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Abstract

Cardiac catheterization procedure is the gold standard to diagnose and treat cardiovascular

disease. However, radiation safety and cancer risk remain major concerns. This study

aimed to real-time dynamic radiation dose measurement to estimate lifetime attributable risk

(LAR) of cancer incidence and mortality in operators. Coronary angiography (CA) with per-

cutaneous coronary intervention (PCI), CA, and others (radiofrequency ablation, pacemaker

and defibrillator implantation) procedures with different beam directions, were undertaken

on x-ray angiography system. A real-time electronic personal dosimeter (EPD) system was

used to measure the radiation dose of staff during all procedures. We followed the Biological

Effects of Ionizing Radiation (BEIR) VII report to estimate the LAR of all cancer incidence

and mortality. Primary operators received radiation dose in CA with PCI, CA, and others pro-

cedures were 59.33 ± 95.03 μSv, 39.81 ± 103.85 μSv, and 21.92 ± 37.04 μSv, respectively.

As to the assistant operators were 30.03 ± 55.67 μSv, 14.67 ± 14.88 μSv, and 4 μSv,

respectively. LAR of all cancer incidences for staffs aged from 18 to 65 are varied from

0.40% for males to 1.50% for females. LAR of all cancer mortality for staffs aged from 18 to

65 are varied from 0.22% for males to 0.83% for females. Our study provided an easy, real-

time and dynamic radiation dose measurement to estimate LAR of cancer for staff during

the cardiac catheterization procedures. The LAR for all cancer incidence is about twice that

for cancer mortality. Although the radiation doses of staff are lower during each procedure,

the increased years of service leads to greater radiation risk to the staff.

Introduction

Cardiac catheterization is an ionizing radiation procedure used to diagnose heart conditions

or treat cardiovascular diseases. The procedures are well recognized to facilitate early and

accurate diagnosis of the disease, improve treatment planning to save patient’s life [1]. Never-

theless, the procedures usually perform with longer fluoroscopy time and may cause radiation
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exposure to staff [2–5]. Due to the correlation between exposure to ionizing radiation and can-

cer risk is related [6–11], staff are becoming increasingly aware of the potential damaging

effects of ionizing radiation during the procedures. Thus, estimation of radiation dose and

cancer risk in staff during the procedures is a major issue regarding the public health

significance.

Although a number of studies had examined the radiation exposure during the interven-

tional procedures in recent years, most of studies were performed on a phantom to simulate

the radiation exposure to staff [12–17]. These phantom studies did not evaluate the dynamic

changes in staff positions, beam orientation and movement, exposure parameters, and so on;

moreover, in clinical procedures are often complex. Accordingly, the purpose of this study was

real-time dynamics measurement of medical radiation dose to estimate the lifetime attribut-

able risk (LAR) of cancer incidence and mortality in staff.

Materials and methods

Study design

The study was approved by the Mackay Memorial Hospital Institutional Review Board on

June 22, 2017 and valid till June 21, 2018 (approval number: 17MMHIS075e). The constitution

and operation of this review board are according to the guidelines of ICH-GCP, the records/

information were anonymized and de-identified prior to analysis. All procedures were Data

were collected for 3 different types of procedures: Coronary angiography (CA) with percutane-

ous coronary intervention (PCI), CA, and others (radiofrequency ablation, pacemaker and

defibrillator implantation). Procedural details including types of procedure, fluoroscopy time,

fluoroscopy tube voltage, fluoroscopy tube current, cine acquisition tube voltage, cine acquisi-

tion tube current, cine acquisition time, cine acquisition runs, dose area product (DAP), beam

directions, staff (primary and assistant operator) age and radiation dose were recorded.

Radiation dose measurement

Experimental measurements were used three x-ray angiography systems(one was Philips

Allura FD20, the others were Philips Allura FD 10) with similar cardiac catheterization proto-

cols. All protocols followed standard technical characteristics of image acquisition and quality

control. Collimation and magnification were used during the procedures according to the clin-

ical requirements. The operational protocols evaluated were fluoroscopy (15 pulses/s and 0.9

mm Cu as additional filtration) and cine acquisition (15 pulses/s without Cu filtration) modes.

All staff adhered to standard radiation protection procedures. Each staff wore a lead apron, a

thyroid collar, and leaded glasses. Because the thyroid is known to be radiosensitive and makes

a significant contribution to the radiation dose [18–21], a real-time electronic personal dosim-

eter (EPD) system (i2, Raysafe) was placed over the left side of staff’s thyroid collar to measure

the radiation dose at various locations. EPD system has store instantaneous dose rate and

cumulative dose values at the beginning to the end of each procedure. In addition, the system

is design to measure the personal dose equivalent at depth of 10 mm (Hp(10)) for x-ray, and is

considered to be the dose to the whole body [22].

Cancer risk estimation

Currently, the linear no-threshold model is widely used to estimate the LAR of cancer from

exposure to low levels of ionizing radiation. The LAR of cancer incidence and mortality, which

are defined as additional cancer risk above and beyond baseline cancer risk. In this study, the

LAR of all cancer incidence and mortality were calculated based on the Biological Effects of
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Ionizing Radiation (BEIR) VII report [9]. Average radiation doses for each of the 3 procedure

types were used to estimate the LAR of all cancer incidence and mortality. The LAR of all can-

cer incidence and mortality were estimated as follows:

LARðe; s;DÞ ¼
Z a Max

eþL
ERRðe; s;D; aÞm ðs; aÞ

Sðs; aÞ
Sðs; eÞ

da

Where (e) is the age at exposure, (s) is the sex specific excess relative risk (ERR), (D) is the dose

of radiation received, (a) is the specific cancer site at attained age, the summation is from a = e

+ L to l00, where a denotes attained age (years) and L is a risk-free latent period (L = 5 for solid

cancers; L = 2 for leukemia), ERR (e, s, D, a) is the risk model in the equation, m (s, a) is the

baseline risk, S(s, a) is the probability of surviving until age (a), S(s, a)/S(s, e) is the probability

of surviving to age (a) conditional on survival to age (e). This study estimated the cancer risk

under the assumption that the operators were continuously exposed to radiation from the age

of 18 to 65.

Statistical analysis

Beam directions distribution of cardiac catheterization procedures was presented as percent-

age. Procedural details were presented as means and standard deviations by descriptive analy-

ses. Multiple linear regression analysis was performed to DAP versus staff radiation dose. The

p value< 0.05 was considered significant. LAR of cancer incidence and mortality for staff

were expressed as line graphs.

Results

There were 71 procedures were included in our study, 43 CA with PCI, 16 CA and 12 others.

The beam directions distribution in CA with PCI, CA, and others procedures are illustrated in

Fig 1. In CA with PCI procedure, the beam directions distribution of fluoroscopy and acquisi-

tion were most complexity. The procedural details in CA with PCI, CA, and others are listed

in Table 1. Primary operators doses were measured under 43 CA with PCI, 16 CA, and 12 oth-

ers procedures, respectively. As to the assistant operators doses were 38 CA with PCI, 6 CA,

and 1 others procedures, respectively. Primary operators radiation dose in CA with PCI, CA,

and others procedures were 59.33 ± 95.03 μSv, 39.81 ± 103.85 μSv, and 21.92 ± 37.04 μSv,

respectively. As to the assistant operators were 30.03 ± 55.67 μSv, 14.67 ± 14.88 μSv, and 4 μSv,

respectively. The fluoroscopy tube voltage of CA with PCI procedure (98.54±16.55 kV) was

significantly higher than other two procedures, while the acquisition tube voltage was the same

situation. The fluoroscopy time was longest in CA with PCI procedure (14.67±12.83 mins), fol-

lowed by others procedure (14.21±12.73 mins) and CA procedure (6.10±3.49 mins). The

acquisition time was also longest in CA with PCI procedure (53.16 ± 10.33 s), followed by CA

procedure and others procedure. However, the fluoroscopy and acquisition tube current in

others procedure were significantly lower than in the other two procedures. Correlation

between DAP and staff radiation dose from all procedures are illustrated in Fig 2. Scatter

graph of DAP versus primary operator (p = 0.004, R2 = 0.11) and assistant operator radiation

dose (p< 0.001, R2 = 0.46) demonstrated weak positive correlations.

We used a 12 month average for the preceding year to estimate the 1 year occupational

radiation exposure to the operators is presented in Fig 3. The annual average radiation dose

per primary operator from all procedures was 3.49 mSv. As to the assistant operator was

1.30 mSv. Estimated LAR of all cancer incidence and mortality from cardiac catheterization

procedures for operators are presented in Table 2. LAR of all cancer incidence and mortality

for male primary operators aged from 18 to 65 were 1.07%, and 0.59%, respectively. As to
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Fig 1. Beam directions distribution of cardiac catheterization procedures in (a) CA with PCI, (b) CA, and (c) Others. (LAO: left anterior oblique,

RAO: right anterior oblique, AP: anterior posterior, CRAN: cranial, CAU: caudal, F: fluoroscopy, A: acquisition).

https://doi.org/10.1371/journal.pone.0234461.g001
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the female primary operators aged from 18 to 65 were 1.50%, and 0.83%, respectively. In

contrast, the LAR of all cancer incidence and mortality were significantly lower in assistant

operators. The LAR of all cancer incidence and mortality for females were significantly

higher than for males.

Table 1. The procedural details in CA with PCI, CA, and others.

CA with PCI CA Others

Procedural details

Number of procedures (n = 71) 43 16 12

Radial approach (%) 100 100 0

Fluoroscopy time (mins) 14.67 ± 12.83 6.10 ± 3.49 14.21 ± 12.73

Fluoroscopy tube voltage (kV) 98.54 ± 16.55 87.23 ± 15.06 93.61 ± 15.31

Fluoroscopy tube current (mA) 12.31 ± 4.93 15.62 ± 4.21 6.12 ± 2.93

Acquisition tube voltage (kV) 85.60 ± 14.94 80.84 ± 13.91 83.40 ± 20.61

Acquisition tube current (mA) 784.75 ± 107.18 733.46 ± 157.42 505.70 ± 300.73

Acquisition time (s) 53.16 ± 10.33 41.31 ± 11.56 4.42 ± 5.23

Dose area product (Gy-cm2) 238.67 ± 201.51 119.30 ± 54.40 49.82 ± 126.27

Primary operators (n = 6)

Number of primary operators 5 4 3

Age (years) 49.25 ± 6.99 43.75 ± 3.30 42.33 ± 2.08

Male (%) 100 100 100

Case volumes 43 16 12

EPD radiation dose (μSv) 59.33 ± 95.03 39.81 ± 103.85 21.92 ± 37.04

Assistant operators (n = 5)

Number of assistant operators 5 3 1

Age (years) 32.6 ± 3.58 33.00 ± 4.58 32

Male (%) 44.74 83.33 100

Case volumes 38 6 1

EPD radiation dose (μSv) 30.03 ± 55.67 14.67 ± 14.88 4

https://doi.org/10.1371/journal.pone.0234461.t001

Fig 2. Correlation of DAP versus staff radiation dose. (a) DAP versus primary operator. (b) DAP versus assistant operator.

https://doi.org/10.1371/journal.pone.0234461.g002

PLOS ONE Cardiac catheterization real-time dynamic radiation dose measurement to estimate LAR of cancer

PLOS ONE | https://doi.org/10.1371/journal.pone.0234461 June 16, 2020 5 / 12

https://doi.org/10.1371/journal.pone.0234461.t001
https://doi.org/10.1371/journal.pone.0234461.g002
https://doi.org/10.1371/journal.pone.0234461


Discussion

Many previous important phantom studies for similar cardiac catheterization procedures are

listed in Table 3. However, our study was real-time dynamics measurement of medical radia-

tion to estimate the link between medical radiation exposure and LAR of cancer in staff from

cardiac catheterization procedures. Indeed, we analyzed the beam directions distribution com-

plexity during the different procedures in this study. We have demonstrated the more complex

Fig 3. The 1 year occupational radiation exposure to the operators.

https://doi.org/10.1371/journal.pone.0234461.g003

Table 2. Estimated LAR of all cancer incidence and mortality from cardiac catheterization procedures for operators.

Operators Primary operators Assistant operators

LAR All cancer incidence aged from 18

to 65

All cancer mortality aged from 18

to 65

All cancer incidence aged from 18

to 65

All cancer mortality aged from 18

to 65

Male 1.07% 0.59% 0.40% 0.22%

Female 1.50% 0.83% 0.56% 0.31%

https://doi.org/10.1371/journal.pone.0234461.t002
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procedures are associated with increasing the radiation doses. Estimation of the radiation

doses in staff have a wide variation across the literatures as a result of the levels of complexity

of the procedures [1, 3, 23–25]. This phenomenon is comparable with our staff radiation

doses. Nevertheless, the assistant operators radiation doses were significantly lower than pri-

mary operators is observed in all procedures. This result is caused by many factors during the

procedures such as equipment set-up, operator technique, use of radiation reducing tech-

niques, workload and procedural complexity [26–29].

There have been many studies[1, 30, 31] to estimate effective dose or effective dose equiva-

lent using personal monitors. The information from these studies could be used in evaluating

likely dose levels. The modified Niklason algorithm provided a measure of the exposure of sen-

sitive organs in the trunk:

E ¼ 0:02 ðHOS � HUÞ þ HU ðwith a thyroid collarÞ

where E is effective dose, Hos is Hp (0.07) measured over shield on thyroid level, and Hu is Hp

(10) measured under apron. The Hp (10) over shield on thyroid level is converted to Hp (0.07)

by adding 3% to the measurement dose. For a single dosimeter worn at the thyroid collar,

again assuming HU� 0.01 Hos, the conversion algorithm as follows:

E ¼ 0:03 HOS

Table 3. Previous phantom studies for similar cardiac catheterization procedures.

Author Location of dosimeter Measurement tool Dose unit No of projections

Panetta et al.[32] Wrist EPD Dose rate 4

Patet et al.[33] Chest EPD Equivalent dose _

Etzel et al.[34] Eye/ Neck/ Chest/ Gonads/ Lower leg Ion chamber Dose rate 3

Jia et al.[35] Eye/ Neck/ Chest/ Epigastrium/ Hypogastrium/ Thigh/ Lower leg/ Ankle EPD Dose rate 8

Haga et al.[36] Eye/ Neck EPD/ Eye dosimeter Equivalent dose -

Alnewaini et al.[37] Eye/ Neck TLD Radiation dose 14

Oliveira da Silva et al.[38] Eye/ Chest EPD Equivalent dose 6

Perisinakis et al.[39] Eye/ Waist Ion chamber Dose rate 17

Ordiales et al.[15] Neck EPD Equivalent dose 7

Sciahbasi et al.[40] Head/ Chest/ Wrist/ Hip EPD Equivalent dose 8

Vano et al.[41] Chest/ Eye EPD Dose rate 13

Principi et al.[42] Neck/ Chest/ Shoulder EPD/ TLD Equivalent dose 2

Liu et al.[43] Chest TLD Effective dose 6

Farah et al.[44] Eye/Neck/Chest/Waist EPD/ TLD Equivalent dose 10

Ertel et al.[45] Chest Ion chamber Radiation dose 7

Chida et al.[46] Neck/ Chest/ Knee EPD Dose rate -

Boetticher et al.[47] Eye/ Neck/ Chest/ Gonads/ Knee/ Lower leg/ Foot TLD Effective dose 3

Mesbahi et al.[48] From head to foot (for every 10 cm) Ion chamber Dose rate -

Schultz et al.[49] Trunk EPD Effective dose 2

Koichi et al.[50] Neck/ Chest OSLD� Dose rate 4

Kuon et al.[51] Chest Ion chamber Dose rate 163

Balter et al.[52] Neck/ Chest/ Knee Ion chamber Dose rate 6

�OSLD: optically stimulated luminescence dosimeter.

https://doi.org/10.1371/journal.pone.0234461.t003
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Martin et al.[31] is recommended for estimating the eye dose from a measurement with an

unshielded neck dosimeter, the equation:

Eye dose ¼ 0:75� neck dose

Cardiac catheterization procedures provide great diagnostic and treatment benefit to

patients. Unfortunately, the radiation doses of these procedures are imposed on staff. The radi-

ation dose to staff during the procedure is due to Compton scatter in the patient which is the

dominant interaction in tissue at diagnostic x-ray energies [28, 53]. Modern angiography sys-

tem provides DAP values to monitor the radiation dose for patient during the procedures.

From some literatures reported a positive correlation between DAP and staff radiation dose

during the procedures [22, 29, 54]. This means that DAP values can be represented the relative

radiation dose of the staff. Nevertheless, our results demonstrated a weak correlation. This

could be due to several factors: first, the quantity of radiation varies significantly depending on

the position of staff relative to the x-ray source and patient; second, the staff used a ceiling-

mounted radiation shielding screen for radiation protection; third, the staff might leave the

cardiac catheterization lab during the acquisition. This implies that the radiation dose to staff

during the procedures might be reduced by improving radiation protection practices.

Although our study demonstrates that the radiation doses of staff are lower during each

procedure, the increased years of service leads to greater radiation risk to the operators. In fact,

the radiation risks are mainly stochastic effects at low radiation exposure levels. These effects

with the probability of occurrence increasing with the absorbed dose [28, 55]. Therefore, lead

aprons and thyroidal collars and leaded glasses allow staff to achieve As Low As Reasonably

Achievable (ALARA) during the procedures. As was shown in an earlier report [28], lead

aprons of 0.25 or 0.5 mm absorb 85–92% 100 kV of energy and 93–97% of 100 kV of energy,

respectively. All operators wear lead aprons, thyroid collars, and leaded glasses to protect

themselves, during long-term performance of the procedures, it is still impossible to

completely avoid radiation exposure and its effects. If operators fail to use protective gear or

adjust the exposure time properly, within a few years operators may have increased the LAR of

cancer. Optimizing the fluoroscopy or cine acquisition dose rate to reduce staff radiation dose

and long-term risk is much more efficient. Ishibashi et al. [56] reported the fluoroscopy dose

rates in Japan were 7.5 pulses/s at 44% of CA, 7.5 pulses/s at 43% of PCI, and 7.5 pulses/s at

54% of radiofrequency catheter ablationpulses, respectively. As to the cine acquisition dose

rates were 15 pulses/s at 93% of CA, 15 pulses/s at 90% of PCI, and 7.5 pulses/s at 55% of radio-

frequency catheter ablationpulses, respectively. van Dijk et al. [57] reported the fluoroscopy

dose rate in pacemaker and defibrillator implantation was 7.5 pulses/s. As to the cine acquisi-

tion dose rates were 3.75–15 pulses/s. In our study, the default pulse rates (15 pulses/s) both

fluoroscopy and cine acquisition dose rates were used in other procedures. Consequently, the

fluoroscopy and cine acquisition dose rates would be optimized to ensure that the radiation

dose would be reduced to an acceptable level.

There are a few limitations in our study. First of all, due to the characteristics of equipment

and method of radiation dose measurement which lead to each beam direction and field size

variation were not straightforward determined during the procedure. Our study did not ana-

lyze the correlation between each beam direction, field size variation and radiation dose. Sec-

ond, the presented exposure levels reflected the procedure types were most often performed at

two hospitals. This certainly did not cover the all types of procedures and which was affected

the sample size. Third, the hand doses may be much greater than doses at the neck, eye, or

trunk during the procedures. There is no conversion algorithm to estimate the hand dose from

the doses at neck. The dosimeter should be worn towards on the hand adjacent to the x-ray
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tube if a meaningful result is to be obtained. Fourth, BEIR VII report was based on a linear no-

threshold (LNT) model to assess the correlation between radiation exposure and biological

risk. The principal source was the effect of whole body acute exposure to high radiation dose.

Whether the principal source can be extrapolated to the partial body exposure at a much lower

radiation dose. In addition, our study did not estimate the yearly of radiation exposure exactly

and job tenure of operators. However, according to the BEIR VII report, when exposed contin-

uously to 10 mSv on a yearly basis from ages 18 to 65 years old, cancer incidence was 3,059 for

male and 4,295 for female. That data was directly applied to the calculation of cancer risk to

medical staff in many studies [10, 58–60]. Although the LNT model for low-dose (<100mSv)

is characterized by a great deal of uncertainty, there is no direct evidence to estimate the cancer

risks for staff during the cardiac catheterization procedures. Currently BEIR VII report offers

the most accurate estimates of cancer incidence and mortality from medical radiation dose.

Conclusion

The radiation dose to staff mainly depend on the large number of acquisition and longer fluo-

roscopy time during the procedures. The present study provided an easy, real-time and

dynamic radiation dose measurement to estimate LAR of cancer for staff in the cardiac cathe-

terization procedures. Although the radiation doses of staff are lower during each procedure,

the increased years of service leads to greater radiation risk to the staff. In addition, the LAR

for all cancer incidence is about twice that for cancer mortality. Given the limits of the correla-

tion between each beam direction, field size variation and staff radiation dose of this study. In

our future studies will be of value to validate these findings.
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