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Introduction

In recent years, the gut microbiota has attracted much 
attention due to its important role in human health and 
disease via interacting with the host (1,2). Gut microbiota 
is related to cardiovascular health and diseases, such as 
atherosclerosis, heart failure, and arterial stiffness (3,4). 

Furthermore, research suggests that there exists a close 
relationship between the gut microbiota and congenital 
heart disease (CHD). A recent case-control study suggested 
that disorders of maternal gut microbiota and plasma 
metabolites were associated with a higher risk of CHD in 
the offspring (5). Additionally, intestinal microbiota may 
be a contributing factor in necrotizing enterocolitis among 
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term infants with cyanotic CHD (6). 
Tetralogy of Fallot (TOF) is the most common form of 

cyanotic CHD (around 8–9.7%) and is characterized by 
systemic chronic hypoxia and sustained pressure overload 
of the right ventricle (RV) (7,8). Studies have shown that 
hypoxia and pressure overload can affect the gut microbiota 
(9-11). Thus, it is reasonable to speculate that the gut 
microbiota in TOF patients may be dysregulated. However, 
to the best of our knowledge, to date, there have been 
no studies exploring the changes of the gut microbiota 
in children with unrepaired TOF compared to healthy 
subjects.

Herein, a cross-sectional study was conducted to 
explore the changes in the gut microbiota in pediatric 
patients diagnosed with TOF who have not undergoing 
any intervention. It was hypothesized that the combined 
heart defects can influence the composition and function 
of the gut microbiota, which may be involved in the disease 
progression and outcome.

We present the following article in accordance with 
the MDAR reporting checklist (available at https://
tp.amegroups.com/article/view/10.21037/tp-22-33/rc).

Methods

Experimental design and study cohort

This cross-sectional study was designed to investigate the 
changes in gut microbiota in children with TOF. Twelve 
pediatric patients diagnosed with TOF by echocardiography 
in the clinic of Guangdong Provincial People’s Hospital 
were enrolled in this study. Since age and gender can 
impact the gut microbiota (12,13), nine healthy age- and 
gender-matched children were enrolled as the control 
group. Comprehensive medical histories were obtained and 
physical examinations were performed to exclude conditions 
that were unsuitable for the trial, such as having a cold, 
diarrhea, constipation, jaundice, or use of any antibiotics 
within the past month. This study was approved by the 
Ethics Committee of the Guangdong Provincial People’s 
Hospital (No. KY-Q-2021-091-01) and all procedures were 
conducted in accordance with the Declaration of Helsinki (as 
revised in 2013). Informed consents were obtained from the 
parents or guardians of the participants.

Fecal sample collection and 16S rDNA gene sequencing 

Fecal samples were collected from all participants and 

frozen at −80 ℃ for subsequent analysis. DNA was 
extracted using a DNA isolation kit (Findrop Biosafety 
Technology, Guangzhou, China) according to the 
manufacturer’s protocol, and quantified and qualified by 
using a NanoDrop ND-1000 spectrophotometer (Thermo 
Fisher Scientific, Waltham, MA, USA). Polymerase chain 
reaction (PCR) amplification of the bacterial 16S rDNA 
genes V4 region was performed using Premix Taq Version 
2.0 (TaKaRa, Dalian, China) with forward primer 515F 
(5'-GTGCCAGCMGCCGCGGTAA-3') and reverse 
primer 806R (5'-GGACTACHVGGGTWTCTAAT-3'). 
The PCR amplicons were then purified with AMPure 
XP Beads (Beckman Coulter, Indianapolis, IN, USA) 
and quantified using the PicoGreen dsDNA Assay Kit 
(Invitrogen, Carlsbad, CA, USA). Finally, sequencing was 
performed using the Illumina NovoSeq 6000 platform. 

Bioinformatics analysis

The sequencing data were processed using the Quantitative 
Insights Into Microbial Ecology (QIIME2, v2020.6) 
pipeline as previously described (14). Venn diagrams 
were generated to visualize the shared and unique genera 
between groups using VennDiagram. Indicator species 
analysis was performed using the indval function in labdsv 
(v2.0.1), and genera with a P value <0.05 were considered 
significant indicators. Alpha diversity (Chao1 and Shannon) 
was calculated in QIIME2. Beta diversity was visualized 
via nonmetric multidimensional scaling (NMDS) (15) and 
further examined using analysis of similarities (ANOSIM). 
Microbial functions were predicted by PICRUSt2 and 
Tax4Fun (16,17). 

Statistical analyses

Statistical analysis was conducted using the SPSS 20.0 
software (SPSS Inc., Chicago, IL, USA), and the graphs 
were plotted with GraphPad Prism (Version 7.0, San 
Diego, USA). Categorical variables were described as 
whole numbers and percentages, and comparisons between 
groups were performed with Fisher’s exact test. Continuous 
variables with normal distribution were presented as 
mean ± standard error of the mean (SEM) or mean (95% 
confidence interval), and comparisons between groups 
were performed with t-tests. Continuous variables with 
non-normal distribution were presented as median and 
interquartile range (IQR), and comparisons between groups 
were performed with Wilcoxon rank-sum test. A P value 
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<0.05 was considered statistically significant.

Results

Subjects and clinical characteristics

Twelve pediatric patients with TOF were enrolled in the 
study and nine healthy children matched for age and gender 
were enlisted as the control group. Baseline characteristics 
are shown in Table 1. The gender, age, and weight were 
not significantly different between the two groups. 
Specifically, there were six and nine males in the healthy 
group and the TOF group, respectively. The median ages 
were 8 and 6 months, and the median weights were 8.3 
and 6.6 kg in the healthy and TOF groups, respectively. 
The echocardiographic indices, such as diameter of the 
ventricular septal defect (VSD) and pressure gradient across 
the right ventricular outflow tract (RVOT), were recorded.

Alterations of bacterial taxa and indicative bacterial 
genera

Venn diagrams were used to illustrate the similarities and 
differences in the genera observed in the TOF patients and 
the healthy controls. There were 59 overlapping genera, and 
36 and 53 genera were found exclusively in the healthy group 
and the TOF group, respectively (Figure 1A). The taxonomic 
compositions and abundances of the gut microbiota 
between the two groups are presented at the phylum level  
(Figure 1B,1C). In the healthy group, the most abundant 
phyla were Proteobacteria, Firmicutes, and Actinobacteria, with 
an average abundance of 36.05%, 34.67%, and 14.30%, 

respectively. In the TOF group, the most abundant phyla 
were Firmicutes, Proteobacteria, and Bacteroidetes, with an 
average abundance of 47.33%, 24.44%, and 17.90%, 
respectively. At the genus level, 14 indicative bacterial 
genera (median relative abundance >0.1% and P<0.05) were 
identified as biomarkers that may distinguish between healthy 
children and TOF patients (Figure 1D). In the healthy group, 
Terrisporobacter, Chryseobacterium, and Prevotella were the top 
three genera with indicator values of 0.66, 0.51, and 0.43, 
respectively. In the TOF group, Faecalibacterium, Megamonas, 
and Subdoligranulum were the top three genera with indicator 
values of 1.00, 1.00, and 0.91, respectively.

Altered beta diversity in the gut bacterial community

The alpha diversity of the gut microbiota was compared 
using Chao1 and Shannon, and the results showed that 
TOF patients and healthy children had similar gut 
microbial alpha diversity (Figure 2A,2B). The similarities 
and differences in the community composition between 
the two groups were also examined. Notably, the NMDS 
plot of beta diversity based on Bray-Curtis distance matrix 
revealed that the differences in the community composition 
between the two groups was greater than that within the 
groups (Figure 2C,2D), indicating that TOF has a significant 
impact on gut bacterial community composition.

Altered abundance in Enzyme Commission (EC) and 
Kyoto Encyclopedia of Genes and Genomes (KEGG) 
Orthologs (KO)

The functional properties of the intestinal microbiota 

Table 1 The demographics and clinical characteristics of the study participants

Variables Healthy group (n=9) TOF group (n=12) P

Male 6 (66.7) 9 (75.0) 1.000 

Age (months) 8 [5, 10] 6 [4, 11] 0.452 

Weight (kg) 8.3 (5.9, 9.3) 6.6 (5.8, 8.9) 0.522 

Diameter of the VSD (mm) – 10.4±0.6 –

Pressure gradient across the RVOT (mmHg) – 71±4 –

Diameter of the LPA (mm) – 5.5±0.4 –

Diameter of the RPA (mm) – 6.1±0.4 –

Over-riding of the aorta (%) – 49±2 –

Data are shown as numbers and percentages or median (interquartile range) or mean ± standard error of the mean. TOF, Tetralogy of 
Fallot; RVOT, right ventricular outflow tract; VSD, ventricular septal defect; LPA, left pulmonary artery; RPA, right pulmonary artery.
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were predicted using PICRUSt2. Interestingly, the gut 
microbiota of the TOF group was characterized by a 
significant reduction in the abundance of enzyme EC 
(Enzyme Commission), including transketolase, enoyl-CoA 
hydratase, and lysophospholipase. The top 20 enzyme ECs 
in relative abundance (P<0.05) are displayed in Figure 3A. 
Furthermore, the TOF group showed a lower abundance of 
KOs (KEGG Orthologs), such as LacI family transcriptional 
regulator, ribose transport system permease protein, and 
DNA-damage-inducible protein J. The top 20 KOs in 
relative abundance (P<0.05) are displayed in Figure 3B.

Altered abundance in KEGG pathway annotations

KEGG pathway annotations at level 2, as determined by 
PICRUSt2, showed significant differences between the 
TOF group and the healthy controls. In contrast to the 
healthy children, the functional profile in TOF patients 
exhibited a greater abundance of pathways related to 
immune diseases (Figure 4A) and a lower abundance of 
pathways related to environmental adaptation (Figure 4B),  
membrane transport (Figure 4C) ,  and xenobiotics 
biodegradation and metabolism (Figure 4D). Furthermore, 
KEGG pathway annotations at level 3, as determined by 
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Figure 1 The alterations in bacterial taxa and the indicative bacterial genera in the TOF population and the healthy population. (A) There 
were 59 overlapping genera between the TOF and healthy population. A total of 36 and 53 genera were found exclusively in the healthy 
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Tax4Fun, also presented significant differences between 
the two groups. In particular, the functional profile in TOF 
patients showed significant association with the nuclear 
factor (NF)-kappa(κ)B signaling pathway (Figure 5A),  
oxidative phosphorylation (Figure 5B), cytokine-cytokine 
receptor interaction (Figure 5C),  and the vascular 
endothelial growth factor (VEGF) signaling pathway  
(Figure 5D), while there was a lower association with 
pathways involved in ribosome biogenesis in eukaryotes 
(Figure 5E) and glutathione metabolism (Figure 5F).

Discussion

The current study provided evidence that the gut 
microbiota in pediatric patients with unrepaired TOF 
differs from that in healthy children in terms of taxonomic 
composition, beta diversity, and functional profile. These 
findings suggested that the interplay between the host and 
the gut microbiota may be dysregulated in children with 
TOF, and indeed, TOF may influence the composition and 
function of the gut microbiota.
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TOF is not only a combination of four heart defects, but 
it is also a systemic disease to some extent since patients are 
born with systemic chronic hypoxia, sustained RV pressure 
overload (8), and arterial stiffness (18). It has been reported 
that, despite having a correction in infancy, children with 
TOF are at a higher risk of disorders in speech and language 
compared to patients with VSD and cardiac insufficiency (19). 
Study has shown that in patients with repaired TOF, serum 
bile acid levels are positively correlated with the indexed RV 
end-diastolic volume, suggesting the presence of hepatic 
congestion (20). In addition, transcriptomic study on children 
with TOF revealed that hypoxia can lead to enhanced 
expression of genes related to apoptosis and remodeling, 
and reduced expression of genes related to myocardium 
contractility and function (21). However, the alterations in 

the gut microbiota of TOF patients remain unclear. This 
current study lends support the concept that TOF is a 
systematic condition by clearly demonstrating the imbalance 
and dysfunction in the gut microbiota of TOF patients.

Systemic chronic hypoxia and sustained RV pressure 
overload are prominent pathological features in TOF, and 
may be important factors involved in the gut microbiota 
changes observed in this current study. There is plenty 
of evidence to suggest that hypoxia can affect intestinal 
microbiota. Indeed, intrauterine hypoxia can cause changes 
of the initial microbiota colonization in neonatal rats (22). 
A recent study revealed that chronic hypoxia caused gut 
dysbiosis and D-galactose accumulation, thereby inducing 
premature senescence of bone marrow mesenchymal stem 
cells (23). Another research suggested that intermittent 
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hypoxia contributed to atherosclerosis by disturbing the gut 
microbiome and metabolome (24). In our current study, 
the taxonomic compositions were found to be notably 
affected in TOF children, and furthermore, the indicator 
bacterial genera including Faecalibacterium, Akkermansia, 
and Subdol igranulum  were identif ied as  potential 
biomarkers to distinguish between TOF individuals and 
healthy children. Faecalibacterium has been implicated in 
inflammation and gut barrier integrity, and its abundance 
is significantly modified in children with obstructive sleep 
apnoea syndrome (OSAS) (25,26). In addition, Akkermansia 
and Subdoligranulum have been shown to be related to 
inflammation and metabolic status (27,28). Furthermore, 
we observed that the intestinal flora in TOF patients was 
characterized by a significant reduction in the abundance 
of enzyme EC and KOs. The TOF profile suggested 
insufficiencies in defense responses to stress (including 
3-mercaptopyruvate sulfurtransferase, cyclopropane-fatty-
acyl-phospholipid synthase, and DNA-damage-inducible 
protein J) (29-33), maintenance of metabolic homeostasis 
(including thiosulfate sulfurtransferase and ornithine 
carbamoyltransferase) (34,35), synthesis of nucleotides and 
nucleic acids (including transketolase and transaldolase) 
(36,37), and ribose transport (including ribose transport 
system permease protein and ribose transport system 
ATP-binding protein) (38,39). These results indicated 
that the functional properties of the gut microbiota were 
significantly impaired in TOF. It is noteworthy that reduced 
lysophospholipase activity has also been observed in injured 
intestinal mucosa caused by ischaemia (40). Our findings are 
supported by a study showing that children with OSAS had 
reduced gut microbiota diversity, increased inflammation, 
and gut barrier disruptors-related strains (26).

To further elucidate the differences in the functional 
profile between TOF children and healthy subjects, KEGG 
pathway annotations were performed. It was revealed that, 
in TOF patients, there was an abundance of gut microbiota 
associated with immune diseases, while there was a lower 
abundance of microbiota associated with environmental 
adaptation, membrane transport,  and xenobiotics 
biodegradation and metabolism. Furthermore, it is worth 
noting that in the TOF group, the KEGG pathways of 
NF-κB signaling, oxidative phosphorylation, cytokine-
cytokine receptor interaction, and VEGF signaling were 
significantly enriched, but there were fewer pathways 
associated with ribosome biogenesis in eukaryotes and 
glutathione metabolism. There is a close relationship 
between hypoxia and the NF-κB signaling pathway, as 

well as cytokine-cytokine receptor interaction and the 
VEGF signaling pathway (41-44). The NF-κB signaling 
pathway plays a crucial role in inflammation, immunity, cell 
proliferation, differentiation, and survival (45), as well as in 
intestinal homeostasis and diseases (46). Additionally, the 
NF-κB signaling pathway has been implicated in hypoxic 
conditions, yet its role may be double-edged. Study has 
shown that the NF-κB signaling pathway is activated 
in cyanotic myocardial tissues and hypoxia-stimulated 
cardiomyocytes, which is inferred as a compensatory 
response to stress (41). However, another study revealed 
a pathogenic aspect, in which NF-κB signaling played an 
important role in chronic intermittent hypoxia-induced 
atherosclerosis (43). In addition, oxidative phosphorylation 
is crucial to the synthesis of ATP (47) and the increased 
enrichment of oxidative phosphorylation in TOF may serve 
as an adaptive mechanism for a more energy requirement. 
This inference can be supported by a previous study on 
TOF patients, where a potential adaptive mechanism 
was found to enhance ATP output and minimize hypoxic 
damage (8). However, a reduced relative abundance of 
ribosome biogenesis in eukaryotes was observed, which 
suggested that protein production may be impaired in 
TOF. Interestingly, the metabolism of glutathione, which 
serves as a major intracellular antioxidant and an indicator 
of oxidative stress (48,49), was significantly less enriched in 
TOF patients. These results further indicated that the gut 
microbiota in TOF patients has been perturbed, resulting 
in increased levels of inflammatory, oxidative, and immune 
responses, and decreased levels of adaptation, synthesis, and 
metabolism. 

There were some limitations to this present study. Since 
the sample size was small, it was difficult to explore the 
relationship between altered bacterial diversity and clinical 
parameters such as pressure gradient across the RVOT. 
In addition, this was an observational study, and future 
causality studies are warranted to translate the human 
observations into preclinical validation. 

Conclusions

Pediatric patients with unrepaired TOF have intestinal 
dysbacteriosis that is characterized by altered taxonomic 
compositions and impaired functional profiles. These 
findings suggest that the interplay between the host and the 
gut microbiota has been dysregulated by TOF. However, 
further causality studies are warranted to progress from 
human observations to preclinical validation.
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