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Abstract

Motivation: With the recent advances in protein 3D structure prediction, protein interactions are becoming more
central than ever before. Here, we address the problem of determining how proteins interact with one another. More
specifically, we investigate the possibility of discriminating near-native protein complex conformations from
incorrect ones by exploiting local environments around interfacial residues.

Results: Deep Local Analysis (DLA)-Ranker is a deep learning framework applying 3D convolutions to a set of locally
oriented cubes representing the protein interface. It explicitly considers the local geometry of the interfacial residues
along with their neighboring atoms and the regions of the interface with different solvent accessibility. We assessed
its performance on three docking benchmarks made of half a million acceptable and incorrect conformations.
We show that DLA-Ranker successfully identifies near-native conformations from ensembles generated by
molecular docking. It surpasses or competes with other deep learning-based scoring functions. We also showcase
its usefulness to discover alternative interfaces.

Availability and implementation: http://gitlab.lcqb.upmc.fr/dla-ranker/DLA-Ranker.git

Contact: elodie.laine@sorbonne-universite.fr or alessandra.carbone@sorbonne-universite.fr

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Protein–protein interactions play a central role in virtually all bio-
logical processes. Reliably predicting who interacts with whom in
the cell and in what manner would have tremendous implications
for bioengineering and medicine. Hence, a lot of effort has been put
into the development of methods for simulating protein–protein
docking (Lensink et al., 2007, 2020). While highly efficient algo-
rithms can exhaustively sample the space of complex candidate con-
formations (Ritchie and Venkatraman, 2010), correctly evaluating
and ranking these conformations remains challenging.

The classical docking and scoring paradigm has been recently
challenged by the spectacular advances in protein structure predic-
tion with AlphaFold version 2 (AF2) (Jumper et al., 2021) and
RosettaFold (Baek et al., 2021). In particular, a handful of studies
have showcased the potential of AF2, or a slightly modified version,
in fold-and-dock strategies (Bryant et al., 2022; Evans et al., 2021;
Humphreys et al., 2021; Mirdita et al., 2021). Nevertheless, they
have also emphasized clear limitations. AF2 performs poorly on
some eukaryotic complexes, antibody-antigen complexes and com-
plexes displaying small interfaces (Bryant et al., 2022; Evans et al.,
2021). In such cases, the output is limited to an unreliable conform-
ation. In contrast, docking algorithms allow for the generation of

conformational ensembles useful to guide the prediction of interfa-
ces, to gain insight into protein sociability (Laine and Carbone,
2017) and to discover alternative binding modes and new partners
(Dequeker et al., 2022). These observations motivate the develop-
ment of accurate and efficient methods assessing the quality of dock-
ing conformations.

The Critical Assessment of PRedicted Interactions (CAPRI) clas-
sifies predicted protein complex conformations in four categories,
namely incorrect, acceptable, medium and high quality, based on
the extent to which they differ from the corresponding experimental
structures (Lensink et al., 2017). Recently, several methods leverag-
ing deep learning have been proposed to discriminate near-native
(acceptable or higher quality) from incorrect conformations (Cao
and Shen, 2020; Eismann et al., 2021; Renaud et al., 2021; Wang
et al., 2020, 2021). They adopt a ‘global’ perspective by assessing
the quality of the full interface (Renaud et al., 2021; Wang et al.,
2020, 2021) or even the complex as a whole (Eismann et al., 2021).
Standard 3D-convolutional neural networks (3D-CNN) have been
applied to a voxelized 3D grid representing the entire interface
(Renaud et al., 2021; Wang et al., 2020). This representation has
two limitations. First, when a fixed-size cube is used as grid, it might
not cover very large and/or discontinuous interfaces. Using a very
large cube to accommodate any interface is memory inefficient.
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Large cubes of fixed size may also hinder the accuracy in case of
small interfaces due to the information vanishing after a few layers
of pooling. Second, since the 3D-CNN does not benefit from the ro-
tational symmetry endowed to the Euclidean space, it is sensitive to
the orientation of the candidate conformation and its output may
change upon rotation of the input in an uncontrolled fashion.

Rotational data augmentation was used in Renaud et al. (2021)
to limit this effect but at the expense of dramatically increasing the
computational cost for training the model. A more efficient solution
is to use a SE(3)-equivariant CNN architecture instead of standard
CNN. SE(3)-equivariant CNN makes use of spherical harmonics, a
set of functions defined on the unit sphere, to guarantee that a rota-
tion of the input results in the same rotation of the output (Cohen
and Welling, 2016; Fuchs et al., 2020; Thomas et al., 2018; Weiler
et al., 2018). In Eismann et al. (2021), SE(3)-equivariant hierarchical
convolutions were applied to a point-cloud representation of the
whole conformation. Finally, graph-based representations, such as
those used in GNN-DOVE (Wang et al., 2021) and DeepRank-
GNN (Réau et al., 2021), are invariant to 3D rotations, but at the
expense of losing information about the orientations of the atoms
with respect to each other.

Alternatively, one can leverage the specific properties of proteins,
whose building blocks (the amino acid residues) share the same
chemical scaffold, to derive a SE(3)-equivariant representation. In
single protein structure prediction, Ornate (Pagès et al., 2019), Sato-
3DCNN (Sato and Ishida, 2019) and more recently AlphaFold2
(Jumper et al., 2021), benefit from these properties and make use
of oriented local frames centered on each protein residue. Such
representation circumvents the problem of 3D rotational symmetry
without the need for rotational data augmentation nor for
SE(3)-equivariant convolutional filters.

In this work, we investigate the possibility of discriminating
near-native complex candidate conformations from incorrect ones
by exploiting and combining two kinds of information: (i) local 3D-
geometrical and physico-chemical environments around the inter-
facial residues and (ii) regions of the interface with different solvent
accessibility. We represent the interface by the unique and well-
determined set of locally oriented residue-centered cubes lying be-
tween the interacting proteins in the candidate conformation
(Fig. 1A). The cubes are oriented by defining local frames based on
the common chemical scaffold of amino acid residues in proteins. A
cube encapsulates the local environment of the residue, i.e. the local
geometry of the residue together with its neighboring atoms. No
evolutionary information associated to residues is considered. Our
motivations for such a representation are multiple:

1. The number of known protein–protein complex structures is

fairly limited. Breaking down these structures into interfacial

residue-centered local environments allows training on a much

larger set of input samples (cubes) compared to the number of

interfaces.

2. Our representation guarantees that the output is invariant to the

global orientation of the input conformation while fully

accounting for the relative orientation of a residue with respect

to its neighbors.

3. We wanted to investigate the minimal unit of information at the

interface which is necessary to predict the quality of an inter-

action. By relying on minimal units, i.e. residue-centered cubes,

one can also evaluate interfaces between three or more proteins.

4. The set of cubes belonging to the interface can be organized in

three subsets depending on the solvent accessibility of the inter-

facial residues. The cubes within each subset are independent

from each other and from the geometry of the surface. We

wanted to study the contribution of these three subsets in rank-

ing docking conformations.

We propose Deep Local Analysis (DLA)-Ranker, a deep
learning-based approach ranking candidate complex conformations

by applying 3D-CNN to a set of locally oriented cubes representing
the residues of its putative interface.

2 Materials and methods

Our goal is to design a classifier that can effectively distinguish near-
native protein candidate conformations from incorrect ones by
learning from a local representation of the structure of the interface.
Such representation should account for the local geometrical ar-
rangement of interfacial atoms in the Euclidean space and their
physico-chemical properties.

2.1 Protein–protein interface representation
DLA-Ranker takes as input a cubic volumetric map centered and
oriented on each putative interfacial residue (Fig. 1A). It exploits
only information coming from a candidate complex conformation,
without any knowledge about which residues are actually part of
the native interface. The putative interface is defined as the set of
residues displaying a change in solvent accessibility between the free
(isolated) proteins and the candidate complex. We used NACCESS
(Hubbard and Thornton, 1993) with a probe radius of 1.4 Å to com-
pute residue solvent accessibility. To build the map, we adapted the
method proposed in Pagès et al. (2019). The atomic coordinates of
the input conformation are first transformed to a density function.
The density d at a point v! is computed as

dð v!Þ ¼
X

i�Natoms

exp � v!� ai
!

r

� �2
" #

ti; (1)

where ai
! is the position of the ith atom, r is the width of the

Gaussian kernel and is set to 1 Å and ti is a vector of dimension 169
encoding some characteristics of the protein atoms. Namely, the first
167 dimensions correspond to the atom types that can be found in
amino acids (without the hydrogens) (Pagès et al., 2019), and the 2
other dimensions correspond to the two partners, the receptor and
the ligand. Then, the density is projected on a 3D grid comprising
24� 24� 24 voxels of side 0.8 Å. For the nth residue, the
( x!; y!; z!) directions and the origin of the cube are defined by the
position of the atom Nn, and the directions of Cn�1 and Can with re-
spect to Nn. The X-axis is parallel to the vector pointing from Cn�1

to Nn. The Y-axis is perpendicular to the X-axis and is defined such
that Can lies in the half-plane Oxy with y>0. The Z-axis is defined
as a vector product, Z ¼ X� Y. The origin of the cube is deter-
mined such that Nn is located at position (6.1 Å, 6.6 Å and 9.6 Å).
This choice ensures that all the atoms of the central residue fit in the
cube. More details can be found in Pagès et al. (2019). Thanks to
this local frame definition, the map not only is invariant to the can-
didate conformation initial orientation but also provides informa-
tion about the atoms and residues relative orientations.

Depending on the location of the residues at the interface, their
geometrical and physico-chemical environments are expected to be
very different. For instance, the map computed for a residue deeply
buried in the interface will be much more dense than that computed
for a partially solvent-exposed residue at the rim. This motivated us
to explicitly give some information to the network about the loca-
tion of the input residue at the interface. To do so, we classified the
interfacial residues in three structure classes, the Support (S), the
Core (C) and the Rim (R) (Fig. 1A), as defined in Levy (2010). We
one-hot encode the input residue class in a vector u and append it to
the embedding computed by DLA-Ranker (see below and Fig. 1B,
concatenation layer). The SCR classification previously proved use-
ful for the prediction and analysis of protein–protein and protein–
DNA interfaces (Corsi et al., 2020; Laine and Carbone, 2015;
Raucci et al., 2018).

2.2 DLA-Ranker architecture
The DLA-Ranker architecture comprises a projector, three 3D con-
volutional layers, a max pooling layer and three fully connected
layers (Fig. 1B). The projector maps the feature vector of each voxel
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into a vector of size 20. Each convolutional layer is followed by a
batch normalization layer. The max pooling layer exploits scale sep-
arability by preserving essential information of the input during
coarsening of the underlying grid. The one-hot encoded vector of
the residue structure class (u) is concatenated to the embedding
derived from the convolutional layers (i.e. output of the flatten
layer). To avoid overfitting, we used 40%, 20% and 10% dropout
regularization on the input, first and second layers of the fully con-
nected subnetwork, respectively. The last activation function
(Sigmoid) outputs a score comprised between 0 and 1 for each input
interfacial residue. The loss function is the binary cross-entropy
measuring the difference between the probability distribution of the
predicted output and the given label (0 or 1). The objective of train-
ing is to minimize this loss with respect to the trainable parameters:
reaching higher output scores for the residues belonging to a near-
native conformation and lower output scores for the residues of in-
correct conformations. We used the Adam optimizer with a learning
rate of 0.001 in TensorFlow (Abadi et al., 2016).

2.3 Aggregation of individual residue-based scores
To evaluate a candidate conformation, DLA-Ranker applies global
averaging on the individual residue scores over the interface. The
predicted quality Q of conformation C is expressed as

QC ¼
1

jICj
X
rk2IC

Sk; (2)

where IC is the ensemble of interfacial residues and Sk is the
score predicted by the network for the input 3D map centered on
residue rk.

To investigate whether we could improve on this global averag-
ing baseline, we considered two approaches. First, we proposed two
additional evaluation schemes based on an average restricted to a se-
lection of subsets of residues at the interface: (i) residues of S and C
regions and (ii) residues of C and R regions (Fig. 1C). Second, we
applied different weights to the residues comprising the interface by
using graph-based attention (Veli�ckovi�c et al., 2018) (Fig. 1C and

Supplementary Fig. S1). Namely, we extracted the embeddings ek

computed by the first fully connected layer of DLA-Ranker and used
them as node features in a graph representing the interface, where
two nodes are linked if the distance between their associated resi-
dues is <5.0 Å. We apply one layer of self-attention and predict a
unique score estimating the quality of the whole interface
(Supplementary Fig. S1).

2.4 Metrics for comparing conformations
To estimate the deviation of a candidate conformation from
the ground-truth experimental conformation, we relied on two
metrics, namely L-RMSD and I-RMSD (Lensink et al., 2017)
(Supplementary Fig. S2). The L-RMSD (Ligand-Root Mean Square
Deviation) measures the deviation displayed by the ligand between
the candidate conformation and the ground-truth conformation,
after superimposing the receptors of the two conformations
(Supplementary Fig. S2B). The I-RMSD (Interface-Root Mean
Square Deviation) measures the deviation of the interface, defined as
the ensemble of residues having any heavy atom within 10 Å of the
partner (Supplementary Fig. S2C). Both metrics are computed over
the backbone atoms of the selected residues.

2.5 Datasets
To train and test DLA-Ranker and compare its performance with
different approaches, we used three databases of docking conforma-
tions derived from the structural data contained in the Protein Data
Bank (Berman et al., 2000).

2.5.1 CCD4PPI: docking conformations produced by MAXDo

We compiled our primary database, which we call CCD4PPI, from
two complete cross-docking experiments performed on the datasets
P-262 (Dequeker et al., 2019; Lagarde et al., 2018) and PPDBv2
(Lopes et al., 2013; Mintseris et al., 2005) using the docking tool
MAXDo (Sacquin-Mora et al., 2008). Both P-262 (262 proteins)
and PPDBv2 (168 proteins) cover a large variety of functional

Fig. 1. Interface representation and DLA-Ranker architecture. (A) Representation of a protein complex putative interface as an ensemble of cubes (IC). Each cube (rk 2 IC) is

centered and oriented on an interfacial residue. It contains atoms belonging to the residue and its local environment (Carbon: green, Oxygen: red, Nitrogen: blue, Sulfur: yel-

low). A cube is labeled as being part of the Support (red), Core (gold) or Rim (blue) of the interface (one-hot encoded vector uk). (B) Architecture of DLA-Ranker neural net-

work. For input cube rk, the network has two outputs: score Sk and embedding vector ek. (C) The evaluation of the interface either by global averaging the local scores Sk (1)

over all interfacial residues, (2) over residues from SC and (3) over residues from CR, or by extracting embedding vectors ek and combining them through graph-based aggrega-

tion (A color version of this figure appears in the online version of this article.)
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classes, such as antibody–antigen, enzyme-regulator and substrates-
inhibitor (Dequeker et al., 2019). We set aside 20 pairs for testing
(Supplementary Table S1) and selected 312 protein pairs for training
purposes (Supplementary Fig. S3). For about half of the pairs, the
docking was performed using the unbound forms of the proteins.
The PDB chains in the associated ground-truth experimental com-
plex structures have at least 70% sequence identity with the docked
PDB chains. For the remaining half, the bound forms were used in
the docking calculations. MAXDO represents proteins as coarse-
grained rigid bodies. To reconstruct the high-resolution docked con-
formations, we used INTBuilder (Dequeker et al., 2017) starting
from the Euler angles provided by MAXDo. We selected the training
set of protein pairs based on the quality of the docked conforma-
tions. Specifically, for P-262, we efficiently screened 27 million
docked conformations with INTBuilder and the rigidRMSD library
(Neveu et al., 2018), and systematically evaluated their quality with
respect to the experimentally resolved complex structures. For
PPDBv2, we obtained the list of acceptable and incorrect conforma-
tions from Nadalin and Carbone (2018). In total, we identified
3902 acceptable or higher quality conformations (L-RMSD <
10.0 Å and I-RMSD < 4.0 Å) and we retained all of them for train-
ing DLA-Ranker. Among the ensemble of incorrect conformations,
we selected a subset of 6038 for training. Specifically, we first fil-
tered out the conformations with unfavorable (positive) docking
energies. Then, for each protein pair, we selected the 10�Nacc best-
scored conformations, where Nacc is the number of acceptable con-
formations, and finally chose one-sixth of those randomly.

2.5.2 BM5: docking conformations produced by HADDOCK

The Docking Benchmark version 5 (BM5) (Vreven et al., 2015) com-
prises 231 non-redundant (at the SCOP family level) target com-
plexes from multiple functional classes, including antibody–antigen
and enzyme-inhibitor, and with the corresponding unbound protein
structures. We considered a total of 449 158 candidate conforma-
tions coming from 142 dimer target complexes. They were gener-
ated, selected and labeled by Renaud and co-authors using the
protocol reported in (Renaud et al., 2021). Specifically, for each tar-
get complex, 25 300 docking models were generated using the inte-
grative modeling platform HADDOCK (Dominguez et al., 2003) in
three stages: (i) rigid-body docking, (ii) semi-flexible refinement by
simulated annealing in torsion angle space and (iii) final refinement
by short molecular dynamics in water (Renaud et al., 2021). Almost
all (99%) the models were produced starting from the unbound
structures of the proteins. To generate a suitable amount of near-
native conformations, both ab initio docking and docking guided by
the knowledge of the interface were performed. Then, the resulting
set of conformations was reduced to avoid redundancy. The confor-
mations with I-RMSD �4.0 Å were labeled as near-native. On aver-
age, each target complex has �230 near-native conformations and
�2932 incorrect ones.

2.5.3 Dockground: docking conformations produced by Gramm-X

We downloaded the Dockground database 1.0 (Kundrotas et al.,
2018; Liu et al., 2008) from http://dockground.compbio.ku.edu/
downloads/unbound/decoy/decoys1.0.zip. It comprises 61 target
complexes for which candidate conformations were generated
by the Fast Fourier Transform-based method GRAMM-X
(Tovchigrechko and Vakser, 2005) starting from the unbound struc-
tures of the proteins. On average, each target complex is associated
with 108 candidate conformations, of which 9.83 are acceptable
(L-RMSD � 5.0 Å) and 98.5 are incorrect. The incorrect conforma-
tions represent only a small fraction of the full docking conform-
ational ensemble. They were chosen because they display a degree of
shape complementarity similar to the near-native ones and they yield
a maximally spread spatial distribution around the latter (Kundrotas
et al., 2018). For comparison purposes, we used the same division of
the dataset into four non-redundant groups as that reported in
Wang et al. (2021). Any two complexes coming from different
groups share <30% sequence identity and display a TM-score lower
than 0.5 (Zhang and Skolnick, 2005).

2.6 Training protocol
We used CCD4PPI to optimize DLA-Ranker hyperparameters. In
total, we explored about 10 different architectures by varying the
number of convolutional layers, the number of neurons in the fully
connected layers, and the dropout rates. We chose the best-
performing architecture and used it for producing our final results
and performing the comparisons with the other methods. We
trained several independent models of DLA-Ranker using each of
the three considered databases. Using CCD4PPI, we trained 5 mod-
els over 20 epochs through a 5-fold cross-validation procedure on
the 312 protein pairs (Supplementary Fig. S4). For comparison pur-
poses, we reproduced the same training protocols as those reported
for DeepRank (Renaud et al., 2021) and GNN-DOVE (Wang et al.,
2021) on BM5 and Dockground, respectively. Specifically, to com-
pare DLA-Ranker with DeepRank, we performed 10-fold cross-
validation by splitting the set of 142 dimers selected from BM5 in
114 for training, 14 for validation and 14 for testing. In total, 140
target complexes were used in the test sets (complexes BAAD and
3F1P were not included in the testing). We should stress that, con-
trary to what was done in Renaud et al. (2021), we did not augment
the input conformational ensemble by random rotations since DLA-
Ranker is not sensitive to the orientation of the input conformation.
To compare DLA-Ranker with GNN-DOVE, we trained four mod-
els following 4-fold cross-validation on Dockground as reported in
Wang et al. (2021). For each model, we used three non-redundant
groups for training and validation (45 or 44 complexes) and the
remaining one for testing (15 or 14 complexes). In all three data-
bases, the incorrect conformations are much more abundant than
the near-native ones. To compensate the effect of imbalanced train-
ing sets and elevate the importance of errors made on near-native
poses compared to incorrect ones, we assigned higher weights to the
loss of the acceptable class. We used class weights (0.823, 1.273),
(0.54, 6.75) and (0.071, 0.929) for CCD4PPI, Dockground and
BM5, respectively.

2.7 Evaluation metrics
We used hit rate and enrichment factor to evaluate the performance
of DLA-Ranker in ranking candidate conformations. Hit rate curves
show the fraction of target complexes in the test set with at least one
near-native conformation within the top-ranked conformations.
Enrichment factor for an individual target complex is defined as the
fraction of acceptable conformations found in the top-ranked confor-
mations. In case of CCD4PPI, we ranked the conformations using a
consensus of the five trained models. To do so, we first ordered the
conformations according to their scores computed from each trained
model. Then, we discretized the ranks into six bins, namely labels
top1, top5, top10, top50, top100 and top200. This way we could rep-
resent each conformation as a sequence of ranking labels predicted by
five models. Finally, we ‘lexicographically’ ordered these labels and
reported the hit rate of each individual complex separately.

3 Results

3.1 Identifying near-native conformations
We first assessed DLA-Ranker’s ability to correctly rank candidate
conformations. We selected the 1000 conformations best scored by
MAXDo for each of the 20 test protein pairs from CCD4PPI and we
re-ranked them according to the Q scores predicted by DLA-Ranker.
We primarily considered a consensus of the five trained models (see
Section 2) and compared the obtained rankings with those provided
by MAXDO (Fig. 2A). The latter evaluates conformations using a
physics-based scoring function very similar to that of ATTRACT
(Zacharias, 2003). For most of the pairs, DLA-Ranker assigned high
Q scores to the near-native conformations and discriminated them
from the incorrect ones (Fig. 2A and Supplementary Fig. S5). The top-
ranked conformation was near-native in two-thirds of the protein
pairs (Fig. 2A). DLA-Ranker achieved better performance than
MAXDo in 11 cases. DLA-Ranker’s performance does not depend on
the sequence similarity between the test protein pairs and the training
pairs (Supplementary Table S1). For instance, it performs very well on
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the 1ku6_B and 2vp7_A homodimers (Fig. 2A), both sharing <30%
sequence identity with any pair from the training set. In contrast, it
fails to identify a near-native conformation in the top 200 for the
1rkc_A:1ydi_A pair sharing more than 70% sequence identity with
the training set. This pair is also very challenging for MAXDo. DLA-
Ranker’s ability to single out near-native conformations for protein
pairs not seen during training and not similar to the training pairs was
confirmed when considering the models individually (Supplementary
Fig. S6). Overall, DLA-Ranker performance also does not depend on
the extent of conformational change between the docked protein
forms and the bound forms (Fig. 2A and B, label colors). For instance,
one of the cases where it performs very well, the 1ku6_B homodimer,
displays a substantial rearrangement (Fig. 2F). Combining DLA-
Ranker with the pair potential CIPS (Nadalin and Carbone, 2018)
improved the results (Fig. 2B). In particular, it allowed enriching the
top 200 subset in near-native conformations for the difficult case of
1rkc_A:1ydi_A, and surpassing MAXDo for the pair 2c9w_A:2jz3_C.

We further investigated the behavior of DLA-Ranker for the dif-
ferent sub-regions of the interface, namely the support, core and rim
on two pairs of the database, 1yy9_D:1ck4_B and 1ku6_B homo-
dimer. For both pairs, we observed a wide range of predicted scores
within each sub-region (Fig. 2C and D). The score distributions for
the three sub-regions often display similar shapes. Nevertheless, it
may happen that DLA-Ranker performs significantly differently
from one sub-region to the other, as exemplified by the pair
1yy9_D:1ck4_B. In this case, the scores predicted for the residues

lying in the support of the interface are not discriminative enough.
Averaging the residues’ individual scores over the three interface
sub-regions allows correctly classifying the conformations. At the
residue level, DLA-Ranker can analyze per-residue scores across
near-native conformations to highlight to what extent each residue
fits in the interface (Supplementary Fig. S7A and B).

3.2 Comparison with other scoring functions
We compared DLA-Ranker with two deep learning-based scoring
functions, namely DeepRank (Renaud et al., 2021) and GNN-
DOVE (Wang et al., 2021). We used all interfacial residues for train-
ing and assessed different sub-region combinations (three averaging
schemes: SCR, SC and CR) for testing. For both comparisons, DLA-
Ranker performance was assessed using cross-validation, where the
protein pairs used for testing do not share any homology with those
used for training (see Section 2).

DeepRank applies standard 3D convolutions to a unique voxel-
ized grid representing the interface. On a collection of 10 test sets of
14 target complexes from BM5 (see Section 2), DLA-Ranker signifi-
cantly outperforms DeepRank (Fig. 3 and Supplementary Fig. S8). It
yields a higher enrichment for both the ‘raw’ conformations pro-
duced by the rigid-body docking (Fig. 3A) and the semi-flexibly
refined conformations (Fig. 3B). The enrichment curves obtained
on the set of conformations further refined through molecular
dynamics simulations in explicit water are almost superimposed
(Supplementary Fig. S8).

Fig. 2. DLA-Ranker performance on CCD4PPI database. (A and B) Ranking results per protein pair when all interfacial residues are used for train and test according to experi-

mental setup 1 (C). For each pair, we report whether some near-native conformations were found in the top 1, 5, . . ., 200 out of a total of 1000 conformations generated and

selected by MAXDo. A colored cell indicates the presence of at least one acceptable conformation in the corresponding topX. The pink color corresponds to MAXDo, while the

blue color corresponds to DLA-Ranker (A) or DLA-Ranker combined with CIPS (B). For each topX, the yellow dot indicates the pair with the highest enrichment factor. The PDB

ids are colored according to the magnitude of the conformational change between the docked forms and the bound forms. Green: none or small. Orange: medium. Red: large. (C

and D) Distribution of individual scores based on S, C, R classes for acceptable and incorrect poses of complex 1yy9_D:1ck4_B (C) and 1ku6_B homodimer (D). (E) Comparison

between different methods. The SCR, SC and CR DLA-Ranker models were trained and tested on all interfacial residues, only those in the support and core, or only those in the

core and rim, respectively. (F) Best-ranked candidate conformations for the 1ku6_B homodimer. The reference complex structure is in black, the docked receptor in grey, the lig-

and conformation selected by MAXDo in pink and that selected by DLA-Ranker in blue (A color version of this figure appears in the online version of this article.)
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GNN-DOVE represents the interface as a graph and captures the
information on the intermolecular interactions using graph attention
mechanisms (Wang et al., 2021). DLA-Ranker and GNN-DOVE
display comparable hit rates on Dockground (Supplementary Fig.
S9). While GNN-DOVE identifies a near-native conformation in the
top 5 for more complexes than DLA-Ranker, DLA-Ranker covers
more complexes when looking at the top 15 conformations. The
results differ from one fold to another and this observation may be
explained by the small size of the database. It contains about 5000
conformations versus �10 000 for CCD4PPI and 450 000 for BM5
(see Section 2). In the second fold, we observe a lower performance
for DLA-Ranker, due to the presence of an outlier complex, namely
the ribonuclease inhibitor complex (1DFJ_E_I). The structure of this
complex displays several loops on the interface (Supplementary Fig.
S10A). By comparison, the other structures of the ribonuclease in-
hibitor complex available in the PDB have more structured interfa-
ces (Supplementary Fig. S10A). The t-SNE (t-distributed stochastic
neighbor embedding) analysis (averaged over the interface) of
1DFJ_E_I shows less separability compared to those of other com-
plexes from the test set (Supplementary Fig. S10B–E).

3.3 Influence of the interface description
We investigated whether DLA-Ranker could still discriminate near-
native from incorrect conformations with a partial description of the
interfaces. To do so, we re-trained DLA-Ranker on CCD4PPI using
two different subsets of the interfacial residues: (i) the support and
core (SC), or (ii) the core and rim (CR). In the test phase, we aggre-
gated the predicted residue-based scores over the same combination
as that used during training (Fig. 1C). The results obtained on
the 20 test protein pairs from CCD4PPI show that DLA-Ranker
captures sufficient information with a partial description of

the interface (Fig. 2E). The CR model yielded the best overall
performance, and allowed to retrieve near-native conformations
in the top 5 for almost all protein pairs (see also Supplementary
Fig. S11). In addition, we assessed the partial aggregation schemes
on BM5 (Fig. 3 and Supplementary Fig. S8) and Dockground
(Supplementary Fig. S9) by the models trained using all interfacial
residues. The results are consistent with those on CCD4PPI, with
the combination of core and rim yielding a higher performance than
the combination of support and core.

We also checked whether we could exploit the topological infor-
mation of the interface to aggregate the learned residue-based repre-
sentations. We extracted the embeddings learned by DLA-Ranker
on Dockground and used them as node features in a graph represen-
tation of the interface (Fig. 1C). We observed that the graph-based
aggregation does not improve over the global averaging scheme
(Supplementary Fig. S12C–F). This result can be explained by the
fact that the individual embeddings already encode global informa-
tion about the interface since the labels used during training (accept-
able or incorrect) are defined at the level of the interface
(Supplementary Fig. S12A). This limits the learning capacity of the
graph representation, which thus tends to overfit the training set
(Supplementary Fig. S12B). The similarity between the embeddings
in the training set causes homogeneous attention weights and as a re-
sult, the topology will not influence the learning.

3.4 Comparison with ClusPro-AF2
We compared our approach to the recently proposed ClusPro-AF2
protocol (Ghani et al., 2021), where AF2 (Jumper et al., 2021) is used
to refine and complement the candidate conformations generated and
selected by the docking tool ClusPro (Kozakov et al., 2017). ClusPro-
AF2’s overall performance on the test set of 140 dimers from BM5 is
similar to those we obtained by applying DLA-Ranker on the candi-
date conformations produced by HADDOCK (Fig. 3C). Moreover,
using only the residues located in the core and the rim of the interfaces
for DLA-Ranker evaluation increases the number of complexes for
which a near-native conformation is found in the top 5 and 10
(Fig. 3C, see CR). Considering top 10 ranking, there are 19 complexes
for which ClusPro-AF2 predicts acceptable or higher quality confor-
mations, while DLA-Ranker cannot find any acceptable one. Five of
these complexes (2OT3, 2I9B, 1ATN, 1RKE and 1R8S) have very
few acceptable conformations in the ensemble of poses generated by
HADDOCK. Reciprocally, there are 23 complexes that are well pre-
dicted by DLA-Ranker and are particularly challenging cases for
ClusPro-AF2. These include complexes between proteins coming from
a pathogen and its host (1EFN, 4H03, 2A9K, 1AK4 and 1MAH),
complexes from the immune system (1GHQ, 1SBB, 1KXQ, 4M76
and 2I25), enzyme-inhibitor complexes (1PXV, 1JTD and 2ABZ) and
regulatory complexes (1GLA and 1B6C). While ClusPro-AF2
produces only conformations of very low quality for these complexes,
DLA-Ranker is able to identify at least one near-native conformation
for 10 of these complexes at top 1, 3 in the top 5 and 2 complexes in
the top 10.

3.5 Unraveling alternative interfaces
Finally, we explored the potential of DLA-Ranker to discover alter-
native interfaces. As a case study, we considered the SQD1 enzyme
which can self-assemble into homodimers (1qrr) and homotetramers
(1i24). We docked the protein (chain 1qrr_A) against itself using
ATTRACT and evaluated all interfacial residues detected in the
3000 best candidate conformations with DLA-Ranker. In
Figure 4A, we show the propensity of these residues to have a score
higher than 0.5 according to DLA-Ranker. We can clearly identify
three patches of residues, which appear in acceptable interfaces
(Fig. 4A, see residues in red). The first one corresponds to the homo-
dimeric interface found in 1qrr (Fig. 4A, the other copy of the
protein, i.e. the partner is in green). The second one corresponds to
another interface found in the homotetramer 1i24 (Fig. 4A, partner
in violet). Finally, the third one is supported by the homotetramer
1wvg, whose chains are homologous to the SQD1 enzyme
[E-value¼8.58e�4, identified using the PPI3D web server

Fig. 3. Performance of DLA-Ranker on the 140 dimers of the BM5 database. (A and

B) A comparison between the performance of DLA-Ranker (score averaging schemes

SCR, CR and SC) and DeepRank (orange). Each curve reports the median enrichment

over 10 test sets of 14 target complexes (see Section 2). See Supplementary Figure S8

for both median and the interval between 25% to 75% percentiles. (A) Only rigid

body docking decoys. (B) Decoys with semi-flexible refinement. See Supplementary

Figure S8 for the performance on decoys with water refinement. (C) A comparison be-

tween combination of HADDOCK and DLA-Ranker and ClusPro-AF2 in protein

complex structure prediction in terms of number of target complexes with at least one

acceptable or higher quality conformation at top1, top5 and top10 (A color version

of this figure appears in the online version of this article.)
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(Dapk�unas et al., 2017)] (Fig. 4A, partner in gold). Moreover, the
third interface is evolutionary conserved and predicted as an inter-
acting region by JET2Viewer (Ripoche et al., 2017) (Supplementary
Fig. S13B). Altogether, this analysis reveals that DLA-Ranker can be
useful to detect multiple binding modes by evaluating individual res-
idues across conformational ensembles. By comparison, looking
only at the propensity of each residue to be located at the interface
in the candidate conformations (Dequeker et al., 2019; Fernández-
Recio et al., 2004), without accounting for DLA-Ranker scores, one
can clearly identify the first interface but not the two others
(Fig. 4B). We further compared the ability of ATTRACT and DLA-
Ranker in identifying acceptable conformations representative of
the different interfaces. ATTRACT and DLA-Ranker (based on the
SCR score averaging scheme) find at least one acceptable hit for
each of the two first interfaces in the top 22 and 28, respectively.
This rank improves to 17 for DLA-Ranker if averaging scheme SC is
used (Supplementary Fig. S13D and E).

3.6 Runtime and memory usage
The calculations were performed on two GPU clusters: (i) worksta-
tions with GPU: NVIDIA GeForce RTX 3090 (24 GB RAM) and
CPU: AMD Ryzen 95950X and (ii) workstations with GPU: V100
(16 or 32 GB RAM). Training one network on all the conformations
from 142 BM5 complexes on a single machine of the first cluster took
312 hours. There is no minimum GPU memory requirement. For ex-
ample, for some experiments, we trained the models on an NVIDIA
TITAN Xp (8 GB RAM) GPU. Nevertheless, a large GPU memory
allows us to increase the batch size and speed up the learning process.
The average inference time (representation of the interface and predic-
tion of scores) is 0.45 s using CPU and 0.38 s using GPU for a con-
formation on a user’s machine with GPU: NVIDIA Quadro RTX
3000 and CPU: Intel(R) Core(TM) i7-10875H CPU @ 2.30 GHz.

4 Discussion

We have shown that it is possible to evaluate complex candidate
conformations by learning local 3D atomic arrangements at the
interface. We have developed a deep learning-based approach

explicitly accounting for the relative orientations of the protein resi-
dues while being insensitive to the global orientation of the protein.
The method achieves performance better or similar to the state of

the art. We obtained the best performance by averaging the per-
residue scores predicted over the core and the rim of the interface.

Beyond the results reported here, we have explored different aspects
of the DLA-Ranker model by changing the input data representa-
tion, the network architecture, the hyperparameter values, and the

hardware. Specifically, we tested the impact of reducing the number
of atom types to 4 instead of the 167 default residue-specific atom

types. We observed that the performance was not significantly
impacted by this modification. The advantage of this model is that
the calculation of the volumetric map, the training and the inference

is much faster and with less hardware requirements (better usage of
hard drive, RAM and GPU RAM). In addition, we tested the impact

of removing the SCR interface description and the receptor-ligand
distinction from the features. We observed that these two pieces of
information, alone or combined, improved the performance.

Increasing the number of layers and model parameters did not im-
prove the performance and resulted in overfitting. The use of drop-
outs improved the performance.

DLA-Ranker can be applied to conformational ensembles gener-
ated by docking to identify near-native conformations and to discover

alternative interfaces. It can be combined with more classical scoring
functions. It can also be used to evaluate complexes of any size and is

not limited to binary complexes. We envision many applications for
the local-environment-based approach of DLA-Ranker, including the
identification of physiological interfaces, the discovery of small sub-

sets of cubes dedicated to functional tasks, the construction of pheno-
typic mutational landscapes and the prediction of binding affinity.
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Réau,M. et al. (2021) DeepRank-GNN: a graph neural network framework to

learn patterns in Protein-Protein interfaces. bioRxiv, https://doi.org/10.

1101/2021.12.08.471762.

Sacquin-Mora,S. et al. (2008) Identification of protein interaction partners

and protein–protein interaction sites. J. Mol. Biol., 382, 1276–1289.

Sato,R. and Ishida,T. (2019) Protein model accuracy estimation based on local

structure quality assessment using 3D convolutional neural network. PLoS

One, 14, e0221347.

Thomas,N. et al. (2018) Tensor field networks: rotation- and

translation-equivariant neural networks for 3D point clouds. https://doi.

org/10.48550/arXiv.1802.08219.

Tovchigrechko,A. and Vakser,I.A. (2005) Development and testing of an auto-

mated approach to protein docking. Proteins: Structure, Function, and

Bioinformatics, 60, 296–301.

Veli�ckovi�c,P. et al. (2018) Graph attention networks. In: International

Conference on Learning Representations (ICLR 2018), Vancouver, Canada.

https://doi.org/10.48550/arXiv.1710.10903.

Vreven,T. et al. (2015) Updates to the integrated protein–protein interaction

benchmarks: docking benchmark version 5 and affinity benchmark version

2. J. Mol. Biol., 427, 3031–3041.

Wang,X. et al. (2020) Protein docking model evaluation by 3D deep convolu-

tional neural networks. Bioinformatics, 36, 2113–2118.

Wang,X. et al. (2021) Protein docking model evaluation by graph neural net-

works. Front. Mol. Biosci., 8, 647915.

Weiler,M. et al. (2018) 3D steerable CNNs: learning rotationally equivariant

features in volumetric data. In: Advances in Neural Information Processing

Systems, Vol. 31, Neural Info Process Sys F Publisher, La Jolla.

Zacharias,M. (2003) Protein–protein docking with a reduced protein model

accounting for side-chain flexibility. Protein Sci., 12, 1271–1282.

Zhang,Y. and Skolnick,J. (2005) TM-align: a protein structure alignment al-

gorithm based on the TM-score. Nucleic Acids Res., 33, 2302–2309.

4512 Y.M.Behbahani et al.

https://doi.org/10.1101/2021.10.04.463034
https://doi.org/10.48550/arXiv.2006.10503
https://doi.org/10.1101/2021.09.07.459290
https://doi.org/10.1101/2021.09.07.459290
https://doi.org/10.1101/2021.12.08.471762
https://doi.org/10.1101/2021.12.08.471762
https://doi.org/10.48550/arXiv.1802.08219
https://doi.org/10.48550/arXiv.1802.08219
https://doi.org/10.48550/arXiv.1710.10903

