Vol. 24 ISMB 2008, pages i330-i338
doi:10.1093/bioinformatics/btn160
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ABSTRACT

Motivation: The availability of genome-scale data has enabled
an abundance of novel analysis techniques for investigating a
variety of systems-level biological relationships. As thousands of
such datasets become available, they provide an opportunity
to study high-level associations between cellular pathways and
processes. This also allows the exploration of shared functional
enrichments between diverse biological datasets, and it serves to
direct experimenters to areas of low data coverage or with high
probability of new discoveries.

Results: We analyze the functional structure of Saccharomyces
cerevisiae datasets from over 950 publications in the context of
over 140 biological processes. This includes a coverage analysis
of biological processes given current high-throughput data, a data-
driven map of associations between processes, and a measure
of similar functional activity between genome-scale datasets. This
uncovers subtle gene expression similarities in three otherwise
disparate microarray datasets due to a shared strain background. We
also provide several means of predicting areas of yeast biology likely
to benefit from additional high-throughput experimental screens.
Availability: Predictions are provided in supplementary tables;
software and additional data are available from the authors by
request.

Contact: ogt@princeton.edu

Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION

The technological developments of the past several decades have
driven a continuing expansion of our understanding of molecular
biology and a similar expansion in the analysis techniques applied to
this data. In particular, genome-scale assays for coexpression (Eisen
et al., 1998; Spellman er al., 1998), genetic interactions (Giaever
et al., 2002; Tong et al., 2004), physical interactions (Gavin et al.,
2002; Ho et al., 2002), protein localization (Huh et al., 2003) and
regulatory networks (Harbison et al., 2004; Zhu and Zhang, 1999)
have all opened up new opportunities for computational data mining
that have been richly explored. Data such as these have been used
in a variety of machine learning and other computational contexts
(Franke et al., 2006; Jansen et al., 2003; Karaoz et al., 2004; Lee
et al., 2004; Troyanskaya et al., 2003).

As the amount of available genome-scale data has continued to
increase, it has become possible to ask higher level questions about
the systems-level functional associations between entire pathways
and processes. These associations represent the complex interplay
between linked biological processes: DNA replication and mitosis
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are distinct cellular processes, for example, but they are functionally
associated in their biological goals (cell division), regulation and
genetic participants. Understanding this network of associations
between processes is a critical link between functional relationships
at the single-gene level and phenotypes at the organismal level.

By deriving an understanding of large-scale functional structure
based directly on genome-scale datasets, we also gain an under-
standing of the data itself. An examination of the pathways and
processes perturbed by whole-genome experiments allows those
experimental results to be described in terms of their functional
activity. For example, microarrays performed under conditions
of heat shock and oxidative stress might both show functional
activity related to an environmental stress response; this similarity
of functional activity reveals biological commonalities between
otherwise disparate experiments. By combining these two lines of
inquiry—functional associations between processes and functional
similarities between datasets—we gain insight into unexpected
relationships in existing data, and we can direct experimenters
to biological areas that are currently unexplored. All of these
analyses deal with the high-level functional structure of genome-
scale data and biological processes, which allows us to answer
increasingly complex questions using the ongoing flood of high-
throughput data.

We present such an analysis of functional associations among
141 biological processes and over 180 datasets (spanning >950
publications, >2300 microarray conditions, and several thousand
interaction, localization and sequence-based data) in Saccharomyces
cerevisiae, where a functional association entails co-operation,
coregulation or other interaction between pathways and processes
to perform a cellular task. These associations are derived by
examining functional relationships between many individual genes,
which are in turn predicted in a process-specific, probabilistic
manner from heterogeneous data integration. This provides a global
view of the functional structure of biological processes in yeast,
including the degree of data-driven associations between processes,
the experimental cohesiveness of gene behavior within each process,
and the coverage of individual biological processes by currently
available data. Likewise, we obtain measures of functional activity
within each dataset—that is, which biological processes are covered
by a dataset, independently of experimental platform. This high-
level functional analysis technique is not specific to yeast and
is extensible to any organism with a sufficiently large body of
experimental data.

This analysis of functional structure produces a number of
findings useful for guiding future experimental efforts and further
computational studies. Specifically, we provide maps of data-driven
associations between biological processes and of similar functional
activities among datasets. By examining associations between
processes, we observe several biological processes that could
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benefit from additional high-throughput data coverage, including ion
homeostasis and transport and mitochondrion organization. We also
highlight biological processes likely to be performed by currently
uncharacterized genes (e.g. autophagy). Similar functional activities
among datasets demonstrate commonalities in several large
microarray studies and consistency between protein localization,
synthetic lethality and protein—protein interaction screens. These
similarities also expose specific biological relationships, such as
a subtle effect due to strain background we discovered in three
otherwise diverse microarray datasets. All of these relationships
are fundamentally driven by similarities in gene and protein
response across hundreds of datasets, and this high-level analysis of
such large-scale functional structure is valuable for guiding future
experimentation and in understanding systems-level associations
among biological processes.

2 METHODS

In summary, we analyzed the large-scale structure of functional relationship
networks predicted based on Bayesian integration of genomic data.
Functional associations between biological processes from the Gene
Ontology (GO; Ashburner et al., 2000) were derived by further integration
and analysis of these networks in a context-sensitive manner. Functional
activity information for each dataset was calculated during the integration
process, and this was used to further characterize functional similarities
between datasets. The resulting process/process, process/dataset and
dataset/dataset association networks were mined for subgraphs and
interactions of high weight. All network visualization was performed using
Graphviz from AT&T (Gansner and North, 2000).

2.1 Data collection and gold standard generation

2.1.1 Data collection The data employed in this study is a union of that
from Hibbs et al. (2007) and Myers and Troyanskaya (2007). Non-expression
data includes pairwise physical and genetic interaction data from a variety
of databases (Alfarano et al., 2005; Stark et al., 2006), protein localization
(Huh et al., 2003), and sequence and TFBS similarities (Harbison et al.,
2004; SGD, 2006). Pairwise interaction data were represented as binary
presence/absence values; where applicable, interaction profile similarities
were calculated between genes from binary data using an inner product. For
details, see Myers and Troyanskaya (2007).

Expression data was collected from ~80 publications comprising ~120
datasets and ~2300 conditions as described in Hibbs et al. (2007) and
initially processed as described in Huttenhower et al. (2006). Datasets
containing fewer than four experiments were initially merged, creating a
merged microarray set that was subsequently processed identically to the
remainder of the datasets. Each of these was converted from expression
values to gene pair similarity scores using Pearson correlation normalized
using Fisher’s z-transform (David, 1949) and subsequently z-scored:
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That is, the Fisher’s transformed score between any two genes g; and g;
is a transformation of their Pearson correlation p, and the final similarity
between two genes z(g;, g;) is the pair’s Fisher score minus the mean Fisher
score juy divided by the Fisher score SD oy (both over all gene pairs).
After z-scoring, each expression dataset was quantized using the binnings
(—00,—1.5), [-1.5, —0.5), [-0.5, 0.5), [0.5, 1.5), [1.5, 2.5), [2.5, 3.5),
[3.5, 00); these represent steps of 1 SD in z-score space. Mutual information
was calculated between the resulting sets of discrete values, and any pairs
of datasets sharing >15% of the possible information were merged by

averaging z-scores. PISA (Kloster et al., 2005) modules (a biclustering
algorithm) were also calculated for the expression data collection and
transformed into pairwise scores for our analysis by counting the number
of times each pair of genes coclustered after 500 iterations. These biclusters
offered an orthogonal analysis of the microarray data capable of providing
different information than the normalize correlation scores.

2.1.2 Gold standard generation To perform supervised learning, we
generate a gold standard of known functionally related and unrelated gene
pairs. Biological processes of interest were selected from the GO (Ashburner
et al., 2000) using a method based on Myers et al. (2006). The standard
developed in Myers ef al. (2006) is specific to S.cerevisiae; using a similar
voting method and polling six biologists, a set of 433 GO terms were
selected for this study to be experimentally informative independent of
organism. Of these 141 have at least 10 gene annotations in S.cerevisiae,
and these were selected as processes (gene sets) of interest (Supplementary
Table 1).

An answer set was derived from these processes of interest as described
in Huttenhower e al. (2006). Gene pairs coannotated to any of the 141
terms were considered to be related. A gene pair was unrelated in the
gold standard if (1) the two genes were both annotated to some term in
the set of 141, (2) the genes were not coannotated to any of these terms
and (3) the terms to which the genes were annotated did not overlap with
hypergeometric P-value <0.05. All other gene pairs were omitted from
the standard (i.e. they were neither related nor unrelated for training and
evaluation purposes).

For context-specific learning, this answer set was decomposed into subsets
relevant to each process of interest. A gene pair was considered to be
relevant to a biological process if either (1) both genes were annotated
to the process or (2) one of the two genes was annotated to the process
and the pair was unrelated in the standard (i.e. not coannotated to another
process).

2.2 Bayesian analysis

2.2.1 Learning Bayesian classifiers One naive Bayesian classifier
(Neapolitan, 2004) was learned per biological process of interest;
experiments with other network structures were shown to provide negligible
performance improvements (Huttenhower and Troyanskaya, 2006). Briefly,
a global classifier was learned in which the class to be predicted was gene
pair functional relationships (as defined in the gold standard) and each dataset
formed one node in the network. One hundred and forty-one function-specific
networks were learned with identical structures, each using a subset of the
global gold standard as described above. When fewer than 25 gene pairs
were available for a particular dataset/relationship combination, the global
probability distribution was used for that condition. This defines the predicted
probability of functional relationship between genes as a weight:
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That is, the weight between genes g; and g; in function-specific network F
is proportional to (using Bayes rule) the product over all datasets D of D’s
probability of experimental value d(g;,g;) for the two genes.

All Bayes network manipulation was performed with a combination
of custom C++ software and the SMILE library from the University of
Pittsburgh Decision Systems Laboratory (Druzdzel, 1999).

2.2.2 Predicting functional relationships Each naive Bayesian classifier
directly implies a functional relationship network in which nodes represent
genes and edge weights consist of the posterior probabilities of functional
relationships between gene pairs. The 141 function-specific networks were
combined to form a predicted global interaction network by transforming
each network’s edge weights to z-scores (subtracting the mean predicted
probability and dividing by their SD) and averaging each gene pair’s weight
across all available networks.
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2.3 Functional relationship and dataset enrichment
predictions

2.3.1 Process/process relationships As described above, for the purposes
of this analysis, a biological process was defined as a set of related genes.
The strength of a predicted functional relationship between two processes F'
and G was calculated as the average edge weight in the global interaction
network within the edge set:

Erc={(8i.8))Igi €F.8€G.gi. g ¢ FNG} ()
That is, the predicted functional relationship strength between functions F
and G is the average weight of all edges in the global interaction network
between genes g; and g; spanning the two gene sets and not coincident
to any gene in their intersection. Note that this specifically excludes process
similarity due to overlapping curated annotations and retains only data-driven
functional relationships.

Similarly, the functional cohesiveness of a process was measured as the
ratio of the average edge weight in the process to the average edge weight
incident to the process:
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where F is the function of interest, G is the genome and wr(g;,g;) is
the edge weight between genes g; and g; in F’s predicted functional
relationship network. This normalizes for processes that are inherently more
interactive and have uniformly higher probabilities of functional relationship.
tRNA genes are omitted for the purposes of these calculations, since
they represent a large class of very related genes for which essentially
no data is available (thus generating a large number of misleadingly low
weights).

cohes(F)=

(&)

2.3.2 Process/dataset relationships The predicted enrichment of each
dataset within each biological process was derived from the conditional
probability tables learned for that dataset’s node within the appropriate
function-specific Bayesian classifier. Specifically, the predicted enrichment
for process F in dataset D was calculated as the weighted sum of the
difference in posterior probability of functional relationship induced in F’s
classifier by evidence from each possible value of D:

rel(F,D):ZPp[D:d]\PF[FR]—PF[FRlD:dll (6)
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For example, suppose the prior probability of functional relationship in the
ribosome biogenesis process is 2% (P,»[FR]=0.02). The GRID- and BIND-
based yeast two-hybrid dataset has two possible values, 0 representing no
observed binding and 1 representing binding, thus D={0, 1}. After learning,
the Bayesian classifier for ribosome biogenesis indicates that a lack of
binding makes little difference (P,,[FR|yth=0]=0.025), but gene pairs
that bind are very likely to be functionally related (P,;[FR|yth=1]=0.4).
However, there are relatively few such pairs (P [yth=1]= 10~%), since most
gene pairs in the genome have not been observed to interact by available
two-hybrid data (P,;[yth=0]=0.9999). Thus the strength of relationship
between the process of ribosome biogenesis and the yeast two-hybrid dataset
is 7=0.9999|0.02—0.025+ 107#|0.02—0.4|~0.005. The exact value may
differ due to rounding in this example.
The estimated coverage of a process in currently available data was
calculated as the average of rel(F, D) over all datasets in our study.

2.3.3 Dataset/dataset relationships This calculation of predicted
process/dataset enrichments results in a vector of 141 values in the range
[0, 1] for each dataset. To determine the functional similarity between two
datasets, each value is first transformed to a log ratio against the average
across all datasets:

rel’(F,D):log(rel(F,D)~|D|/Zrel(F,d)) 7

deD
This normalizes against the fact that certain biological processes are
inherently more apparent in most high-throughput data (e.g. most microarray

datasets have strong signals for processes such as translation). The functional
similarity between datasets is then the Pearson correlation of the resulting r/
vectors across all datasets.

2.3.4 Geneffunction relationships For the purpose of predicting gene
function based on ‘guilt by association’ with known genes in some process,
the connectivity of a gene to a process was assessed as follows. Each
gene/process pair was assigned a functional association score equal to the
ratio of its average probability of functional relationship to the process over
the process’s cohesiveness:
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This calculation was also used to predict each biological process’s predicted
association enrichment with unknown genes. A list of 1451 genes with no
annotation below biological process was extracted from the GO. A function’s
strength of association with unknowns was then the sum of its association
scores for these 1451 genes.

2.3.5 Robustness A robustness study was carried out by randomly
shuffling data points within each dataset prior to Bayesian learning. The
resulting networks had average dataset functional enrichment scores of
4.46 x 1075 £1.57 x 10~*, biological processes cohesiveness of 1.3741.32,
and association between processes of 7.14 x 10734+0.0293, the last due
to the greatly reduced differentiation between processes. In contrast, the
averages for these values in Supplementary Tables 1-3 are 2.43 x 10~4 £
6.02x 1074, 15.1£35.9, and 1.94 x 1073 £0.141, respectively.

2.3.6 Dense subgraphs Animplementation of a modified greedy heuristic
for discovering heavily weighted subgraphs (Charikar, 2000) was used to
mine interaction networks for cohesive modules. Briefly, to discover each
module within the network of interest, a node set was initialized with the most
cohesive pair in the network. Nodes were added to this set greedily based
on edge weight until no node could be added without reducing the average
cohesiveness of the node set below the network baseline. The average edge
weight of the set was then subtracted from each edge between nodes in the set,
and the process was iterated to discover the next module. In pseudocode:

(1) N=argmax,; . cohes({gi, gj})
(2) Loop:
(3) g=argmaxgcohes(NU{g})
(4) If cohes(NU{g}) <1, stop
(5) N=NUg
(6) If |N| > 2, output N
(7) Let w be the average edge weight among nodes in N
(8) Foreachg;, gieN
) w(gi.g)=w(gi.g)—w
(10) Repeat from 1

3 RESULTS

By analyzing functional associations among biological processes
and functional similarities between high-throughput datasets in
a purely data-driven manner, we summarize knowledge from
thousands of whole-genome experiments in a biologically
informative way. This includes descriptions of the cohesiveness,
data coverage and associations of biological processes (Fig. 1),
which can guide experimenters towards promising targets for future
experimental work (Table 1). Datasets can also be compared
based on functional activity, allowing the detection of large-
scale functional similarity between the effects of experimental
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Fig. 1. High-confidence associations between biological processes predicted from large-scale data integration. Each node represents a biological process
extracted from the GO; edges represent predicted functional associations between these terms based on their constituent genes’ behavior in a compendium of
>180 S.cerevisiae datasets. Node color intensity represents cohesiveness of the process, a measure of predicted relationship density within the process’s gene
set (white indicates background cohesiveness, yellow maximum cohesiveness). Border thickness summarizes estimated coverage of the biological process by
available data. These edges represent only the strongest associations in the complete network, so coloration is relative, ranging from green (least strong) through
black to red (strongest). Biological processes with high cohesiveness but low data coverage represent particularly promising targets for future experimental

screens.

perturbations (Figs 2 and 3). These analyses provide an important
global summary of interplay between pathways, and they identify
processes, process associations and dataset similarities likely to
benefit from experimental investigation.

3.1 Discovering data-driven functional associations
between biological processes

Two or more biological processes can interact and work together
to perform cellular functions in a manner analogous to a
relationship between individual genes. A pair of genes might be
functionally related if they operate in the same complex, pathway
or transcriptional module. Our focus is at a higher level, where
two processes might be functionally associated if they interact
to achieve the same cellular goals; for example, nutrient sensing
and the translation of new proteins at the ribosomes are distinct
processes, but they interact to allow controlled cellular growth.
These process—process associations are thus an extension of gene
functional relationships: processes are functionally associated if they
achieve related cellular goals, and we predict such an association if
their constituent genes behave similarly in datasets determined to be

good functional indicators. A small segment of our predicted process
association network appears in Figure 1, made up of only the most
confidently associated biological processes (see Supplementary
Table 1 for complete results).

The edges in this process association network summarize
information regarding the interactions between biological processes.
A single biological process is internally cohesive in the currently
available experimental results if its constituent genes also show
strong individual functional relationships. If most gene pairs within a
process are confidently functionally related, that process is reflected
well by the available data: its annotations are in agreement with
measured cellular behavior. If gene pairs within a process are related
with low confidence, it often indicates an area of biology where
further experimentation or annotation efforts may be most beneficial.
The cohesiveness of biological processes in Figure 1 is represented
by node color, where more cohesive processes appear in brighter
yellow.

Finally, we also determined the degree to which each biological
process is covered by available data. Our integration method
provides a statistical measure of how active each biological function
is within each dataset; we can thus sum over all datasets to estimate
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a biological process’ total representation within the data. This
coverage measure is summarized by border width in Figure 1,
with thicker borders indicating well-covered processes. Cohesive
biological processes (yellow nodes) not covered well by available

Table 1. Biological processes highly associated with yeast genes currently
uncharacterized in the GO

Process Size Cohes. Rel. Data  Assoc. wt.
(Genes) Coverage  Unch.

Carbohydrate metabolism 233 2.09 3.75 972.1

Phosphorus metabolism 201 1.95 2.35 895.3

Reproductive physiological =~ 308 1.87 1.95 863.5
process

Establishment of protein 279 1.82 1.77 862.0
localization

Sporulation 120 2.48 1.68 832.7

Autophagy 40 3.69 1.22 797.6

One-carbon compound 94 1.94 2.57 794.9
metabolism

Cell wall organization and 196 2.11 1.40 788.2
biogenesis

Chromosome organization 557 1.96 4.53 773.1
and biogenesis

Cofactor metabolism 169 2.60 2.52 743.8

Association with uncharacterized genes is measured as the sum of predicted functional
relationships between genes in a process and uncharacterized genes, normalized by the
cohesiveness (and thus size) of the process. The cohesiveness of a process indicates the
ratio of average in-process relationship weight to the average out-of-process relationship
weight (with 1.0 thus the genomic background). Relative data coverage is a scaled sum
of all datasets’ predicted association weight with the given biological process. Because
of their likely association with uncharacterized genes, these processes represent good
candidates for future genomic screens.
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data thus represent promising candidates for future investigation:
they show evidence of strong functional similarity, but they may not
yet have been specifically targeted by high-throughput studies.

This interplay between functional associations, cohesiveness and
data coverage is evident in several of the example processes in
Figure 1. Ribosome biogenesis and rRNA metabolism, for example,
are processes strongly evident in most microarray data (Myers
et al., 2006), and this ubiquity is demonstrated by their extremely
strong coverage and association. They are not as cohesive as many
other processes, however, due to the large number of snRNAs and
rRNAs annotated to these processes for which little or no high-
throughput data is available. This analysis thus highlights an area
for future exploration, even in an area as thoroughly studied as the
ribosome. Other processes with relatively low coverage for their
size (data not shown in Fig. 1) include protein complex assembly,
ion homeostasis and transport and mitochondrion organization, all
representing opportunities for future directed screens. Processes
with low cohesiveness can either be particularly diverse (e.g. amino
acid and derivative metabolism, protein processing) or not yet
fully characterized, representing further opportunities for future
experimental investigations.

3.1.1 Processes predicted to be enriched for uncharacterized genes
Networks of functional associations between processes represent
a richly structured summarization of high-throughput data; they
implicitly encode predicted details regarding pathway structure,
association between gene sets and the functional diversity of
currently available data. In addition to associating known processes
and pathways, though, similar relationships can also be inferred to
find areas of biology enriched for uncharacterized genes. These
represent specific processes for which targeted genomic screens
might uncover substantial new information.

MA, Clark 2002
idye swap)

MA, Clark 2002
{orig)

e ot

MA, Manin 2004 |
. _

MA, Bulik 200

MA, Ideker 2001 e

Fig. 2. Similarities in functional activity between high-throughput datasets. Each node represents a dataset, each edge the correlation between two datasets’
functional activity profiles. These edges represent only the strongest correlations (by Kendall’s T), so coloration is relative from green (least strong) to red
(strongest). This associates collections of datasets that explore related areas of biology, either by specific experimental design (e.g. protein localization) or by
provoking similar biological responses (e.g. the diauxic shift and stationary phase growth). This also confirms that multiple genetic (SLAM and Tong et. al.
2004) and physical (DIP and MINT) interaction collections offer similar functional coverage.
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Fig. 3. Coclustering datasets and biological processes in an area of dense functional associations. By mining associations between biological processes for
dense subgraphs, we recover a collection of processes (rectangular nodes) predicted to be highly related based solely on experimental data. We then extract
the datasets (oval nodes) most informative for those processes and display the most confident process/process, dataset/dataset and dataset/process associations
among these nodes. Each edge type is individually weighted, and only the strongest edges are shown, ranging in weight from green (least strong) to red
(strongest). This network thus represents a snapshot of one area of yeast biology, the interconnections among its constituent processes and datasets exploring

these processes.

A selection of processes that we find to be highly associated
with uncharacterized genes is shown in Table 1, in addition to
statistics describing the processes (see Supplementary Table 3 for
complete results). The autophagy term, despite being the smallest
and most cohesive process in this subset, still maintains a very
strong association with uncharacterized genes. It is moderately
well covered by available data, falling roughly in the middle
of our 141 coverage estimates; it is thus possible that further
information regarding autophagy could be gleaned from existing
data, even though few experiments have specifically investigated
the process in yeast. However, this predicted association with
uncharacterized genes also suggests that substantial new functional
assignments could be made by targeted screens for involvement in
autophagy.

3.2 Similar functional activity in high-throughput
datasets

While most high-throughput experiments are designed with fairly
specific goals in mind, almost every dataset contains information
about a variety of biological processes, and our analysis provides
several ways of exploring these data. Our Bayesian learning
process results in a probabilistic score indicating the activity of
each biological process within each dataset. Collecting all such
scores for a single dataset results in a functional profile for the
dataset, and these numerical vectors can be compared between
datasets to evaluate functional similarity. The network in Figure 2

contains a selection of datasets with similar functional activities
(see Supplementary Table 2 for complete results).

Even in this small subset of analyzed datasets, several patterns
are apparent. On the left, the first of the two main clusters contains
primarily localization data from (Huh et al., 2003). Within the
localization subsets, dataset similarity is correlated with cellular
localization: the periphery and the bud are associated with the
main body of data by way of actin, the Golgi stages are associated
with each other, the endosome and peroxisome are related, and so
forth. Three synthetic genetic array screens are also similar to the
localization data. Davierwala er al. (2005) is associated primarily
with the Golgi and ER, and one of the primary findings of this study
was the characterization of PGAI, a gene essential for ER activity.
Krogan et al. (2003) and Zhao et al. (2005) show similar functional
activity to a variety of localization subsets (including several not
shown in Fig. 2) and to Krogan ez al. (2004), all of which are enriched
for nuclear functions (DNA packaging, chromosome organization,
transcription, RNA elongation, etc.) These functional similarities
were generated solely by automatic data mining and call out
important biological associations between disparate experimental
results.

On the right, the cluster of microarray data is centered around
a core of large datasets exploring very diverse conditions and
thus enriched for many different biological processes (Brem and
Kruglyak, 2005; Brem et al., 2002; Hughes et al., 2000; Yvert
et al., 2003). The other main components of the cluster are
stationary-phase growth and carbon metabolism (Brauer et al., 2005;
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Ideker et al., 2001; Martin et al., 2004; Pitkanen et al., 2004;
Segal et al., 2003) and various stresses (Bro et al., 2003; Gasch
et al., 2000; Jelinsky er al., 2000; O’Rourke and Herskowitz,
2004). Interestingly, (Bulik et al., 2003; Chitikila et al., 2002), and
(Schawalder et al., 2004) are all likely included due to their use
of galactose-inducible promoters while investigating other diverse
processes; these datasets all share a carbohydrate metabolism
enrichment in addition to their more specific targets [e.g. biopolymer
biosynthesis, a parent of chitin biosynthesis, in Bulik et al. (2003)].
This demonstrates the power of associative functional analysis to
uncover both primary and secondary enrichments, a consideration
essential to getting the most out of any experimental result.

3.3 Simultaneous association of datasets and biological
processes

Because our method assesses functional activity within datasets,
functional similarities between datasets and associations between
biological functions, it provides a means of coclustering datasets
and processes in a biologically meaningful way. This raises the
possibility of exploring complex data, potentially summarizing
millions of individual measurements, in an intuitive manner. Each
predicted weight between two datasets, two processes or a dataset
and a process represents a measure of similar biological function,
and thus an investigation of heavily weighted subgraphs in this space
provides a way of exploring groups of related data and processes.

An example of such a cluster appears in Figure 3, which highlights
one of the densest functional areas and the datasets in which these
functions are most active. This consists of metabolic processes
including alcohol, aldehyde and carbohydrate metabolism, cellular
respiration, hydrogen and electron transport, and mitochondrion
biogenesis; while they have been removed for visual clarity, several
other related processes are also members of this cluster, including
cofactor metabolism, autophagy and aging. The group of associated
microarrays again represent a combination of broad genomic
response (Brem and Kruglyak, 2005; Yvert ez al., 2003), carbon
metabolism (Schawalder et al., 2004; Segal et al., 2003) and stresses
(Gasch et al., 2000), the latter likely included due to the relationship
between stress response and growth rate (Brauer et al., 2008).
These are linked into the cluster of biological processes primarily
through carbohydrate metabolism, but also through the biclustering
modules (PISA). These biclustering results incorporate all of the
available microarray conditions, in contrast to the normalized
correlation scores used to analyze individual datasets. Biclustering
thus represents a view of expression data orthogonal to pairwise
correlations and tends to be more sensitive to metabolic functions
in general (phosphorus, amino acid and nitrogen compound
metabolism in addition to those appearing in Fig. 3).

The non-microarray datasets associated with this functional
cluster are diverse, including mitochondrial localization (in
association with several mitochondrial and respiratory functions),
cytoplasmic localization (in association with more general
metabolism), two sequence-based analyses [downstream sequence
similarity and shared transcription factor binding sites from
Harbison et al. (2004)] and synthetic lethality interaction profiles
from GRID (Stark et al., 2006) and BIND (Alfarano et al., 2005).
Synthetic lethality profiles and shared binding sites both provide
good coverage of many biological processes and are included largely
due to moderate association with many of the functions within

the cluster (most edges are not shown in Fig. 3); this is reflected
in their relative isolation in the network. Broad downstream (and
upstream) sequence similarity tends to capture structural features of
the genome, in this case the close positional association of the GAL
genes.

3.4 A case study: detecting a specific biological
response in diverse data

At a more specific level, these interprocess associations and
functional descriptions of datasets can be used to uncover detailed
biological responses in high-throughput data. We were struck by
the correlation in functional activities between three seemingly
diverse datasets: Chitikila et al. (2002), an investigation of TBP
inhibitors, Martin et al. (2004), an analysis of for2 mutants described
in Helliwell er al. (1998), and Pitkanen et al. (2004), a pmi40
deletion assayed over varying mannose concentrations. These three
microarray collections share functional enrichments with other
datasets assaying similar conditions [e.g. the nutritional cluster
discussed above including Martin et al. (2004) and Pitkanen ez al.
(2004)], and no one pair of the three correlations is unusually
high. They also represent two different experimental platforms:
Martin et al. (2004) and Pitkanen er al. (2004) both employ single
channel microarrays, while Chitikila ez al. (2002) uses a two-color
array. However, the average functional correlation between the three
datasets is highly significant (rel’=0.316, P < 1073) for arrays
under such apparently diverse conditions.

All three datasets are enriched for activity in distinct biological
processes, and all three present unique biological conclusions that
are in no way undermined by this unexpected similarity. Upon
inspection of the three datasets’ experimental protocols, however,
the common factor appears to be the use of a specific plasmid
shuffle transformation employing a strain background of the form
ura3 trpl leu2 his3 or his4. We have confirmed this similarity
in a fourth dataset we are currently developing investigating
temperature-sensitive dbf4 mutants (Myers et al., 2005). Although
the overarching biological conditions of our dataset share little
in common with Chitikila er al. (2002), Martin et al. (2004) and
Pitkanen et al. (2004), our mutants were also constructed using
a similar plasmid transformation, and the resulting microarrays
produce highly correlated functional profiles. Even when strain
background and reference channels (when applicable) are all
properly controlled, the plasmid shuffle process and associated
auxotrophies result in subtle changes in global transcription
detectable by large-scale functional analysis.

This effect is quite subtle, a fact which we stress for two reasons.
First, it is a secondary effect within the more prominent biological
features assayed by these three datasets, and it is only by large-scale
analysis of their functional content in the context of many other
datasets that the similarity was discovered. Second, we emphasize
that it in no way diminishes these datasets’ primary results, and
instead provides additional functional insight into their coexpression
measurements. Most previous computational data integration has
focused on associating genes with functions or genes with genes.
As more high-throughput data becomes available, it opens up
opportunities for associating entire datasets with broad functional
activity and with other datasets, allowing the detection of biological
signals and similarities that would remain undetectable at smaller
scales.
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4 DISCUSSION

We present a high-level functional analysis of very large compendia
of genomic data and apply it to S.cerevisiae. By computationally
summarizing thousands of whole-genome experimental conditions,
we elucidate the current data coverage of S.cerevisiae biological
processes, the cohesiveness of its functional annotations, and
associations among these processes based on high-throughput
experimental results. We also determine the functional activity
in high-throughput datasets, allowing us to discover subtle
relationships such as shared strain backgrounds in otherwise diverse
microarray conditions. This analysis begins with specific functional
relationships between individual genes predicted from large-scale
data integration, and it extends into high-level information including
functional associations between datasets, uncharacterized genes and
biological processes.

A primary application of this system lies in directing future
experimental efforts. In particular, high-throughput screens of any
sort can be costly to implement and assay fairly general conditions;
for example, if two proteins bind only during fermentation, their
interaction will not be observed in a genomic screen during
respiratory growth. A high-level functional analysis serves to call
out underrepresented biological processes and those with increased
likelihoods of novel discovery, which can in turn provide focus for
experimental screens. This is analogous to candidate gene selection
ata whole-genome level, a form of ‘candidate process’ selection, just
as our predicted associations between biological processes represent
functional relationships at a larger scale.

High-level functional analysis also provides very specific
information on individual experimental results, in addition to its
larger scale applications. This is exemplified by the functional
signature of the plasmid shuffle strain discussed above; given any
new high-throughput dataset, microarray or otherwise, we provide
a means for establishing its functional activity in the context of
existing data. Both this post hoc analysis and the a priori predictions
of underrepresented functions are of particular use in less well-
studied organisms. By designing experiments to explore processes
shown to lack functional coverage and by leveraging all available
data to interpret new results, laboratory work can be quickly guided
to areas of biological interest and potential.

Finally, the functional information summarized by our system
can also be employed in the continuous process of functional
cataloging. While we have used examples from the GO, any sets
of functionally related genes could drive analyses such as this,
and the results can guide annotators in cataloging existing data
much as they can guide experimenters in generating new data.
By providing a means of directing annotators to potentially under-
annotated functions and the datasets associated with them, our
analysis simplifies a curation and cataloging task that grows with
each new publication. By analyzing and presenting the large-
scale functional structure of genome-scale data, we hope to guide
annotators and experimenters alike in exploring the potential of the
ongoing genomic revolution.

ACKNOWLEDGEMENTS

The authors would like to thank Chad Myers, Matthew Hibbs,
Florian Markowetz and David Hess for insightful comments and
conversations and Camelia Chiriac for experimental assistance.

Funding: This research is partially supported by NSF CAREER
award DBI-0546275, NIH grant RO1 GM071966, NIH grant T32
HG003284 and NIGMS Center of Excellence grant PS0 GM071508.
O.GT. is an Alfred P. Sloan Research Fellow.

Conflict of Interest: none declared.

REFERENCES

Alfarano,C. et al. (2005) The Biomolecular Interaction Network Database and related
tools 2005 update, Nucleic Acids Res., 33, D418-D424.

Ashburner,M. et al. (2000) Gene ontology: tool for the unification of biology. The Gene
Ontology Consortium. Nat. Genet., 25, 25-29.

Brauer,M.J. et al. (2008) Coordination of growth rate, cell cycle, stress response, and
metabolic activity in yeast. Mol. Biol. Cell, 19, 352-367.

Brauer,M.J. et al. (2005) Homeostatic adjustment and metabolic remodeling in glucose-
limited yeast cultures. Mol. Biol. Cell, 16, 2503-2517.

Brem,R.B. and Kruglyak,L. (2005) The landscape of genetic complexity across 5700
gene expression traits in yeast. Proc. Natl Acad. Sci. USA, 102, 1572-1577.

Brem,R.B. er al. (2002) Genetic dissection of transcriptional regulation in budding
yeast. Science, 296, 752-755.

Bro,C. et al. (2003) Transcriptional, proteomic, and metabolic responses to lithium in
galactose-grown yeast cells, J. Biol. Chem., 278, 32141-32149.

Bulik,D.A. et al. (2003) Chitin synthesis in Saccharomyces cerevisiae in response to
supplementation of growth medium with glucosamine and cell wall stress, Eukaryot.
Cell, 2, 886-900.

Charikar,M. (2000) Greedy approximation algorithms for finding dense components
in a graph. Third International Workshop on Approximation Algorithms for
Combinatorial Optimization. Springer, Saarbriicken, Germany.

Chitikila,C. et al. (2002) Interplay of TBP inhibitors in global transcriptional control,
Mol. Cell, 10, 871-882.

David,EN. (1949) The moments of the Z and F distributions. Biometrika, 36,
394-403.

Davierwala,A.P. et al. (2005) The synthetic genetic interaction spectrum of essential
genes. Nat. Genet., 37, 1147-1152.

Druzdzel,M.J. (1999) {SMILE}: Structural Modeling, Inference, and Learning Engine
and {GeNle}: a development environment for graphical decision-theoretic models.
Sixteenth National Conference on Artificial Intelligence. American Association for
Artificial Intelligence, Orlando, FL.

Eisen,M.B. et al. (1998) Cluster analysis and display of genome-wide expression
patterns. Proc. Natl Acad. Sci. USA, 95, 14863-14868.

Franke,L. et al. (2006) Reconstruction of a functional human gene network, with an
application for prioritizing positional candidate genes, Am. J. Hum. Genet., 78,
1011-1025.

Gansner,E.R. and North,S.C. (2000) An open graph visualization system and its
applications to software engineering. Software Pract. Exper., 30, 1203-1233.

Gasch,A.P. et al. (2000) Genomic expression programs in the response of yeast cells to
environmental changes. Mol. Biol. Cell, 11, 4241-4257.

Gavin,A.C. et al. (2002) Functional organization of the yeast proteome by systematic
analysis of protein complexes, Nature, 415, 141-147.

Giaever,G. et al. (2002) Functional profiling of the Saccharomyces cerevisiae genome.
Nature, 418, 387-391.

Harbison,C.T. et al. (2004) Transcriptional regulatory code of a eukaryotic genome.
Nature, 431, 99-104.

Helliwell,S.B. et al. (1998) TOR2 is part of two related signaling pathways coordinating
cell growth in Saccharomyces cerevisiae. Genetics, 148, 99—112.

Hibbs,M.A. et al. (2007) Exploring the functional landscape of gene expression: directed
search of large microarray compendia. Bioinformatics, 23, 2692-2699.

Ho,Y. et al. (2002) Systematic identification of protein complexes in Saccharomyces
cerevisiae by mass spectrometry. Nature, 415, 180-183.

Hughes,T.R. et al. (2000) Functional discovery via a compendium of expression profiles.
Cell, 102, 109-126.

Huh,W.K. et al. (2003) Global analysis of protein localization in budding yeast. Nature,
425, 686-691.

Huttenhower,C. et al. (2006) A scalable method for integration and functional analysis
of multiple microarray datasets, Bioinformatics, 22, 2890-2897.

Huttenhower,C. and Troyanskaya,0.G. (2006) Bayesian data integration: a functional
perspective, Computational Syst. Bioinform. / Life Sci. Soc., 5, 341-351.

Ideker,T. et al. (2001) Integrated genomic and proteomic analyses of a systematically
perturbed metabolic network. Science, 292, 929-934

i337



C.Huttenhower and O.G.Troyanskaya

Jansen,R. et al. (2003) A Bayesian networks approach for predicting protein-protein
interactions from genomic data. Science, 302, 449-453.

Jelinsky,S.A. et al. (2000) Regulatory networks revealed by transcriptional profiling
of damaged Saccharomyces cerevisiae cells: Rpn4 links base excision repair with
proteasomes, Mol. Cell Biol., 20, 8157-8167.

Karaoz,U. et al. (2004) Whole-genome annotation by using evidence integration in
functional-linkage networks, Proc. Natl Acad. Sci. USA, 101, 2888-2893.

Kloster,M. et al. (2005) Finding regulatory modules through large-scale gene-
expression data analysis. Bioinformatics, 21, 1172-1179.

Krogan,N.J. et al. (2003) Methylation of histone H3 by Set2 in Saccharomyces
cerevisiae is linked to transcriptional elongation by RNA polymerase II. Mol. Cell
Biol., 23, 4207-4218.

Krogan,N.J. ef al. (2004) High-definition macromolecular composition of yeast RNA-
processing complexes. Mol. Cell, 13, 225-239.

Lee,l. ef al. (2004) A probabilistic functional network of yeast genes. Science, 306,
1555-1558.

Martin,D.E. et al. (2004) Rank Difference Analysis of Microarrays (RDAM), a novel
approach to statistical analysis of microarray expression profiling data. BMC
Bioinformatics, 5, 148.

Myers,C.L. et al. (2006) Finding function: evaluation methods for functional genomic
data. BMC Genomics, 7, 187.

Myers,C.L. et al. (2005) Discovery of biological networks from diverse functional
genomic data. Genome Biol., 6, R114.

Myers,C.L. and Troyanskaya,0.G. (2007) Context-sensitive data integration and
prediction of biological networks. Bioinformatics, 23, 2322-2330.

Neapolitan,R.E. (2004) Learning Bayesian Networks. Prentice Hall, Chicago, IL.

O’Rourke,S.M. and Herskowitz,1. (2004) Unique and redundant roles for HOG MAPK
pathway components as revealed by whole-genome expression analysis. Mol. Biol.
Cell, 15, 532-542.

Pitkanen,J.P. et al. (2004) Excess mannose limits the growth of phosphomannose
isomerase PMI40 deletion strain of Saccharomyces cerevisiae, J. Biol. Chem., 279,
55737-55743.

Schawalder,S.B. et al. (2004) Growth-regulated recruitment of the essential yeast
ribosomal protein gene activator Ifhl. Nature, 432, 1058-1061.

Segal,E. et al. (2003) Module networks: identifying regulatory modules and
their condition-specific regulators from gene expression data. Nat. Genet., 34,
166-176.

SGD  (2006)  Saccharomyces
Www.yeastgenome.org

Spellman,P.T. et al. (1998) Comprehensive identification of cell cycle-regulated genes
of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol. Biol. Cell,
9, 3273-3297.

Stark,C. et al. (2006) BioGRID: a general repository for interaction datasets. Nucleic
Acids Res., 34, D535-D539.

Tong,A.H. et al. (2004) Global mapping of the yeast genetic interaction network.
Science, 303, 808-813.

Troyanskaya,0.G. et al. (2003) A Bayesian framework for combining heterogeneous
data sources for gene function prediction (in Saccharomyces cerevisiae). Proc. Natl
Acad. Sci. USA, 100, 8348-8353.

Yvert,G. et al. (2003) Trans-acting regulatory variation in Saccharomyces cerevisiae
and the role of transcription factors. Nat. Genet., 35, 57-64.

Zhao,R. et al. (2005) Navigating the chaperone network: an integrative map of
physical and genetic interactions mediated by the hsp90 chaperone. Cell, 120,
715-7217.

Zhu,J. and Zhang,M.Q. (1999) SCPD: a promoter database of the yeast Saccharomyces
cerevisiae. Bioinformatics, 15, 607-611.

Genome Database.  Available at  http://

i338



	Assessing the functional structure of genomic data
	C. Huttenhower and O. G. Troyanskaya
	1 INTRODUCTION
	2 METHODS
	3 RESULTS
	4 DISCUSSION



