estimated,
by conducting k-means analyses with a range k=2–10 and comparing
the cluster validity index (Appendix 4). The identified optimal number
of clusters was four. Subsequently, k-means clustering (k=4) was
applied to the individual arrays of FNC covariance matrices (using the
City method and L1 norm).

For each participant several dFNC indices were computed:

1) Fraction time (FT)- percentage of overall time spent in each state;
2) Dwell time (DT)- average duration of time spent in each state be-

fore transitioning to the next state;
3) Number of transitions (NT)- number of times a participant swit-

ched between states;
4) Number of states (NS)- number of different states entered;
5) State engagement (SE)- whether each particular state was entered.

2.8. Group differences

Statistical analyses were conducted in IBM SPSS v.21. Data of one
ASD participant was excluded due to diagnostic ambiguity, thus sta-
tistical analyses included n=99. Univariate ANOVAs were conducted
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to compare age, ADOS, PANSS and WAIS between the groups, and
followed by post-hoc tests when found significant. For sex, chi-square
test was used.

To assess group differences in dFNC ordinal indices, Welch's
ANOVAs were used. Welch's is a more stringent variation of ANOVA,
suitable in cases of unequal group sizes, and/or unequal homogeneity
of variance. When found significant, concurrent Games-Howell post-
hoc tests were conducted. ANOVAs were chosen over a MANOVA given
the different N sizes within the states (and choice of Welch's test). For
SE (nominal), chi-square (Fischer's exact test) was conducted. To test
for possible associations between dFNC results and medication intake as
well as IQ score, sensitivity analyses were performed (Appendix 5).

2.9. Correlation with symptoms

Spearman's correlations were calculated between ordinal dFNC in-
dices (DT2, DT3, FT1, FT2, FT3, NT) and ADOS-T and PANSS (subscales
and total) scores, in the combined clinical sample. Significant results
were followed by correlation analyses within each group. DT1 was not
included the correlation analysis as it had a small sample (N=12). NS
was also not included since it had a binary result (3/4) in most parti-
cipants.

2.10. Classification analysis

Classification was conducted using three-way linear discriminant
analysis (DA), with diagnostic group as the grouping variable, and all
dFNC indices as independent variables except for DT (DT could not be
included, since participants that did not enter a specific state have no
dwell time value for that state. DA analyses mandate entries for all data
points). Leave-one-out cross-validation was performed. Additionally,
DA was repeated using NT as the only independent variable, to provide
a simple generalizable version that doesn't depend on the specifics of
the states. NT was chosen for this single-parameter classification since it
is the most generalizable of all parameters- not depending on the spe-
cifics of the states or the number of different states.

Distance from cluster centroid (i.e., the distance of each partici-
pant's discriminant scores from the centroid of the diagnostic group to
which they belong) was calculated, and compared between groups
using a univariate ANOVA. This value represents disparity, thus re-
flecting homogeneity of scores within the groups.

Finally, to assess symptom severity differences between the emer-
ging clusters, univariate ANOVAs were performed with ADOS-T and
PANSS (total score and subscales) as dependent variables. When sig-
nificant, ANOVA was followed by simple-effects analysis to asses within
each diagnostic group, whether correct- vs. miss-classified individuals
differed in symptoms (data of the one SZ participant that was mis-
classified as HC was excluded from this analysis, to refrain from biasing
results by a single-case cell). To compare HCs that were correctly
classified vs. misclassified, a t-test was conducted comparing SPQ total
score.

3. Results

3.1. Sample characteristics

Table 1 presents sample characteristics.

3.2. Independent components (ICs)

Fifty-six ICs were identified, and partitioned into seven large-scale
networks (Fig. 2). IC labels and peak coordinates are provided in Ap-
pendix 2.

3.3. Dynamic connectivity states

The optimal number of states was determined as four by the cluster
validity index and elbow criterion (plot available in Appendix 4).

K-means clustering identified the following four states (Fig. 3. A):

State 1 was the most strongly connected state. This state was
characterized by strong positive connectivity of the visual (VIS) and

Fig. 1. Illustration of static FC (left) and dFNC (right) analysis steps.
Schematic illustration depicting assessment of functional connectivity in static FC (left) and dFNC (right). Adapted with permission from (Calhoun et al., 2014a).
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sensory-motor (SM) networks, and an overall positive connectivity
of cortico-cortical (VIS, SM, DMN and control (CON)) networks.
Additionally, this state shows anti-correlations between cortico-
cortical ICs and the amygdala- temporal-pole (ATP) network, as well
as some subcortical (SC) ICs. This state was engaged by 18 HC
participants, 7 ASD, and 4 SZ.
State 2 was characterized by weak, intra-network connectivity.
More specifically, this state portrayed absence of inter-network
connectivity, as well as weak intra-network connectivity within the
cortical networks. This state was engaged by 33 HC participants, 32
ASD, and 33 SZ.
State 3 was characterized by mild, wide-spread connectivity. This
state portrayed an overall positive connectivity of cortico-cortical
(VIS, SM, DMN, CON) networks. This state was engaged by 33 HC
participants, 29 ASD, and 25 SZ.

State 4 occurred in 1% of the windows. It was thus excluded from
all state-specific analyses. Data was retained for NS and NT analyses
(as these variables quantify change, irrespective of state specifics).

To test for stability and generalizability of the states, this analysis
was repeated with a five-state decomposition (a five-state solution was
imposed, to match previous publications (Damaraju et al., 2014; Rashid
et al., 2014)). Results highly resembled the four-state decomposition
(Appendix 6).

3.4. Group differences in temporal dynamics

ANOVAs revealed differences between the groups in all tested
variables except DT3. Full details are presented in Table 2 and graphed
together in Fig. 3 for ease of reading.

Table 1
Demographic and symptomatic characteristics of the diagnostic groups.

HC ASD SZ sig Post-Hoc

(N=34) (N=32a) (N=33)

Sex M/F (M%) 23/11 (67.6%) 28/4 (87.5%) 25/8 (75.8%) p=.160 N.A.
Age mean (SE) 23.74 (0.61) 23.53 (0.70) 24.82 (0.49) p=.281 N.A.
Head motion mean (SE) 0.08 (0.005) 0.10 (0.007) 0.11 (0.011) p=.034 HC < SZ⁎

ADOS-T mean (SE) 1.61 (0.23) 9.67 (0.45) 8.42 (1.00) p < .001 HC < ASD⁎

HC < SZ⁎

PANSS-T mean (SE) N.A. 52.29 (1.75) 63.79 (2.05) p < .001 ASD < SZ⁎

Positive mean (SE) N.A. 11.39 (0.47) 14.70 (0.73) p= .001 ASD < SZ⁎

Negative mean (SE) N.A. 15.29 (0.81) 19.00 (1.17) p=.015 ASD < SZ⁎

General mean (SE) N.A. 25.61 (1.06) 30.09 (1.00) p=.003 ASD < SZ⁎

ADOS-T score indicates social behavior deficits, measured by the Autism Diagnostic Observation Schedule total score. PANSS-T score indicates the overall severity
measured by the Positive and Negative Syndrome Scale. PANSS subscales indicate positive and negative symptoms, and general psychopathology. Head motion
represents mean framewise displacement.
N.A. indicated non-applicable tests: For the HC group PANSS evaluations were non-applicable; for non-significant group-comparisons post-hoc tests were non-
applicable.

⁎ Asterisks Indicate significant results for post-hoc tests (p < .05).
a ADOS-TN=31, PANSS N=28.

Fig. 2. Spatial maps of the ICs and networks.
Composite maps of the 56 independent components (ICs), sorted into seven functional networks. Colors indicate distinct ICs. Slice coordinates (MNI) are presented
bellow each slice. TP indicates temporal pole. IC labels and peak coordinates are provided in Appendix 2.
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Repeating the ANOVA while controlling for head motion (frame-
wise-displacement) showed similar results to those of the main ANOVA
presented here, and no significant effect for motion in any of the dFNC
parameters (Appendix 7).

Post-hoc tests indicated statistically significant differences between
the SZ and HC groups in all tested variables. The ASD group means lay
in between those the HC and SZ groups in all cases. Specifically, post-
hoc results indicated the following:

Number of different states (NS)

NS was reduced in both SZ and ASD, as compared to HC (p < .001
and p= .030, respectively).

Number of transitions (NT)

NT was reduced in SZ, as compared to both HC and ASD (p < .001
in both cases).

Fraction of time (FT)

- FT in state 1 (FT1) was reduced in both SZ and ASD, as compared to
HC (p < .001 and p= .025, respectively).

- FT2 was increased in both SZ and ASD, as compared to HC
(p < .001 and p= .027, respectively).

- Additionally, the SZ group's FT2 was higher than that of the ASD
group (p= .004).

- FT3 was reduced in SZ as compared to both HC and ASD (p < .001
in both cases).

Dwell time (DT)

- DT in state 1 (DT1) was reduced in SZ, as compared to HC
(p= .001).

- DT2 was increased in SZ, as compared to both HC and ASD
(p < .001 and p= .024, respectively).

- DT3 group differences did not reach statistical significance.

3.5. Association between clinical symptoms and temporal patterns

More severe deficits in social behavior (indicated by higher ADOS-T
scores) were associated with longer dwell times state-3 (r=0.301,
p= .030). Follow-up analysis of the separate diagnostic groups re-
vealed that results were driven by the SZ group (r=0.416, p= .043),
and were not significant in ASD (r=−0.068, p= .732), Fig. 4 A.

More pronounced severity of positive and negative symptoms (in-
dicated by higher PANSS-T scores) was associated with fewer transi-
tions between states (r=−0.282, p= .028). Follow-up analysis of the
separate diagnostic groups indicated no statistical significance in either
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Fig. 3. Group differences in temporal dynamics.
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group (SZ r=−0.214 p= .233; ASD r=−0.024, p= .905), Fig. 4 B.
However, comparison of correlation coefficients (Z= -0.32, p= .749)
indicated that the strength of the correlation in the SZ group
(r=−0.214) was not different from that of the combined group
(r=−0.282), suggesting that results were driven by the SZ group for
PANSS as well the.

The results did not survive false discovery rate (FDR) correction for
multiple correlations.

No significant associations were found for PANSS subscales.

3.6. Classification

DA significantly differentiated the diagnostic groups, Ʌ=0.624,
χ2= 43.645, p= .05.

Sensitivity rates were 81.8%, 50%, 41.2% for the SZ, ASD, and HC,

respectively (whereas chance-level would be 33% per group).
Full details of the classification results are presented in Table 3 and
Appendix 9.

Results of the leave-one-out cross validation, and the single-para-
meter classification were overall similar to results presented here
(Appendices 10, 11; respectively).

The average distance from cluster centroid was 0.874 (± 0.764) for
SZ, 1.571 (± 0.856) for ASD and 2.092 (± 0.742) for HC. ANOVA
indicated differences between the groups (p < .0001), and all post-hoc
comparisons were significant (psz-HC < 0.0001, psz-ASD= 0.003, pASD-
HC= 0.028).

3.7. Association between assigned cluster and clinical symptoms

ANOVA revealed an effect of cluster on ADOS-T score (p= .038).
Post-hoc tests indicated higher ADOS score in participants assigned to
the ASD cluster (regardless of diagnostic group), as compared to each of
the other clusters (assigned-ASD vs. assigned-HC p= .001; assigned-
ASD vs. assigned-SZ p= .042). Simple-effects analysis revealed similar
patterns within SZ and ASD groups: individuals with SZ assigned to the
ASD cluster had higher ADOS scores than those assigned to the SZ
cluster (p= .009). ASDs assigned to the ASD cluster had a higher ADOS

Table 2
Comparisons of dFNC indices between the groups.

N Mean Std. error ANOVA Sig Post-Hoc

NS HC
ASD
SZ
Total

34
32
33
99

2.50
2.13
1.91
2.18

0.106
0.098
0.101
0.063

F(2, 64)= 8.257 p= .001 SZ < HC (p < .001)
ASD < HC (p= .030)

NT HC
ASD
SZ
Total

34
32
33
99

8.18
6.56
3.18
5.99

0.738
0.734
0.445
0.429

F(2, 60)= 19.658 p < .001 SZ < HC (p < .001)
SZ < ASD (p < .001)

FT1 HC
ASD
SZ
Total

34
32
33
99

0.208
0.061
0.005
0.0929

0.046
0.028
0.003
0.020

F(2, 43)= 11.258 p < .001 SZ < HC (p < .001)
ASD < HC (p=.025)

FT2 HC
ASD
SZ
Total

34
32
33
99

0.493
0.691
0.870
0.683

0.060
0.044
0.029
0.032

F(2, 59)= 17.892 p < .001 SZ > HC (p < .001)
ASD > HC (p=.027)
SZ > ASD (p= .004)

FT3 HC
ASD
SZ
Total

34
32
33
99

0.297
0.248
0.100
0.216

0.034
0.031
0.020
0.018

F(2, 60)= 16.356 p < .001 SZ < HC (p < .001)
SZ < ASD (p < .001)

DT1 HC
ASD
SZ
Total

18
7
4
29

95.298
90.393
25.125
84.435

11.687
22.231
9.120
9.926

F(2, 12)= 11.903 p= .001 SZ < HC (p= .001)
SZ < ASD (p= .063)

DT2 HC
ASD
SZ
Total

33
32
33
98

177.981
263.230
439.862
294.002

35.949
44.538
47.747
26.974

F(2, 62)= 9.514 p < .001 SZ > HC (p < .001)
SZ > ASD (p= .024)

DT3 HC
ASD
SZ
Total

33
29
24
86

63.156
60.025
49.387
58.259

5.304
3.628
5.613
2.878

F(2, 51)= 1.769 p= .181 N.A.

Fig. 4. Association between clinical symptoms and temporal patterns, per
clinical group.
A) Correlation between ADOS-T score and DT3; B) Correlation between PANSS-
T score and NT.

Table 3
Classification results.

Predicted group membership

Assigned SZ Assigned ASD Assigned HC

Diagnostic group SZ 81.8% (27) 15.2% (5) 3.0% (1)
ASD 31.3% (10) 50.0% (16) 18.8% (6)
HC 29.4% (10) 29.4% (10) 41.2% (14)

Values represent percent of participants, with number of participants in par-
entheses.
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score than those assigned to the HC group, at trend level, (p= .064).
Examination of HC participants misclassified to clinical groups vs.

correctly classified (t-test) revealed that misclassified HC had trend-
level higher SPQ total scores (p= .065).

4. Discussion

The present study is the first to compare dynamic functional con-
nectivity in SZ and ASD. It is also the first to classify SZ from ASD based
on brain function, and to directly compare resting-state fMRI in these
disorders. Our results indicate that while both the SZ and ASD groups
displayed a pattern of restrictions in the dynamics of resting-state
functional connectivity, SZ participants showed a more pervasive ab-
normality (in terms of severity and type). Notably, the identified ab-
normalities were associated with a specific clinical manifestation: a
reduced number of transitions between states was correlated with more
severe PANSS score, potentially contributing to our understanding of SZ
heterogeneity. Additionally, more severe deficits in social behavior
were associated with prolonged time spent in a state of widespread
cortico-cortical connectivity. Moreover, classification analysis based on
FC dynamics, correctly identified 82% of SZ participants (vs. 33%
chance-level of a three-way classification), further supporting the un-
ique dynamic signature found in SZ.

Compared to HC, both clinical groups spent an increased portion of
the time in a state of weak intra-network connectivity (state 2), and a
decreased portion of the time in the state of strong connectivity (state
1). Both groups also presented reduced state variability, as indicated by
the smaller number of different states that participants display (NS).
Alongside these similarities, important distinctions emerged: While on
average HC participants spent 50% and ASD 70% of their time in the
weak connectivity state (state 2), SZ participants spent an over-
whelming average of nearly 90% of their time in this state, with simi-
larly extended dwell time (DT). Moreover, when SZ participants tran-
sitioned into the state of strongest connectivity (state 1), they switched
states very rapidly, while ASD and HC participants dwelled in this state
for a longer duration. The SZ group was further characterized by a
reduced number of transitions between states (NT; indicating loss of
appropriate tempo), and a reduced fraction of time (FT) spent in a state
of wide-spread cortico-cortical connectivity (state 3). Taken together,
these results indicate a severe and pervasive pattern of altered temporal
dynamics in SZ, suggesting that SZ individuals tend to remain in a state
of weak connectivity, at the expense of more highly connected states.

Our findings are consistent with previous dFNC findings in these
populations. Damaraju et al. (2014) reported increased DT in SZ
(compared to HC) in a state of weak intra-network connectivity, and
decreased DT in states of strong large-scale connectivity (as well as
fewer transitions into these states). Rashid et al. (2014) identified a
state of weak intra-network connectivity, in which SZ participants
displayed reduced FT compared to HC and BP. Du et al. (2016) focused
on the DMN and found that compared to HC, SZ spent more time in
sparsely connected states. Miller et al. (2016) studied meta-states (si-
multaneous weighted contributions to dFNC), finding that SZ partici-
pants displayed fewer transitions and limited state variability. This ef-
fect was stronger in patients with more hallucinations. Lastly, non-
clinical individuals with psychotic-like experiences spend less time in
states of robust within-network connectivity, and more time in a state of
visual hyperconnectivity and DMN hypoconnectivity (that correlated
with worse executive functioning (Barber et al., 2018)).

In ASD, de Lacy et al. (2017) examined a wide age-range ASD
sample from a large repository sample. As reported here, they detected
no DT differences between ASD and HC. Unlike our results, no FT dif-
ferences were identified in their study (the difference may result from
our focus on young adults vs. their broad age-range). Additionally, they
reported fewer between-state transitions (oscillations) in ASD. A
smaller number of transitions in the ASD group was seen in the present
analysis as well, albeit not statistically significant (possibly owing to the

smaller sample size). Lastly, Rashid et al. (2018) reported that ASD
diagnosis in children, as well as autistic traits in non-clinical children,
were associated with longer DT in a globally disconnected state. In our
adult sample the decrease in ASD was not statistically significant. No-
tably, our study is the first to specifically characterize temporal dy-
namics in adults with ASD, a population gravely underrepresented in
research (Murphy et al., 2016).

To further elucidate differences between the groups, and to test
whether temporal differences alone suffice to predict a participant's
diagnostic group, we performed a cross-validated supervised classifi-
cation analysis (discriminant analysis; DA). DA correctly identified SZ
participants at high rates (sensitivity= 81.8%). ASD and HC partici-
pants were correctly recognized at lower rates (50%, 41%; respec-
tively), though importantly still above the 33% chance-level of a three-
way classification. Specificity (i.e. proportion of correctly identified
individuals within a cluster) was highest for HC (77%), owing mainly to
the low rate of misclassified SZ in this cluster (i.e. one SZ was mis-
classified as HC). Specificity of the SZ cluster was 57%, with equal
numbers of misclassified HC and ASD assigned to this group. ASD
specificity was lowest (51%), and taken together with the relatively low
specificity found in this group attests to the heterogeneity of resting-
state temporal dynamics in ASD. DA further indicated low inter-subject
variability in the SZ group (evident by short distances from cluster-
centroid) suggesting relative homogeneity among SZ participants, while
ASD and HC groups each displayed greater heterogeneity, and sub-
stantial overlap with the other groups. Together these results suggest a
potential dynamic signature that is unique to SZ. Notably, participants
assigned to the ASD cluster (by their dFNC pattern alone), showed more
pronounced social behavior deficits. Furthermore, HC misclassified to
the clinical groups displayed trend-level higher schizotypal scores.
These findings support the potential clinical relevance of dFNC-based
classification, as it was able to predict complex clinical manifestations,
based on very few, well-defined, data-driven neural parameters. To
further illustrate this point, we repeated the classification using a single
summary measure of dynamics- the number of transitions (NT). NT was
chosen because it is the most generalizable of all our parameters- it does
not depend on the specifics of the states, or the number of different
states. Classification results were overall similar (overall-sensitivity of
the classification was reduced by 3.1%, compared to the original clas-
sification), providing a simple, generalizable potential marker that can
be easily compared across studies regardless of the specific states
identified. If such results are replicated in future studies, they could
guide a more personalized conceptualization of these disorders, with
the potential to assist more targeted treatment.

Importantly, our results suggest a relationship between dFNC pat-
terns and symptoms. Correlation analysis revealed that more severe
deficits in observed social behavior (as measured by ADOS) were as-
sociated with increased DT in a state of widespread cortico-cortical
connectivity (state 3), in the combined clinical sample. Follow-up
analyses indicated a significant association in SZ, but not in ASD. These
results reveal a unique neural correlate associated with real-life social
functioning in SZ, not shared by ASD. A correlation was also found
between PANSS total score and the number of transitions between
states, such that more severe symptoms were associated with fewer
transitions. This did not maintain statistical significance in the separate
groups, however the magnitude of the correlation in SZ resembled that
of the combined group, suggesting results may have been driven by SZ
here as well. We note that these results did not survive correction for
multiple correlations, and should hence be taken as preliminary.
However, the results provide characterization of the relationship be-
tween temporal dynamics and clinical symptoms in adults with SZ and
ASD. Albeit preliminary, the results suggest a continuum of brain-be-
havior association in SZ, that may help parse its heterogeneity, and if
replicated may potentially assist clinical decision making.

Some limitations should be acknowledged: First, the groups differed
in medications and IQ. We conducted sensitivity analyses and group
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comparisons (Appendix 5), indicating only sparse associations between
dFNC indices and either IQ or medication. Sensitivity analyses between
medications and IQ to clinical symptoms also produced overall null
results. Our findings are thus not likely to result from these factors.
Second, we cannot unequivocally rule out potential group-differences
in overall clinical severity as an intermediate confound. We assessed
quality of life (QOL (Heinrichs et al., 1984)) across all groups as a proxy
of overall severity. No correlation between dFNC indices and QOL was
evident in SZ or HC, and only FT2 was correlated in the ASD (Appendix
12). Additionally, PANSS' general psychopathology subscale did not
correlate with any dFNC parameter in ASD or SZ, suggesting that dFNC
group differences were not driven by overall-severity differences. Fi-
nally, even though previous studies have used ADOS in schizophrenia
participants (Barlati et al., 2019; Bastiaansen et al., 2011; de Bildt et al.,
2016; Maddox et al., 2017), and PANSS in ASD participants (Trevisan
et al., 2019) - the use of these scales in those populations has not been
officially validated yet, and should be interpreted cautiously. Other
limitations include lack of validation in an external dataset and/or
other methods of state decomposition.

Collectively our results demonstrate a severe and pervasive pattern
of restriction in SZ that distinguishes this group from both ASD and HC,
and is uniquely associated with clinical manifestations. While both
clinical groups spent an increased portion of the time in a state of weak
intra-network connectivity at the expense of highly-connected states, SZ
showed a more pervasive pattern in both type and severity of aberra-
tions. These results illuminate disorder-specific mechanisms associated
with social impairment, with implications for nosology, etiology and
treatment.
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