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Objectives: To evaluate sleep consolidation and circadian activity rhythms in infants and toddlers with
Down syndrome (DS) under light and socially entrained conditions within a familiar setting. Given
previous human and animal data suggesting intact circadian regulation of melatonin across the day and
night, it was hypothesized that behavioral indices of circadian rhythmicity would likewise be intact in
the sample with DS.
Methods: A cross-sectional study of 66 infants and young children with DS, aged 5e67 months, and 43
typically developing age-matched controls. Sleep and measures of circadian robustness or timing were
quantified using continuous in-home actigraphy recordings performed over seven days. Circadian
robustness was quantified via time series analysis of rest-activity patterns. Phase markers of circadian
timing were calculated alongside these values. Sleep efficiency was also estimated based on the actig-
raphy recordings.
Results: This study provided further evidence that general sleep quality is poor in infants and toddlers
with DS, a population that has sleep apnea prevalence as high as 50% during the preschool years. Despite
poor sleep quality, circadian rhythm and phase were preserved in children with DS and displayed similar
developmental trajectories in cross-sectional comparisons with a typically developing (TD) cohort. In line
with past work, lower sleep efficiency scores were quantified in the group with DS relative to TD chil-
dren. Infants born with DS exhibited the worst sleep fragmentation; however, in both groups, sleep
efficiency and consolidation increased across age. Three circadian phase markers showed that 35% of the
recruitment sample with DS was phase-advanced to an earlier morning schedule, suggesting significant
within-group variability in the timing of their daily activity rhythms.
Conclusions: Circadian rhythms of wake and sleep are robust in children born with DS. The present
results suggest that sleep fragmentation and any resultant cognitive deficits are likely not confounded by
corresponding deficits in circadian rhythms.
© 2017 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
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Statement of Significance

Sleep is recognized as a key component to health, yet little

is understood about how sleep and its circadian timing

mature during infancy or how this maturation ties into the

development of brain networks underlying cognition. While

previous studies have described pediatric sleep through

parent and caregiver reports, new work is tracking its

developmental trajectory and variations thereof, using

more objective measures in typical and at-risk populations.

Given the high rate of sleep problems in Down syndrome

(DS) and their emergence soon after birth, the present study

quantified the cross-sectional development of circadian

rhythms and sleep in infants and toddlers with this genetic

background. The data suggest that young children with DS

maintain normal circadian timekeeping in the face of sig-

nificant problems with sleep quality. Future studies will be

critical towards defining the role that sleep fragmentation

has in shaping cognitive outcomes across populations.
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1. Introduction

Down syndrome (DS) emerges out of the biological sequelae
produced by an extra copy of all or part of human chromosome 21
(Hsa21; trisomy-21) [1]. In addition to well-documented functional
strengths, individuals with this condition face many challenges
throughout their lifespan. Chief among these are mild-to-profound
impairments in intellectual functioning that are reflected in and
abetted by deficits in learning, memory, and receptive and
expressive language [2]. Much of the cognitive profile seen in
people with DS can be traced mechanistically to changes in the
developmental trajectory of the frontotemporal regions of the
brain, including the hippocampus. Neuropsychological research has
supported this relationship by repeatedly documenting a dispro-
portionate weakness in performance on cognitive tasks that are
dependent on hippocampal function in those with DS [1e3].

Alongside differences in brain architecture and connectivity are
several other medical comorbidities with the potential to limit how
successfully the brain of a person with DS is able to recapitulate
typical development. Infants with DS are born with smaller neu-
rocraniums and experience changes to bone growth along the
craniofacial skeleton that physically compress the midface and jaws
[4]. Soft tissue crowding of the pharynx and palate ensues, which is
exacerbated by a posterior displacement of the tongue, enlarged
tonsils and adenoids, and medially displaced tonsils that occlude
the back of the throat [5e7]. These craniofacial features ultimately
narrow airflow passage through the upper respiratory tract and,
together with decreased pharyngeal muscle tone and airway
collapse, result in obstructive sleep apnea syndrome (OSAS) and
sleep fragmentation in the majority of individuals with DS [8e13].

The high prevalence of OSAS in people with DS has been noted
by several physicians over the past three decades (eg, Southall,
Marcus, Schott, et al. [8e13] ) and has shaped guidelines for the
supervision and care of children with DS. For instance, the Amer-
ican Academy of Pediatrics recommends that children bornwith DS
should receive monitoring from birth and a polysomnogram (PSG)-
measured sleep assessment by four years of age [14]. However, a
synthesis of recentwork has suggested that younger childrenmight
benefit from earlier efforts to actively detect (and treat) OSAS. At
least two studies have screened infants with DS between 1 and 40
weeks of age for sleep-related upper airway obstruction [13,15]. In
one of these studies, the authors used a cohort of children with a
mean age of 44 days [15]. The aggregated data suggest that
symptoms of OSAS (oxygen desaturation with continued attempts
at breathing, elevated capnography readings, apnea-hypopnea in-
dex (AHI) levels >5) are not only present in at least 30e50% of in-
fants with DS, but that when present, often meet criteria for severe
OSAS (defined by AHI levels >10) [13,15].

Upper airway obstruction and general neurological delay likely
lead to disturbed sleep in younger children with DS. Several in-
vestigations using short-term and longitudinal electroencephalo-
gram (EEG) analysis have noted that: (1) these children arouse
more during nighttime sleep than typically developing, chrono-
logical age-matched controls, (2) spend less time in deeper stages
of non-rapid eye movement (NREM) and rapid eye movement
(REM) sleep, (3) shift more often from deeper NREM stages of sleep
to lighter ones, and (4) exhibit less spindle activity [16e20]. Sleep-
disordered breathing and poor sleep quality in the pediatric pop-
ulation with DS have been associated with restless nighttime
movement and parasomnias, sleep anxiety, daytime fatigue, and
decreased scores on inventories of adaptive function like the Life
Habit Questionnaire (Life-H) [21e24]. These findings suggest that
poor sleep might have real-world consequences for the functional
daily living and school performance of the average child with DS.
Mounting evidence also suggests that poor sleep might negatively
impact cognitive development in these children.

Although the notion has received very little empirical study, it is
reasonable to assume that sleep in early life plays a formative role
in setting up typical and atypical cognitive systems. Down syn-
drome provides a unique model of exaggerated sleep disruption
during the infant and toddler period, at a time when the brain's
frontotemporal cortices are developing rapidly to support the
establishment of cognitive precursors to domains like executive
function (EF) or language, and their maturation into adult forms
within efficient brain networks. The first group to report links be-
tween subjective ratings of OSAS and EF in the adolescent and
young adult DS population was led by Chen et al. [25]. The re-
searchers found that those with DS who had more severe behav-
ioral symptoms of OSAS were impaired on verbal fluency, rule-
shifting, and behavioral inhibition tasks relative to chronological
and mental age-matched individuals with DS who had fewer OSAS
symptoms.

To track the origin of these deficits, Edgin et al. looked at two
progressively younger cohorts of children with DS, one 7e12 years
of age, the other 2e5 years [26,27]. Between 7 and 12 years, chil-
dren with DS comorbid for OSAS (ie, AHI levels >1.5, as determined
by ambulatory PSG) performed significantly worse on an EF set-
shifting task and had verbal IQ scores almost a standard deviation
(ie, nine points) lower than a similarly comprised group with DS
not meeting criteria for OSAS. In that study, differences in EF and
language could not be attributed to body mass index (BMI), day-
time sleepiness, or difficulties with maintaining attention [26].

Extending these observations, the researchers then examined
how disrupted sleep might relate to language development in
toddlers with DS (2e5 years) compared with typically developing
(TD) children. Five consecutive days of actigraphy were collected
alongside 16 continuous hours of auditory recordings with a Lan-
guage Environment Analysis (LENA) monitor. Actigraphy revealed
that the majority of the DS cohort, upwards of two-thirds, had
average sleep efficiency scores <80% (ie, were poor sleepers),
compared with 15% of the TD sample [27]. Analysis of the sound
environment suggested that this disparity in sleep quality influ-
enced precursors to language output; the mean length of utterance
for poor-sleeping children with DS was significantly shorter than
for children that slept well (although utterances for both groups
with DS were truncated relative to TD children). Degree of sleep
consolidation also correlated with how well the children with DS
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were able to combinewords and form sentences on theMacArthur-
Bates Communicative Development Inventory (MB-CDI) [27]. It is
noteworthy that these results were robust when controlling for
medical and social background factors and for behavioral measures
associated with autism spectrum symptoms.

Overall, the findings from Edgin et al. have established that
some variation seen in younger and older children with DS on EF,
verbal IQ, and language ability is related to sleep quality [25e27].
Perturbations in sleep might negatively impact development of the
frontal and medial temporal lobes in people with DS, placing
functions associated with these areas of the brain at greater risk.
While these findings suggest tangible treatment solutions for
improving cognition in the pediatric population with DS via sleep
intervention, they are tempered by a lack of certainty as to the
origin of the sleep problems. Do these deficits occur solely as a
result of OSAS and the accompanying fragmentation of the sleep
period, or are they also a by-product of circadian rhythm
dysfunction? Many aspects of sleep are determined by an interac-
tion between homeostatic and circadian regulatory processes that
balance the need for sleep versus its timing during the 24-h cycle
[28]. The possibility remains that sleep disruption in children with
DS occurs because the circadian system is not sending a clear signal
at night to drive down arousal and maintain sleep.

In an effort to answer this question, the present study assessed
sleep, with seven days of actigraphy, and quantified objective
behavioral measures of sleep efficiency and circadian prominence
in infants and toddlers with DS relative to an age-matched TD
control group. These non-invasive recordings were conducted in
the home, as the children went about their regular day-to-day ac-
tivities, and did not disturb their daily routines. The study reported
here is the first to characterize the circadian activity profile of
children with DS over an extended period of sleep measurement,
and is the largest cross-sectional actigraphy analysis ever con-
ducted in this population.

2. Methods

2.1. Participants

A community-based sample of 77 children with DS and 53 TD
controls was recruited between 2011 and 2015 from an investiga-
tion of sleep and learning conducted by the Memory Development
and Disorders Laboratory at the University of Arizona (MDDL-UA).
Participants with or without DS were recruited through adver-
tisements in local and national news venues, including community
events, newsletters, research registries, word of mouth, and social
media. In all cases, the same marketing communication materials
were used. Two additional recruitment mechanisms were used to
enroll children with DS that were not employed in TD children.
Enrollment of the group with DS was bolstered by study adver-
tisements that were distributed through the National Institutes of
Health National Down Syndrome Registry (DS-Connect®) and via
outreach events in the local DS community, such as the Tucson
Buddy Walk. A majority of the TD sample and the sample with DS
resided in the state of Arizona (80/130), with others located across
the United States of America (USA).

In the current study, seven days of home-based actigraphy data
and parent reports on sleep were collected. Parents were required
to maintain a sleep diary and provide responses on select items
from the Children's Sleep Habits Questionnaire (CSHQ), a pediatric
assessment that screens for symptoms of sleep problems defined in
the International Classification of Sleep Disorders (ICSD-2) diag-
nostic and classification manual [29]. The CSHQ has been validated
in TD children aged 2e10 years [30] and in children from diverse
neurodevelopmental backgrounds such as autism and DS
[23,30,31]. Because the instrument has not been used to charac-
terize sleep habits in infants and younger toddlers between the
ages of 5e23months, parents were asked to only address questions
on the CSHQ that could be directly related to variables from the
actigraphy recordings and sleep diary.

Patient medical records were faxed or physically mailed on
hardcopy or CD to the MDDL-UA. A diagnosis of trisomy-21 was
confirmed by karyotype for those in the group with DS. One child
included in the group with DS was determined to have trans-
location DS (ie, with an extra copy of Hsa21 physically attached to
another chromosome). Although none were recruited for study, no
effort was made to specifically exclude children with mosaic DS (ie,
children with a mix of cells that either have or do not have an extra
freely segregating copy of Hsa21). Written consent was obtained
from the parents or legal guardians of the participants before
assessment, and the UA Institutional Review Board approved all the
procedures. All participants were too young to consent; thus, verbal
assent was obtained.

Exclusion criteria for sleep and circadian analyses included the
following: (a) <5 full consecutive days of actigraphy (n ¼ 14); (b)
parents indicated that the child was sick during the recording
period (n ¼ 2); (c) parents indicated traveling out of state during
the recording period (n¼ 1); (d) actigraphywas performedwithin a
10-day window following a daylight savings change (n ¼ 1); or (e)
gestational age <36 weeks (n ¼ 3). These filters resulted in a final
sample of 66 children with DS and 43 TD children, with 70 in-
dividuals residing in Arizona (Fig. 1). The participants ranged in age
from 5 to 67 months in the sample with DS (M [SD] age ¼ 29.86
[15.92] months, 43 males and 23 females) and, similarly, from 5 to
58months in the TD sample (M [SD] age¼ 29.44 [18.46] months, 26
males and 17 females) (Fig. 1A and B). For the two groups, there
were no significant differences observed in the average or relative
distributions of their age, gender, race/ethnicity, maternal educa-
tion, or annual household income (t-test, Levene's, Fisher's exact, or
Chi-squared tests, all p > 0.05; Fig. 1A). The percentage of nappers
was also tightly conserved between the two: almost all the children
included in the present study (>90%) napped during the day,
whether they had DS or not. However, based on parent answers to
select questions on the CSHQ, TD children were significantly more
likely to co-sleep with parents and siblings at night than the chil-
dren in the cohort with DS (Х2 ¼ 6.17e7.75, p < 0.05; Fig. 1A).

2.2. Actigraphy: assessment of circadian rhythms

Actigraphy is particularly well suited for examining circadian
rhythms in young children and those with intellectual disabilities,
given the ease of data collection over multiple days. Study equip-
ment was shipped by courier or hand-delivered to the participants'
homes. Parents were instructed to place the Actiwatch on their
child's non-dominant wrist, or in the case of infants, on the infant's
non-dominant ankle, for aminimumof seven consecutive days, and
were informed that the device could be worn during bath time and
if in the pool for <30min. Datawere collected using an Actiwatch-2
(weight ¼ 16 g, Philips Respironics USA, Koninklijke Philips N.V.),
which is a solid-state piezoelectric monitor that converts
acceleration-mediated changes in voltage into discrete signals
indicating movement. The sample rate of the Actiwatch was set at
32 Hz and the peak range of sensitivity was 0.5e2 G. All data were
summed and collected in 30-s epochs.

Unparsed Actiware files containing 2880 points of data/24 h
were plotted as a time series and analyzed using ClockLab for a
quantitative description of diurnal rhythms in the TD group and in
the group with DS (Actimetrics Version 6, Wilmette, IL, USA). The
actogramwindow was modified so that only full-day periods were
seen and used in the analyses. The first set of measures that were



Fig. 1. A and B. The Down syndrome (DS) and typically developing (TD) groups were equivalent along several demographic and social background factors, and exhibited a similar
age distribution. Categories listed under sleep characteristics were curated from questions on the Children's Sleep Habits Questionnaire. Based on these questions, children from the
DS sample were found to co-sleep less with parents or siblings during nighttime rest than those from the TD sample. Nearly all the children in the survey (>90%), irrespective of
genetic background, were classified as habitual nappers. (C) Map of the recruitment area. States in black mark where the participants lived at the time of the actigraphy recordings.
(D) Heat map of a minute-by-minute activity profile generated from several days of recording from a 2.5-year-old male toddler with DS. Lack of color diffusion in the onset and
offset areas suggests that the movement of this individual was confined to two blocks of activity occurring at approximately the same time each day, separated by a routine nap. (E)
High-resolution actogram showing the absolute activity or inactivity of a 2-year-old female toddler with DS. Data are vertically aligned; such that one 24-h day of movement is
shown per line, with successive days appearing one below the other. Any movement registered with the Actiwatch, no matter the intensity, was tallied with a black tick. White
space indicates complete inactivity. The graph suggests that the child had robust circadian patterns of behavior.
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estimated were phase markers associated with circadian timing
and their corresponding variations. Daily onsets (the time of day
when an individual wakes) were calculated using a template-
matching algorithm that searched for a time point at the inter-
section of a 5-h period of relative immobility followed by a 5-
h period of vigorous movement. Daily offsets (the time of day
when an individual falls asleep) were determined using a reciprocal
5-h template-matching strategy. Daily acrophases (the time of day
when an individual is most physically active) were calculated by
using the least squares method to fit each day's activity profile to a
24-h sine function and quantifying the temporal position of the
resulting sine wave's peak. The individual values for these three
circadian phase markers were adjusted to account for time zone
differences and manually inspected and corroborated by a second
investigator to ensure accuracy.

To obtain estimates of robustness for the circadian component
of the actigraphy data, Lomb-Scargle Periodogram analysis (LSP)
and a classic Fast-Fourier transform (FFT) were used. The power
spectrum (amplitude) from 18 to 30 h was determined for each.
Lomb-Scargle Periodogram is a particularly useful method for
detecting periodicities from incomplete, evenly sampled time se-
ries because it can process records with large or frequently reoc-
curring gaps of 1e2 h that might happen at a similar time each day
[32e34]. The fact that it can avoid inflating estimates of circadian
rhythmicity in an actigraphy data set when gaps are present at
regular intervals is important for assessing pediatric activity re-
cords, which often contain nap periods that are routinely scheduled
at particular points during the afternoon.
Non-Parametric Circadian Rhythm Analyses (NPCRA) of inter-
daily stability (IS), intradaily variability (IV), and relative ampli-
tude (RA) were also used to assess robustness in the circadian
range for both the TD group and DS group. A mathematical
description of these variables can be found in Van Someren et al.
[35]. In healthy subjects, the activity profiles that are recorded
from one day to the next will resemble each other because the
person's endogenous circadian clock is phase-locked to stable
environmental cues that occur over a 24-h cycle, primarily varia-
tions in light intensity pursuant to the solar lightedark cycle. The
IS value gives an indication of how well a person's rest-activity
patterns are maintained across days and weeks, and quantifies
the strength of their coupling to the environment. Interdaily sta-
bility values range between 0, indicating pure Gaussian noise, to
1.0, which means that the 24-h activity profile is recapitulated
perfectly every single day [35e38].

In healthy subjects, periods of rest and activity will also tend to
be consolidated to one or two major episodes within a day. Those
with circadian disorders might experience more erratic changes in
arousal that appear as activity fluctuations in the actigraphy record.
The IV value gives an indication as to how often these low-activity/
high-activity transitions occur, and quantifies the degree to which
behavioral rhythms are fragmented. Generally, IV values range near
0, indicating that transitions occurring between rest/activity within
a day can be described by a perfect sine wave and are tightly
consolidated (occurring almost digitally), to 2.0, which means that
the transitions are fragmented to the point of being random
[35e38].



Table 1
Descriptive statistics for sleep-circadian measures used in the study.

Group

TD DS

Measures of circadian robustness
LSP 24-h amplitude 865.54 (326.54) 873.08 (318.98)
FFT 24-h amplitude 0.207 (0.066) 0.215 (0.063)
NPCRA-IV 0.725 (0.165) 0.729 (0.190)
NPCRA-IS 0.435 (0.062) 0.455 (0.076)
NPCRA-RA 0.935 (0.032) 0.888 (0.048)
NPCRA-M10 563.27 (153.33) 523.80 (148.53)
NPCRA-L5 17.34 (7.17) 29.32 (11.35)

Circadian phase markers
Onset 6.91 (0.96) 6.96 (1.30)
Onset deviation 0.64 (0.24) 0.61 (0.27)
Offset 20.86 (0.96) 20.87 (1.36)
Offset deviation 0.76 (0.41) 0.74 (0.44)
Acrophase 13.93 (0.91) 13.87 (1.42)
Acrophase deviation 0.96 (0.37) 0.89 (0.45)

Sleep markers
Average sleep efficiency (%) 82.90 (5.63) 75.86 (5.49)
Average sleep duration (minutes) 489.66 (55.06) 453.07 (47.93)

Note: For ease of comparison, the raw group averages are shown along with stan-
dard deviations in parenthesis. Bolded numbers indicate measures that were sta-
tistically different between the groups. Please see Supplemental information for the
log transformed numbers and statistical group comparisons using t-tests for
equality of means (two-Tailed, equal and unequal variances assumed).
DS, Down syndrome; TD, typically developing; LSP, Lomb-Scargle periodogram; FFT,
fast Fourier transform; NPCRA, Non-parametric circadian rhythm analysis; IV,
intradaily variability; IS, interdaily stability; RA, relative amplitude; M10, Most
active 10-h period of the day; L5, Least active 5-h period of the day.
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The last NPCRA variable calculated in the circadian analysis, RA,
is a non-parametric value that has historically been used to
approximate the robustness of a circadian rhythm [35e38]. It
compares the normalized difference in magnitude between the
most active 10-h period of the day (M10) to the least active 5-
h period (L5), with a range of 0e1 (higher values represent a
greater divergence between the two phases).

2.3. Actigraphy: assessment of sleep

In several independent and meta-analyses, actigraphy has been
found to correlate significantly with PSG in measurement of total
sleep time and efficiency, although it fares less well in detecting
wake [39e42]. It predicts sleep behavior in infants when directly
compared to PSG [43] and has been used in several pediatric
populations for the study of sleep-circadian disorders [44],
including studies conducted in people with DS [45,46]. Sleep vari-
ables were assessed at the medium sensitivity threshold (40
counts/epoch) and analyzed with Actiware software 6.08 (Philips
Respironics, USA, Koninklijke Philips N.V.). The built-in Actiware
software thresholds were used because no algorithms have been
developed at this sampling rate for infants with extensive sleep
impairment (as is found in infants and toddlers with DS). When
comparing PSG-measured sleep to actigraphy in toddlers with DS, it
was found that the actigraphy-derived sleep efficiency variable
correlates well with PSG-measured EEG arousals (n¼ 18; r¼�0.71,
p < 0.05; unpublished observation). Previous work has also shown
that the prevalence of periodic limb movement disorder (PLMD)
among children with DS is comparable to the prevalence observed
in the TD pediatric population (ie, about 20%) [47]. These estimates
suggest that involuntary movements at night are unlikely to
disproportionately influence the actigraphy recordings of the group
with DS versus the TD group. The estimates place limits on the
possibility that PLMD symptoms might contribute to false positive
readings of low sleep efficiency in children with DS.

Using Actiware, sleep onset wasmarked by a period of�3min of
immobility, while sleep offset was marked by a period of �5 min of
continuous movement once a sleep episode had started. The two
markers provided an estimate of sleep duration. During behavior-
ally defined sleep, individual 30-s epochs were classified as “wake”
or “sleep” based on a weighted sum of the activity in that epoch
versus the activity in a time window of a few minutes bookending
it. If the sum exceeded a particular threshold, the epoch was
considered one in which the subject was awake. Based on this
criterion, each full night's sleep period was scored as a sequence of
sleep/wake epochs from which sleep efficiency (ie, percentage of
epochs scored as “sleep” versus “wake” from sleep onset to offset)
could be derived. Caregivers also completed a seven-day sleep di-
ary, which was necessary to determine the location onsets and
offsets of nighttime sleep and provided a means by which to
evaluate any discrepancies that cropped up with the actigraphy
records. By and large, the onsets and offsets computed from the
actigraphy data showed agreement with parental self-reported
wake-up times and bedtimes.

2.4. Statistical comparisons

All statistical operations were carried out in SPSS 23.0 (IBM
Corp., Armonk, NY, USA). Tests for normality conducted prior to
analyses revealed significant skewness and kurtosis for most
measures associated with circadian timing and robustness, leading
to a logarithmic transformation of these data. Following the
calculation of descriptive statistics, a series of hierarchical linear
regression models were constructed. The dependent variables e

sleep efficiency and duration, phase onsets, offsets, and acrophases,
the amplitudes of the 24-h periodicities in the LSP and FFT, and
NPCRA measures IS, IV, RA, M10, and L5 e were regressed on the
independent variables of group (DS versus TD), age, and in-
teractions of group X age. For all cases, group was coded as 1 for DS
and 0 for TD, with age measured in months. Interaction terms were
constructed by multiplying these predictors. A forward stepwise
modeling approach was used, with main effects of group and age
entered first and interactions added in the second phase of model
building. If the p-value for the interaction term exceeded 0.10, this
term was backward trimmed from the model, in the interests of
parsimony. Two-tailed tests were adopted throughout, with alpha
set at >0.05.
3. Results

3.1. Prominence of circadian rhythms and sleep

The descriptive statistics and regressionmodels for all the sleep-
circadian variables are summarized in Tables 1 and 2. Representa-
tive actograms are provided in Fig. 1D and E. Children with DS
showed no differences in the LSP24h or FFT24h amplitude relative to
the TD group (Tables 1 and 2; Supplemental information). However,
age did explain about 33% of the variance for each measure
(p < 0.001; Table 2, Fig. 2A and B). For instance, a one-month in-
crease in age from 0 to 67 months was associated with a ~7-point
increase in LSP24h amplitude in both the DS and TD samples
(b ¼ 0.57, p < 0.001). Interactions between group and age were not
significant in any of the LSP or FFT regression models.

In addition, NPCRA-IV and NPCRAeIS values bore a strong
relation to age, but did not distinguish children born with DS from
those with a typical genetic background (p > 0.70 and 0.13,
respectively; Tables 1 and 2). Increasing age from 0 to 67 months
predicted lower IV, indicating that older children, irrespective of
trisomy, showed less waxing and waning of behavioral activity
within the 24-h day and more wake/sleep consolidation than
younger children (Fig. 2C). Increasing age also signaled higher IS



Table 2
Summary of regression models for markers of circadian rhythms and sleep efficiency.

Dependent variable Predictor B (SE) b Sig. R2 D

LSP 24-h Intercept 6.697 (0.046)
Group 0.009 (0.059) 0.01 0.874 0.00
Age 0.012 (0.002) 0.57 <0.001 0.33

FFT 24-h Intercept �1.622 (0.038)
Group 0.038 (0.048) 0.06 0.429 0.01
Age 0.010 (0.001) 0.59 <0.001 0.34

Intradaily variability Intercept �0.357 (0.027)
Group 0.013 (0.034) 0.03 0.696 0.00
Age �0.010 (0.001) �0.72 <0.001 0.51

Interdaily stability Intercept 0.436 (0.009)
Group 0.018 (0.012) 0.13 0.134 0.02
Age 0.002 (0.000) 0.49 <0.001 0.24

NPCRA relative amplitude Intercept �0.067 (0.006)
Group �0.054 (0.008) �0.49 <0.001 0.23
Age 0.001 (0.000) 0.47 <0.001 0.22

NPCRA M10 activity Intercept 566.001 (18.215)
Group �43.974 (23.411) �0.14 0.063 0.01
Age 5.387 (0.675) 0.61 <0.001 0.37

NPCRA L5 activity Intercept 2.769 (0.061)
Group 0.534 (0.079) 0.54 <0.001 0.29
Age �0.005 (0.002) �0.19 0.019 0.04

Sleep efficiency Intercept 82.944 (0.822)
Group �7.102 (1.057) �0.54 <0.001 0.28
Age 0.082 (0.03) 0.22 0.008 0.05

Phase angle onset Intercept 1.924 (0.025)
Group 0.000 (0.033) 0.00 0.992 0.00
Age 0.001 (0.001) 0.08 0.412 0.05

Phase angle offset Intercept 3.037 (0.009)
Group �0.001 (0.011) �0.01 0.900 0.00
Age 0.001 (0.000) 0.22 0.020 0.05

Phase angle acrophase Intercept 2.632 (0.013)
Group �0.007 (0.017) �0.04 0.671 0.00
Age 0.000 (0.000) 0.00 0.973 0.00

Onset variation Intercept �0.524 (0.063)
Group �0.058 (0.081) �0.07 0.471 0.01
Age �0.005 (0.002) �0.22 0.024 0.05

Offset variation Intercept �0.405 (0.09)
Group �0.065 (0.115) �0.05 0.574 0.00
Age 0.002 (0.003) 0.05 0.573 0.00

Acrophase variation Intercept �0.109 (0.07)
Group �0.127 (0.09) �0.14 0.159 0.02
Age 0.000 (00.003) 0.00 0.963 0.00

Note: Age is represented in months. The intercept reflects the estimated value for a typically developing child at 30 months, the mean age of the sample. Bolded numbers
indicate measures that were statistically significant for group or age effects. Note that several of the variables were transformed using a natural log prior to analyses. LSP,
Lomb-Scargle periodogram; FFT, fast Fourier transform; NPCRA, Non-parametric circadian rhythm analysis; M10, Most active 10-h period of the day; L5, Least active 5-h
period of the day.
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values in both the TD group and the group with DS (Fig. 2D); pre-
sumably, older children are better synchronized to the solar cycle
and exposed to more social cues as they enter their preschool years
than homebound infants or toddlers. As with the LSP and FFT
variables, group X age interactions were not significant in the
NPCRA regression models.

As reported in Tables 1 and 2 and illustrated in Fig. 3A, NPCRA-
RA values were significantly lower in the samplewith DS versus the
TD sample, but generally increased with age (p < 0.001;
Supplemental information). To understand the factors that were
driving this amplitude reduction in the sample with DS, the M10
and L5 values were compared from both groups (Tables 1 and 2,
Fig. 3B and C). With greater age, children born with DS or those
from a typical background saw similar decreases in movement
during the least active parts of the day (L5 activity, p ¼ 0.019) and
similar increases in movement during the most active parts of the
day (M10 activity, p < 0.001; Table 2, Fig. 3B). However, there was a
dichotomy with regards to group differences on each measure.
While M10 values were not statistically different between the TD
sample and the sample with DS (p > 0.05 in regression model,
p ¼ 0.184e0.187 in group-wise comparisons with two-tailed t-
tests; Supplemental information), L5 values were (Fig. 3B). Children
with DS were almost twice as active during L5 compared with
typical children (Tables 1 and 2; Fig. 3B and C; p < 0.001), irre-
spective of age; no significant interactions between age and group
were found for any of the RA, M10, or L5 regression models.

The L5 period that was estimated in ClockLab invariably coin-
cided with the sleep period that was registered with the Actiwatch
Actiware software, raising the possibility that the increase in L5
activity and decrease in NPCRA-RA observed in the cohort with DS
related to group differences in sleep fragmentation. Consistent with
this interpretation, children with DS exhibited an average sleep
efficiency that was 7% lower than TD controls over the several days
of Actiwatch recording (Tables 1 and 2, p < 0.001). While each one-
month increase in age predicted a 0.8% increase in sleep efficiency
in both the TD group and the group with DS (p < 0.01), the inter-
action between group and age was not significant (p ¼ 0.13),
meaning that the negative effect of the DS genetic background on
sleep efficiency, like its effects on L5, did not vary by age (Fig. 3D).

Finally, participants in the group with DS slept on average
39 min less than the TD sample (b ¼ �0.34, p < 0.001, Model
R2 ¼ 0.13; Table 1 and Fig. 3E). There were no correlations between
sleep duration and age (p ¼ 0.139) or interactions between these
predictors (p ¼ 0.497).



Fig. 2. AeD. Quantitative assessment of circadian robustness in the Down syndrome (DS) (green squares) and typically developing (TD) (purple circles) groups under entrained
conditions. Raw values for LSP24h, FFT24h, IV, and IS are plotted for each study participant as a function of age. The goodness-of-fit (R2 linear) and slope of the regression lines fitted
to each panel suggest that circadian rhythms of behavioral activity mature equally well in children with and without DS from 6 months to 5 years. PN, dominant frequency in the
Lomb-Scargle periodogram; FFT, fast Fourier transform; NPCRA, Non-parametric circadian rhythm analysis; IV, Intradaily variability; IS, Interdaily stability; AU, arbitrary units. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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3.2. Phase markers of circadian timing: chronotypes

Hierarchical linear regression models using log-transformed
numbers and group averages of raw data suggested that trisomy-
21 did not impact most markers of circadian timing or their
within-subjects variation (eg, how consistently onewakes up at the
same time each day over the actigraphy monitoring period)
(Tables 1 and 2; Fig. 4A; Supplemental information). Out of the six
measures associated with circadian timing, none were influenced
by genetic background, and only offsets and onset variations
significantly correlated with age. Each 1-month increase in age was
associated with: (1) a 0.18-min increase in the time the study
participants went to bed (b ¼ 0.22, p < 0.05; Table 2 and Fig. 4C,
right panel); and (2) a 10-min decrease in the variability with
which they woke up (b ¼ �0.22, p < 0.05).

While plotting the average onset, acrophase, and offset times
exhibited by each participant in the sample pool over the recording
period, it was noticed that the spread of values or “chronotypes”
was much wider among the subjects with DS than for the typically
developing subjects (Fig. 4B and C, all panels). Levene's test for
equality of variances on the log-transformed numbers indicated
that the standard deviation for these phase markers was statisti-
cally different between the TD group and the DS group (p � 0.05;
Table 1; Supplemental information), but for no other measures save
for NPCRA-RA. People's endogenous circadian clocks will “phase-
lock” differently to the lightedark cycle. Some clocks are phase
advanced in their synchronization, implying that a person is
waking up before the sun rises and falling asleep before the sun has
set (or in both cases, soon thereafter) [48,49]. This chronotype is
referred to as a “lark”. Other clocks are phase delayed in their
synchronization, implying that a person is waking up after the sun
has risen and falling asleep after the sun has set (or in some cases,
well after dawn or dusk) [48,49]. This chronotype is referred to as
an “owl”. Here, the data suggest that individuals with DS vary more
dramatically in their distribution of larks and owls than the TD
population across early childhood (Fig. 4C, along with heat map
inserts).

To get a sense for whether this change in chronotype distribution
between the two groups was significant, a chronotype index was
created for each child under study by adding the total hours from
midnight (ie, ZT 0) that their average onset, acrophase, and offset
occurred. If, on average, a child woke up at 07:00 (þ7 h), was most
highly active at 13:00 (þ13h), and thenwent to bed at 20:00 (þ20h),
they would accrue a chronotype index of 40. Next, these data were
organized into three evenly spaced bins, corresponding to larks
(composite scores 33e40), owls (composite scores 47e54), or those
falling in between (composite scores 40e47). Consistent with pre-
vious results, itwas found thatmany young childrene irrespective of
genetic backgrounde demonstrated early chronotypes. However, on
a relative percentage basis, more infants and toddlers with DS were
classified as larks than TD children (Х2 ¼ 7.09, p ¼ 0.029; Fig. 4B). In
addition, an appreciable number, 12.1%, showed late chronotype
features that went largely unseen in the TD group (Fig. 4B). The
salient shift in childrenwithDS to earlier chronotypes is illustrated in
Fig. 5; the average value foreachphasemarker is plottedas a function
of its intra-individual variation. This visualization suggests that



Fig. 3. A and B. Raw NPCRA-RA values, and raw values for the RA components M10 and L5, are plotted for each study participant as a function of age (TD RA ¼ purple circles; TD
M10 ¼ purple circles; TD L5 ¼ upside down triangles; DS RA ¼ green squares; DS M10 ¼ green squares; DS L5 ¼ green diamonds). The goodness-of-fit and slope of the regression
lines fitted to the RA scatter plot suggest that RA increases at a similar rate in both the Down syndrome (DS) and typically developing (TD) groups. However, children with DS have
smaller RAs compared with children without DS matched for developmental time point. B and C. RA reductions in the Down syndrome (DS) group appear to result from differences
in L5, but not M10. M10 and L5 values change in a similar fashion across age in both groups, but L5 values are up-shifted in infants, toddlers, and school-aged children with DS
compared with their typically developing (TD) peers. D and E. Raw values for sleep efficiency and duration are plotted for each study participant as a function of age (typically
developing (TD) ¼ orange circles; Down syndrome (DS) ¼ green squares). Sleep is better consolidated over the course of development in both the DS and TD groups, but its ef-
ficiency is significantly lower in children with DS. Sleep duration does not change from 6 months to 5 years, but is also lower in the DS group by a small, but significant, margin.
NPCRA, Non-parametric circadian rhythm analysis; RA, relative amplitude; M10, Most active 10-h period of the day; L5, Least active 5-h period of the day. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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“larks” with DS were among the most stable chronotypes observed
during the actigraphy recording period.
4. Discussion

In the aggregate, the cross-sectional data suggest that children
with DS see a remarkable conservation in the development of their
circadian rhythms that parallel the developmental course seen in
children from a typical genetic background. As they move from
infancy to middle childhood, individuals with DS exhibit a similar
strengthening in the 24-h pattern of their behavioral activity,
consolidate their activity and rest at more discrete periods of the
day, and preserve this 24-h schedule better across time. These data
complement findings that have accumulated over several studies
looking at the circadian function of two independently derived
mouse models of DS. Adult mice engineered to overexpress various
ensembles of genes that are triplicated in people with DS showed
normal 24-h variations of locomotor activity and wheel-running in
their home cages [50e52], alongwith proper circadian responses to
different lighting conditions [50], despite differences in sleep ar-
chitecture from wild-type littermates [52e54]. The behavioral
readouts of circadian organization reported here for peoplewith DS
and in the aforementioned mouse models fit nicely with previous
work demonstrating that dayenight patterns of melatonin secre-
tion remain tightly coordinated in both species [55,56].
The circadian system emerges largely intact in those with DS,
but the present sample of children with DS across the USA also
suggests that the circadian clock in people with DS can adopt a
wider variety of phase relationships with the solar cycle. In
particular, a significant number of individuals with DS from the
present cohort were consistently phase-advanced, relative to TD
controls. While the functional significance of this lark chronotype
shift has yet to be examined directly in the population of thosewith
DS, some evidence hints at the possibility that it could materialize
in performance differences across the day in school-aged children
with DS. Ashworth et al. recently studied the ability of children
with DS to remember pseudo-words artificially paired to well-
known animals (eg, Basco ¼ cat) [57]. They trained 6e12 year
olds with DS during the morning or evening on these word-animal
associations and tested recall in 24-h increments thereafter. The
researchers found that the group with DS continued to improve
their learning over the retesting interval if the children were orig-
inally trained and tested in the morning, but not if this instruction
was given later in the day [57]. As observed in typical aging in-
dividuals [58e61], the chronotype as well as performance curves
for younger individuals with DS appear to be shifted to earlier times
of day, although further research is necessary to causally relate the
two in people with DS and better define the magnitude of chro-
notype differences between the population with DS and the TD
population. This latter point is especially relevant, given the



Fig. 4. A. Bar graph showing the variation exhibited in an individual's phase marker timing averaged within the Down syndrome (DS) and typically developing (TD) groups
(onset ¼ the time of day when person awakes; acrophase ¼ time of day when person is most physically active; offset ¼ time of day when person falls asleep; SD ¼ standard
deviation). Relative to the TD sample, young children with DS exhibit no evidence of circadian dispersion in the times of day when they wake-up, are most highly active, or fall
asleep. In both groups, the schedule of these events deviated by 30e60 min from one day to the next during the actigraphy recording period. B and C. The average onset (lower left
panel), acrophase (lower middle panel), and offset (lower right panel) times displayed by each study participant is plotted against age. These phase markers do not change
appreciably over the course of development, but are more widely distributed in children with Down syndrome (DS) compared with typically developing (TD) controls. In particular,
more childrenwith DS than TD have exaggerated chronotypes, where their activity is biased towards either earlier-than-average parts of the day (ie, larks; extreme-morning people)
or later-than-average parts of the day (ie, owls; evening-type people) (TD ¼ purple circles and bar graphs; DS ¼ green squares and bar graphs). Heat map inserts provide an
alternative visualization to this chronotype spread; the divergence from the sample mean of each study participant's average “stable” onset, acrophase, and offset time is color
coded so that red lines indicate subjects with phase marker values further away from the group average. DS heat maps appear more in red than TD ones. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 5. The average onset, acrophase, and offset times calculated for each subject in the
Down syndrome (DS) (green squares) and typically developing (TD) (red circles)
groups are plotted along the x-axis and organized according to their intra-individual
day-to-day variation (y-axis). These data suggest that the DS “lark” chronotype sub-
group (indicated by arrows in the lower left of the morning, afternoon, and evening
cluster of data points) is particularly stable relative to other chronotypes observed in
TD children or those with DS. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
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possibility that recruitment efforts for sleep-circadian studies, in
general, might inadvertently attract children with extreme
chronotypes.

Unlike circadian function, nighttime sleep consolidation was
impaired in infants and toddlers with DS, relative to an age-
matched and demographically matched group of TD children. The
first indication of fragmented sleep was unexpectedly observed in
the NPCRA-RA values of those in the group with DS. This measure
has historically been used to quantify circadian robustness [35e38],
but here, was contaminated in the DS sample by levels of poor sleep
efficiency and nighttime unrest that inflated L5 activity during the
actigraphy recording period (ie, without a corresponding flattening
of M10 activity). The present results suggest that the NPCRA-RA
index needs to be interpreted cautiously in future circadian as-
sessments, because the measure can be influenced by how well
sleep is maintained over the evening, not just by whether there are
bona fide 24-h variations to movement.

Significant sleep fragmentation was also documented in the DS
cohort by Actiware analysis, which indicated that sleep was
disturbed from the earliest surveyed developmental time points
and, in fact, wasmost disturbed in infants (Fig. 3D). Previous studies
have quantified sleep efficiency measures in an older pediatric
sample with DS with activity-monitoring devices like those used in
the present work. In line with the present data (Table 1), these
studies estimated a similar 5e7% efficiency gap in the nocturnal
sleep of older children with DS versus TD children [45,46]. What is
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concerning about these collated observations is the fact that some
degree of sleep deficit is likely to factor into the brain development
of the majority of individuals with DS. The consequences of the
impairment are unknown, though it is a reasonable hypothesis to
suggest that poor sleep contributes to the severity and profile of
intellectual disability seen in people with DS. Language achieve-
ments might be pointedly affected, given that sleep appears most
fragmented from 0 to 36 months (Fig. 3D) e an age range where
many developmental milestones of language learning are met [62].

Fragmented sleep in children with DS has implications for brain
development and the progression in early life of what have been
historically viewed as “aging” phenotypes related to Alzheimer's
disease (AD). By virtue of increased dosage and metabolism of the
Hsa21 gene product, amyloid precursor protein (APP), people with
DS will show neurohistopathological hallmarks of AD by as young
as 8e12 years of age and many, but not all, will proceed to a clinical
diagnosis of dementia about four to five decades later [63].
Research suggests that sleep quality could (theoretically) scale the
time in between these events. Chronic sleep restriction accelerates
the build-up of beta-amyloid inmousemodels of AD [64,65]. Acting
in a positive feedback loop, the resulting plaque deposition can
further erode sleep consolidation in animals, yielding worse amy-
loid pathology and faster deterioration of cognition [65]. If this
process were operational in humans, children with DS with the
worst sleep problems would be expected to be at greater risk of
premature cognitive decline than those maintaining good sleep
health. Longitudinal efforts await to better establish the link be-
tween sleep and AD progression in the aging TD community and in
aging communities with DS, and to establish whether sleep can
provide a probabilistic biomarker of impending mild cognitive
impairment or dementia.

The results of the present study suggest that any sleep-cognition
correlations measured in children with DS likely arise without
confound of improper circadian timekeeping under light and so-
cially entrained conditions. The preservation of rest-activity
rhythms in the pediatric population with DS is unique, relative to
populations with other neurodevelopmental backgrounds such as
Smith-Magenis syndrome (SMS) or autism. Circadian disturbance is
one hallmark feature of SMS, a condition that emerges after
microdeletion of the small arm of Hsa17 and haploinsufficiency for
the RAI1 (retinoic acid induced one) gene [66]. Most children with
SMS exhibit inverted rhythms of melatonin secretion, sleep phase
alterations, and shorter, broken sleep cycles; the phenotypes have
been linked to the role of RAI1 in regulating the molecular com-
ponents of the brain's circadian clock [66,67]. Many individuals
with autism also show sleep-circadian disturbances [68]. Some
studies have reported a lack of circadian variation of cortisol and
melatonin secretion in cohorts of people with autism, while others
have highlighted possible phase advances of early morning
behavioral activity [68]. These phenotypes, too, might be linked to
alterations in the molecular clock gene machinery [69]. The
amalgam of data from individuals with SMS or autism suggests that
circadian problems in these conditions arise from genetic in-
teractions that prevent the molecular components of the circadian
clock from oscillating as they do in TD individuals. The situation in
DS is, therefore, striking: despite the overexpression of >170 genes
on Hsa21, individuals with DS continue to demonstrate typical
patterns of daily activity and, possibly, a properly functioning in-
ternal clock.

Altogether, the present results place a spotlight on early child-
hood as an important critical period for the initiation of in-
terventions to treat sleep disorders in those born with trisomy-21
and on the necessity of adapting and popularizing long-term
treatment options so that they are more engrained within the
everyday care of infants and toddlers with DS. Ensuring quality
sleep through the first three years of life might be a tangible
treatment option for the majority of families caring for children
with DS. Such interventions have the potential to optimize re-
sponses to education and cognitive outcomes.
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