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Improved pathogenicity prediction
for rare human missense variants

Yingzhou Wu,1,2,3,4 Roujia Li,1,2,3,4 Song Sun,1,2,3,4 Jochen Weile,1,2,3,4 and
Frederick P. Roth1,2,3,4,5,6,*

The success of personalized genomic medicine depends on our ability to assess the pathogenicity of rare human variants, including the

important class of missense variation. There aremany challenges in training accurate computational systems, e.g., in finding the balance

between quantity, quality, and bias in the variant sets used as training examples and avoiding predictive features that can accentuate the

effects of bias. Here, we describe VARITY, which judiciously exploits a larger reservoir of training examples with uncertain accuracy and

representativity. To limit circularity and bias, VARITYexcludes features informed by variant annotation and protein identity. To provide a

rationale for each prediction, we quantified the contribution of features and feature combinations to the pathogenicity inference of each

variant. VARITY outperformed all previous computational methods evaluated, identifying at least 10% more pathogenic variants at

thresholds achieving high (90% precision) stringency.
Introduction

Fully realizing the clinical potential of human genome

sequencing will require the ability to accurately determine

the pathogenicity of individual sequence variants.

Although genome-wide association (GWA) studies have

limited power to associate rare missense variants with

disease,1,2 rare missense changes cannot be ignored: over

99% of the set of observed missense variants are rare

(with a global minor allele frequency [MAF] below 0.5%),

and 90% are extremely rare (with MAF < 10�6). Moreover,

if genome sequences were known for all humans alive

today, each single-nucleotide variant that is compatible

with life would appear an average of �50 times.3 Because

identifying the subset of rare missense variants that are

damaging represents a major unmet challenge for personal

genome interpretation, we focus here on rare and

extremely rare missense changes.

It has become possible to experimentally assess the func-

tional impact of nearly all possible missense variants for a

target protein, yielding ‘‘deep mutational scans’’ or ‘‘variant

effectmaps.’’3–13 However, theMaveDB14 resource currently

contains variant effect maps for fewer than 1% of the

�4,000 human disease-associated proteins, and a high-qual-

ity fully-comprehensive experimental atlas of functional

missense variation could be decades away.

By contrast, computational methods to infer variant

pathogenicity can already be applied at genome scale.

However, performance of current methods15–42 has not

fully addressed the challenge of variant interpretation.

For example, using thresholds such that 90% of pathoge-

nicity predictions are correct, such methods identified

only 10%–20% of pathogenic variants.12 Current guide-

lines for clinical variant interpretation recommend that
1The Donnelly Centre, University of Toronto, Toronto, ONM5S 3E1, Canada; 2

3E1, Canada; 3Department of Computer Science, University of Toronto, Toron

Health, Toronto, ONM5G 1X5, Canada; 5Center for Cancer Systems Biology, D

Advanced Research, Toronto, ON M5G 1Z8, Canada

*Correspondence: fritz.roth@utoronto.ca

https://doi.org/10.1016/j.ajhg.2021.08.012.

The American Jo

� 2021 The Authors. This is an open access article under the CC BY license (h
all computational methods be (at best) treated as ‘‘weak

evidence.’’43

To improve computational predictors, we would like to

increase the size of the training dataset while also ensuring

that the quality of training data is high, i.e., the training

examples are accurately labeled and representative of the

variants for which pathogenicity inference is most needed

(e.g., rare variants). However, there is a tension between

these competing objectives. For example, although com-

mon variants can be more confidently annotated as truly

benign and are therefore likely to offer higher labeling ac-

curacy, there is evidence that common benign variants are

not representative of rare benign variants.16 However,

excluding common variants would substantially reduce

the number of clinically annotated benign variants avail-

able for training computational models (Figure S1). While

ClinVar44 requires clinical interpretations to be based on a

rigorous and attributable process, we can be less sure of ac-

curacy for other resources offering pathogenicity annota-

tions. For example, HumsaVar45 offers annotations solely

from literature reports and HGMD46 seeks to maximize

recall while accepting the risk of including false positives.

The variants reported in gnomAD47 have been used as

‘‘putatively-benign’’ training examples by many computa-

tional methods,16,17 despite the potential for contamina-

tion with pathogenic variants, especially in genes associ-

ated with late-onset diseases. MaveDB14 provides

experimental ‘‘variant effect maps’’ in which the func-

tional impact of many variants has been measured in

parallel, but the set of scored variants may not be represen-

tative of the spectrum of patient variation.

Here, we describe the VARITYapproach for pathogenicity

prediction, which has been specifically optimized for rare

missense variation. While VARITY uses a meta-prediction
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Figure 1. The VARITY framework
VARITY models were trained with an extension of the gradient boosted trees algorithm that allows different weights to be placed on
different training examples. The VARITY training data consist of a high-quality core set of variants (also used as test set) and a handful
of diverse add-on sets with potentially lower predictive utility. For each training set (core or add-on set), one or more quality-informative
properties were each used as an input to a logistic function that calculates a weight for each variant in the set. The parameters of each
logistic function were treated as hyperparameters and optimized for performance on the core set of variants via 10-fold cross-validation.
We generated two VARITYmodels: VARITY_R, which included only rare (MAF< 0.5%) ClinVar44 variants in its core set, and VARITY_ER,
which only included extremely rare (MAF < 10�6) ClinVar44 variants in its core set.
strategy, it limits the circularity that can arise in such ap-

proaches by excluding any feature that was informed by

variant pathogenicity annotation. We also exclude features

that may serve as proxies for protein identity because these

may lead to predictions that are biased by the fraction of

each protein’s variants in the training set that are annotated

pathogenic (which may be inaccurate in future application

settings). VARITY judiciously harnesses a larger set of

training examples with uncertain accuracy and representa-

tivity and uses differential weighting strategies to ensure

that training set expansion improves performance on a

high-quality test set (Figure 1). For the task of identifying

rare pathogenic variants, we find that VARITY outperforms

all other computational approaches examined.
Material and methods

Assembling a resource of labeled variants and their

features for human proteins
To assemble a resource of labeled variants and associated features

for human proteins, we first retrieved from dbNSFP (V4.0b2)48

all missense variants for �18,000 human proteins that had a
1892 The American Journal of Human Genetics 108, 1891–1906, Oct
‘‘reviewed’’ status in UniProt45 [download date: 2019-04-08]). We

next assembled variant features (summarized in Table S1) within

four main categories. First, from dbNSFP48 we collected scores

for existing predictors based on only conservation information

learned via unsupervised learning methods, e.g., the SIFT25,26

method. To avoid circularity in subsequent performance testing,

we excluded as features those predictors that had made direct or

indirect use of annotated pathogenic and benign variants in

training,16–23 e.g., the PolyPhen219,20 method. Where multiple

scores for a missense variant were available from a given predictor

due to different coding isoforms, the score from the canonical iso-

form (defined in UniProt45) was chosen as the final score. Where

multiple scores were available for different nucleotide-level

changes yielding the same missense variant, the most deleterious

score was chosen as the final score. Second, we defined a set of

‘‘delta values’’ by the difference in various quantitative physico-

chemical properties (e.g., molecular weight, polarity, or charge) be-

tween the reference and substituted amino acid. Third, we assem-

bled features related to protein-protein interaction. For example,

‘‘maximum buried area’’—defined by the largest solvent-accessible

surface area around a given amino acid that is buried by any pro-

tein interaction partner—or the ‘‘maximum solvation energy

change’’ —defined for a given amino acid by the greatest

change in solvation energy provided by any interaction partner

(both were estimated by PDBePISA49). Fourth, we assembled
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structure-related features. These included a set of binary variables

indicating secondary structure (obtained from PSIPRED50) and

accessible surface area (estimated by PDBePISA49). In addition,

we used substitution matrix (BLOSUM10015) scores and whether

the amino acid position is within or outside of a Pfam51 (download

date: 2019-04-08) domain. All 43 features and their sources can be

found in Table S1. The resource of features for all missense variants

from�18,000 human proteins can be downloaded via the VARITY

web portal (see web resources).

For the purpose of training, we first identified a set of�4,000 hu-

man disease-related proteins from all �18,000 human proteins on

the basis of whether any variant (not restricted to missense vari-

ants) had been annotated as ‘‘pathogenic’’ or ‘‘likely pathogenic’’

in the ClinVar database44 or ‘‘deleterious’’ in the HumsaVar data-

base45 (download date: 2019-04-08). We further included a list of

human proteins from multiplexed assays of variant effect

(MAVE) studies6–10 (see Table S2). Only variants from the set of hu-

man disease-related proteins were labeled and considered in

model training. We assigned every missense variant from this set

a label of either positive (putatively pathogenic), negative (puta-

tively benign), or unknown. At this stage, our confidence in these

labels might be quite low, but we will later depend on the ma-

chine-learning strategy to weight these variants. The labeling

criteria depended on the source of information about the variant.

For the ClinVar44 database, regardless of the number of ‘‘review

stars,’’ variants with ‘‘pathogenic,’’ ‘‘likely pathogenic,’’ or ‘‘patho-

genic/likely pathogenic’’ annotation were labeled as positive.

Similarly, variants with ‘‘benign,’’ ‘‘likely benign,’’ or ‘‘benign/

likely benign’’ were labeled as negative for training purposes. All

other variants were labeled as unknown. For the HumsaVar45 data-

base, variants with the ‘‘polymorphism’’ annotation were labeled

as negative, variants with ‘‘deleterious’’ annotation were labeled

as positive, and all other variants were labeled as unknown. For

gnomAD,47 variants for which at least one homozygous individual

had been observed were labeled as negative, and other variants

were labeled as unknown. For variants fromMAVE studies6–10 (en-

compassing 12 proteins, see Table S2), we used functional impact

scores rescaled by a previously developed pipeline,52 such that a

score of 0 indicates fitness approximating that of a nonsense

variant and a score of 1 indicates fitness approximating that of a

synonymous variant. Here, variants with a score above 0.5 were

labeled as negative, while those below 0.5 were labeled as Positive.

For the HGMD46 database, all variants were labeled as positive. To

handle theminority of cases (�10% of all variants) where a variant

appears in multiple databases, we assigned a primary source for

that variant by using a somewhat arbitrary ranking of the sources

from which to derive the variant label: ClinVar,44 HGMD,46 and

HumsaVar45 pathogenicity annotations, fitness scores from

variant effect maps, and presence of homozygotes in gnomAD.47
Core and add-on training sets
All missense variants labeled as positive or negative were consid-

ered as potential training examples. To train and test VARITY

models, we assembled a core training set of variants that were of

high quality (i.e., accuracy and representativity). We also used

various ‘‘add-on’’ training sets that potentially have less predictive

utility (e.g., because they are less accurately labeled or less repre-

sentative of the core set), but these sets were subjected to further

weighting. To obtain high-accuracy core sets, we used ClinVar44

missense variants. To ensure high representativity, we first sepa-

rated ClinVar44 missense variants into three subsets: ClinVar_C,
The American Jo
ClinVar_MR, and ClinVar_ER with labeled missense variants that

were common (MAF > 0.5%), moderately rare (10�6 < MAF <

0.5%), and extremely rare (MAF < 10�6), respectively. Given

evidence that common variants are not representative of rare var-

iants,16 we excluded ClinVar_C from the core training set of the

VARITY model optimized for rare missense variants (VARITY_R;

see Figure 1) and treated it as an add-on set. The properties

of moderately rare and common variation may differ from those

of extremely rare variants. Therefore, to optimize a VARITY

model (VARITY_ER; see Figure 1) for extremely rare missense vari-

ants, we used ClinVar_ER as the core set and used ClinVar_C and

ClinVar_MR as add-on sets.

All labeled missense variants outside of the core set were consid-

ered as add-on training examples and were separated into different

add-on sets so that each set can be employed separately with

distinct effects on training VARITY models. Add-on variants were

first grouped into add-on training sets on the basis of source of

annotation (the source where the variant label was determined)

and label (positive or negative). Each negative-labeled add-on set

(e.g., negative-labeled variants from gnomAD47) was further split

on the basis of rarity (MAF cutoff ¼ 0.5%) except the negative

set from MAVE studies in which most scored variants are rare. A

full list of core set and add-on sets for both VARITY_R and

VARITY_ER models can be found in Table S3.

Performance measures
To evaluate performance of the VARITY models, we used the

standard area under the receiver operating characteristic curve

(AUROC). However, we also wished to use measures based on

precision and recall, which often correspond more closely to

the user’s needs and intuition. Unfortunately, any measure us-

ing precision, such as the area under the precision recall curve

(AUPRC), changes depending on the prior (the frequency of

positively labeled examples). One strategy to compare AUPRC

measures applied to different test sets with varying priors is to

force each test set to be balanced, e.g., by down-sampling the

most abundant label class. However, this approach destroys in-

formation by eliminating test data. Therefore, we developed two

measures: area under the balanced precision recall curve

(AUBPRC) and recall at 90% balanced precision (RB90P). For

these measures, we simply calculate the precision for each test

set and then derive the ‘‘balanced precision,’’ i.e., the precision

that would have been expected had the prior been balanced

(equal to 50%):

balanced pecision ¼ precision � 1� priorð Þ
precision � 1� priorð Þ þ 1� precisionð Þ � prior

(Equation 1)

Proof:

Let Y be a random variable representing the true label of an

event (e.g., Y ¼ 1 if a variant is pathogenic) and Y 0 represent the
label predicted by a model (e.g., Y 0 ¼ 1 if the model predicts a

variant to be pathogenic). Precision and prior of the model can

then be written as

precision ¼ P Y ¼ 1jY 0 ¼ 1ð Þ; prior ¼ P Y ¼ 1ð Þ (Equation 2)

The following equation holds according to Bayes Rule:

PðY ¼ 1jY 0 ¼ 1Þ
PðY ¼ 0jY 0 ¼ 1Þ¼

PðY 0 ¼ 1jY ¼ 1Þ
PðY 0 ¼ 1jY ¼ 0Þ � PðY ¼ 1Þ

PðY ¼ 0Þ (Equation 3)

Using Equation 2 and Equation 3, we can rewrite as:
urnal of Human Genetics 108, 1891–1906, October 7, 2021 1893



precision

1� precision
¼ L � prior

1� prior
; where L ¼ PðY 0 ¼ 1jY ¼ 1Þ

PðY 0 ¼ 1jY ¼ 0Þ
(Equation 4)

and then from Equation 4, we obtain the likelihood ratio

L¼ð1� priorÞ � precision
prior � ð1� precisionÞ (Equation 5)

Because we know the likelihood ratio is not affected by the prior

(ratio of conditional probability conditioned on prior), therefore

we can write down the following, given a balanced prior of 0.5:

balanced precision

1� balanced precision
¼L � 0:5

1� 0:5
(Equation 6)

By combining Equation 5 and Equation 6, we can solve for bal-

anced_precision and obtain Equation 1.

A balanced precision versus recall curve (BPRC) can be drawn by

calculation of the balanced precision value corresponding to every

precision value, and AUBPRC can be calculated just as AUPRC

would be. We note that there are different ways to calculate an

AUPRC (or AUBPRC). Here, we calculated AUPRC (and AUBPRC)

as the weighted mean of precision (or balanced precision) at

different recall thresholds and used the increase in recall from

the previous threshold as the weight, which is also called average

precision. It can also be shown that AUBPRC can be calculated

more directly from AUPRC via

AUBPRC¼ AUPRC � ð1� PriorÞ
AUPRC � ð1� PriorÞ þ ð1� AUPRCÞ � Prior

(Equation 7)

To derive RB90P, we need to first plot the BPRC and then locate

(or interpolate) the recall value at which balanced precision is

90%.
The learning algorithm and weighting of training

variants
For VARITY we adopted a variant of the gradient boosted tree

(GBT) machine-learning algorithm XGBoost53 (Python Package

V0.90). Briefly, the first stage of the GBT method is to generate

an initial prediction of the target variable for each training

example. In successive stages, GBT iteratively generates a series

of decision trees. After each tree, the current prediction for any

given training example is the initial prediction added to the sum

of the outputs for all trees generated thus far. Each tree in the series

is optimized to yield incremental outputs that, when added to

the sum of previous outputs, tend to minimize the loss function

(prediction error). The incremental value is determined by approx-

imating both the first and second order gradient of the loss func-

tion at the current prediction stage. Optimization of each tree is

accomplished by successively selecting features that split training

examples into smaller groups (or nodes). The splitting feature is

selected such that a single incremental output value assigned to

each subgroup can most closely approximate the set of best incre-

mental output values. For each training set (core or add-on set),

each of several quality-informative properties was used as input

to a logistic function that assigned a weight to each training

variant within the set. The parameters of each logistic function

were treated as hyperparameters that were optimized for perfor-

mance (see details in the Bayesian optimization of hyperpara-

meters section below). Subsequently, the weights for all positive

training examples were scaled by a factor such that the total of
1894 The American Journal of Human Genetics 108, 1891–1906, Oct
re-scaled weights for positive training examples was equal to the

total weight of negative examples.
Moving window analysis to identify quality-informative

variant properties
To identify the quality-informative properties used as described

above for variant weighting, candidate properties were evaluated

by moving window analysis. Candidate informative properties

included: allele frequency (for all training sets except the ones

from MAVE studies6–10), ‘‘review stars’’ (for ClinVar44 training

sets), ‘‘number of homozygotes’’ (for gnomAD47 training sets),

‘‘label confidence,’’ and ‘‘mutational accessibility’’ (the latter two

are candidates for MAVE training sets6–10). The ‘‘label confidence’’

score for each variant was defined to be either the MAVE score itself

(for scores < 0.5) or 1 � score (for scores > 0.5). Use of the muta-

tional accessibility property was motivated by the fact that,

although variants withmore than one nucleotide change in a given

codon can be generated bymutagenesis strategies used in variant ef-

fect mapping, these rarely occur in humans. The mutational acces-

sibility of each possible amino acid change was the total probability

of all possible single-nucleotide change events yielding that amino

acid change, where the probability that a single nucleotide change

event occurs in each codonwas defined via the human codon usage

frequency for that codon divided by nine (because nine single-

nucleotide edits are possible for any given codon). Amino acid

changes requiring more than one single-nucleotide change within

the same codon received a mutational accessibility score of 0.

For each proposed candidate property, we carried out moving

window analysis to evaluate whether model performance depends

on the value of the property. To this end, add-on set examples were

first ordered by the property. We then defined NW moving win-

dows, each containing a fraction FE of the total X add-on training

examples and incrementing the position of successive windows

every I ¼ [X * (1 � FE)/(NW � 1)] training examples. Where the

number of examples is not evenly divisible by I, the final window

may contain slightly fewer than X * FE examples. Here, we used

NW ¼ 100 and FE ¼ 0.5.

To evaluate the data quality of each window, we estimated

model performance (AUBPRC) on the core set by using 10-fold

cross-validation via XGBoost53 (with default algorithm level hy-

perparameters) where the training examples in each fold were

supplemented by add-on examples in that moving window. To

assess whether a property was informative, we calculated corre-

lation between moving window performance and window num-

ber for each candidate informative property and also for each of

ten random orderings of add-on examples. From this, we

calculated a Z score for the observed correlation relative to the

distribution of randomly ordered correlations and considered a

property to be informative if it exhibited a Z score above 1 or

less than �1. The negative and positive sign of a Z score indi-

cates whether there was a negative or positive correlation be-

tween performance of moving windows and the property.

Although moving window analysis combined one or two add-

on sets at a time with the core set, we note that add-on sets

may provide a contribution that is greater or lower than that

observed here when they are used in conjunction with many

other training sets during hyperparameter tuning. Therefore,

all training sets and their associated informative properties

(Table S3) were included for the weighting process that was

optimized during hyperparameter tuning, even for Z scores ex-

hibiting modest departures from zero.
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Bayesian optimization of hyperparameters
Two types of hyperparameters were employed for VARITY models.

First, there were algorithm-level hyperparameters such as number

of trees, tree depth, and learning rate (see Table S4 for a full list).

Second, there were hyperparameters in the logistic functions

that were used for assigning weights to different training sets

(see Table S3 for full list). There are three parameters in each logis-

tic function, namely themaximumweight L, themidpoint x0, and

the growth rate k. Each logistic function takes one quality informa-

tive property as input. For the training set that has more than one

associated quality-informative property, the weights were assigned

as the product of multiple logistic functions.

All hyperparameters were optimized simultaneously by

Bayesian optimization with HyperOpt54–56 (Python package

V0.2.2). This process involves random initialization of hyperpara-

meter values (with uniform prior) followed by iteratively repeated

trials (here we used 300 trials) with alternative hyperparameter

values suggested on the basis of an expected improvement mea-

sure calculated via a probability distribution estimated from the

performance of previously tried hyperparameter settings. For

each trial, the hyperparameter set was evaluated via model

performance on the core training set estimated in 10-fold cross-

validation where the core training examples in each fold were

supplemented with add-on training sets examples and all training

examples were weighted with hyperparameter values suggested on

the current trial. The metric used here for model performance (the

objective function for hyperparameter optimization) was the

mean AUBPRC on validation sets (average over ten validation

sets).

To limit model overfitting that can arise from repeated interro-

gation of the evaluation set with different hyperparameter set-

tings, we used the following procedure to automatically determine

the final hyperparameter values: (1) re-order all trials from Hyper-

Opt54–56 by mean AUBPRC on training sets (averaged over ten

training sets) from low to high, (2) calculate a moving window

(we used window size 30 for total 300 trials) average of mean

AUBPRC on validation sets, (3) define an ‘‘early stopping’’ point

at the first moving window (the ‘‘fittest’’ region) for which mean

AUBPRC on validation sets begins to descend, and (4) select as

final the hyperparameters from the trial within this ‘‘fittest’’ region

that achieved the highest mean AUBPRC on validation sets.
Performance evaluation with independent test sets and

nested cross-validation
To obtain an independent test dataset based on de novo variation

in neurodevelopmental disorders, we downloaded all de novo var-

iants from denovo-db 1.6157 (download date 2020-10-20) that cor-

responded to neurodevelopmental disorder case/control studies.

We extracted the subset of rare missense variants (MAF < 0.5%)

from 253 candidate neurodevelopmental disease genes for which

variation was enriched in neurodevelopmental disease pa-

tients.58 For the purpose of performance evaluation, the variants

that appeared in ‘‘control’’ and ‘‘case’’ populations were labeled

as negative (putatively benign) and positive (putatively patho-

genic), respectively. Because a subset of variants annotated in

HGMD46 had been used to train computational methods against

which we wished to compare our results, variants annotated in

HGMD46 (version 2020) were removed, as were variants used in

VARITY_R and VARITY_ER model training. There are in total 367

de novomissense variants (321 putatively pathogenic and 46 puta-

tively benign) left for comparison. Considering only variants
The American Jo
scored by each of the 23 computational methods to be compared,

the final validation dataset contained 215 de novo missense vari-

ants (188 putatively pathogenic and 27 putatively benign). For

the validation analysis with published variant effect maps, we

assembled map scores for a subset of six proteins associated with

human genetic disease: CALM1 (MIM: 114180), TPK1 (MIM:

606370), CBS (MIM: 613381), PTEN (MIM: 601728), BRCA1

(MIM: 113705), and VKORC1 (MIM: 608547).

To evaluate the generalization performance of VARITY models

more broadly, we adopted 10-fold nested cross-validation strategy.

For each outer loop, the hyperparameters were determined via

Bayesian optimization54–56 based on inner-loop 10-fold cross-vali-

dation. The optimized hyperparameters were then used for

training based on all data in the outer-loop training set. Perfor-

mance on VARITY models (and other computational approaches)

were assessed on the ten held-out outer-loop validation sets

(Figure S2).

To compare the performance of VARITY models to previously

developed pathogenicity predictors, we collected the scores from

25 predictors. For 22 of these, scores were collected from dbNSFP

(V4.0b2)48, while scores for two predictors (MPC41 and EVMuta-

tion27) were assembled from links provided by the corresponding

papers and scores for DeepSequence42 were collected from an in-

dependent benchmarking study of 11 proteins:54 UBE2I (MIM:

601661), TPMT (MIM: 187680), TPK1 (MIM: 606370), TP53

(MIM: 191170), SUMO1 (MIM: 601912), PTEN (MIM: 601728),

MAPK1 (MIM: 176948), HRAS (MIM: 190020), CALM1 (MIM:

114180), BRCA1 (MIM: 113705), and ADRB2 (MIM: 109690).
Feature contribution to output score and model

performance
For each variant, the VARITY model provides a log(odds) (‘‘lod’’)

score (before subsequent transformation to the final score via a sig-

moid transformation), which is more positive for variants that are

inferred to be pathogenic and more negative for variants that are

inferred to be benign. To provide intuition about which features

of a given variant drove its score, we defined an ‘‘output contribu-

tion’’ score by using Shapley additive explanation values59,60

retrieved from the XGBoost53 output (with option ‘‘predict_

pred_interactions’’ turned on).

It can be useful to estimate the contribution of individual

feature groups or pairs of feature groups to a model’s performance

(as opposed to a model’s output values). We therefore defined a

‘‘performance contribution’’ score for all features for each variant

used in training. For a positive (putatively pathogenic) variant

used in training, performance contribution was the output contri-

butionmultiplied by the weight given to the variant during hyper-

parameter tuning. For a negative (putatively benign) variant used

in training, each feature performance contribution is obtained by

negating the output contribution and again multiplying by the

weight used for that variant. Thus, output contributions moving

in the right direction are counted as beneficial to model

performance.
Results

Developing a machine-learning and data-weighting

strategy

We first assembled a large resource of input features that

are potentially informative about variant function for all
urnal of Human Genetics 108, 1891–1906, October 7, 2021 1895



possible missense variants in �18,000 human proteins. To

limit the circularity that may inflate the model perfor-

mance and to limit the effects of training set bias61, we

excluded features informed by variant annotation (e.g.,

scores predicted by supervised models) or protein identity

(Table S1). Formodel training and performance evaluation,

we next identified from �4,000 human disease proteins a

‘‘core’’ set of variants with high quality annotation from

ClinVar44. This set was limited to rare variants (MAF <

0.5%) for the VARITY_R model. To assess sensitivity of

our results to this threshold, we also defined a core set of

extremely rare variants (MAF < 10�6) to train and test a

VARITY_ER model. For the core set, we labeled variants as

‘‘positive’’ (putatively pathogenic) or ‘‘negative’’ (puta-

tively benign) on the basis of pathogenicity interpreta-

tions. We then collected various ‘‘add-on’’ variants,

employing potentially less-reliable information about

whether non-core variants should be labeled as positive

or negative (see material and methods). Add-on variants

were drawn from gnomAD,47 HGMD,46 HumsaVar,45

ClinVar44 (excluding the core set variants), and a handful

of multiplexed assays of variant effect (MAVE) studies6–10

(Table S2). Add-on variants were grouped into add-on

training sets based on source (e.g., gnomAD47), label

(e.g., ‘‘negative’’), and rarity (e.g., ‘‘MAF > 0.5%’’) so that

each add-on set can be employed separately with distinct

effects on training VARITY models (see material and

methods; Table S3).

Although VARITY employs a ‘‘workhorse’’ machine-

learning method (the gradient boosted tree algorithm

XGBoost53) (see material and methods), it is distinct

from previous machine-learning strategies applied to

variant impact prediction. Distinct a prioriweights were as-

signed to different training examples, and these weights

were considered in the loss function used for tree optimiza-

tion. For each training set (core or add-on set), one or more

quality-informative properties were used as inputs to a

logistic function that assigned weights to each variant.

The parameters of each logistic function were optimized

as hyperparameters (see material and methods; Figure 1).

Quality-informative properties of each training set

To identify properties related to the utility of different add-

on sets for inferring pathogenicity, we ordered the exam-

ples in an add-on set (or logically related pairs of add-on

sets) by candidate property and carried out a moving win-

dow analysis (see material and methods), To evaluate the

predictive utility of each window, we estimated the model

performance by using 10-fold cross-validation on the core

training set where the training examples in each fold were

supplemented by all of the add-on examples in that mov-

ing window. When a candidate property correlated with

moving window predictive utility in an add-on set, this

property was identified as an informative property for

the add-on set. For example, a moving window analysis

of putatively benign variants from gnomAD47 showed var-

iants with both lower and higher allele frequency to be less
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useful in training VARITY_R (Figure 2). This agreed with

our expectation that variants with lower allele frequency

are more likely to be ‘‘contaminated’’ with damaging vari-

ants and that common variants might not be representa-

tive of the rare variants used for testing. Allele frequency

was similarly identified as a quality-informative property

for negative-labeled ClinVar44 and HumsaVar45 variants.

For several positive-labeled (putatively pathogenic) add-

on sets, variants with higher allele frequency were found

to be less useful. We also identified both label confidence

and mutational accessibility properties (see material and

methods for definitions) as quality-informative properties

for variants with MAVE scores (Figure S3; Table S3).

Although the core training set was considered high quality,

we considered ClinVar44 review stars as a quality-informa-

tive property to further weight these training variants.

Bayesian optimization on hyperparameters

The parameters of the variant-weighting logistic function

used for each training set were treated as hyperparameters

subject to optimization, as were algorithm-level hyper-

parameters such as learning rate, number of trees, and

the maximum depth of a single tree (Table S3 and Table

S4). All hyperparameters were tuned simultaneously with

Bayesian optimization,54–56 which consists of many

consecutive trials, each making use of a different set of hy-

perparameter values suggested by the previous trials. For

each trial, the hyperparameter set was evaluated via VAR-

ITY model performance on the core set examples in 10-

fold cross-validation where the core training examples in

each fold were supplemented with add-on training sets

examples and all training examples were weighted with

hyperparameter values suggested on the current trial. To

avoid overfitting to the validation set during hyperpara-

meter tuning, we selected a hyperparameter set by using

a scheme akin to ‘‘early stopping’’ (see material and

methods; Figure S4). With thus-optimized hyperpara-

meters, all 34,087 core set variants were given high weight

(R70%). While nearly all (123,591 of 123,621) add-on set

variants were given non-zero weights for VARITY_R, only

1.8% of add-on variants received R70% weight (see

Figure 3 for the optimized weights of gnomAD47 add-on

sets and Figure S5 for all training sets). The effective num-

ber of training examples (the sum of weights of all core and

add-on set examples) for VARITY_R was 41,898 (24,842

positive examples and 17,056 negative examples) as

compared with the 157,708 total of core and add-on exam-

ples. A subsequent reweighting step equalized the effective

number of positive and negative examples.

An alternative VARITY_ER model optimized for

extremely rare variants

Although the threshold that we used to define rare variants

(MAF < 0.5%) in the VARITY_R model is commonly used,1

we considered the possibility that moderately rare variants

(10�6 < MAF < 0.5%) may not be representative of

extremely rare variants (MAF < 10�6, for which no allele
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Figure 2. Identifying properties informative of predictive utility with moving window analysis
Here, we illustrate evaluation of whether the allele frequency property can identify less useful subsets of two add-on variant sets
(common and rare gnomAD47 variants). Variants from both common and rare add-on gnomAD47 sets were ordered from low to high
allele frequency, and a series of moving windows (each capturing the same number of examples) was generated. To evaluate the predic-
tive utility of each window, we estimated the model performance on the core set by using 10-fold cross validation where the training
examples in each fold were supplemented by examples in thatmovingwindow. One solid and two dashed horizontal black lines indicate
the mean5 standard error of the predictive utility of all moving windows. Here, moving window analysis showed that allele frequency
correlated with moving window predictive utility, and lower and higher allele frequency gnomAD47 variants exhibited less utility as a
source of negative variants for VARITY_R performance.
count was detected in gnomAD47).We therefore developed

an alternative VARITY_ER model by using only extremely

rare variants from ClinVar44 as the core set (but including

moderately rare ClinVar44 variants as add-on variants).

Like VARITY_R, VARITY_ER modeling proceeded via mov-

ing window analysis and hyperparameter tuning, and all

18,792 core set variants and 133,848 out of 138,916 add-

on set variants received non-zero weights. The effective

number of training examples was 24,074 for VARITY_ER,

well below the total of 157,708 training examples consid-

ered (Figure S6, Figure S7, and Figure S8).

Leave-one-variant-out (LOO) prediction for �18,000

human proteins

The final VARITY_R and VARITY_ER models were each

trained with both weighted core and add-on sets with opti-

mized hyperparameters and were each used for inference

of functional impact for all possible missense variants for

each of �18,000 human proteins. We observed that

cross-validation performance for VARITY_R and VAR-

ITY_ER models was only slightly higher for the training

set than for the validation sets using the optimized hyper-

parameter settings (See Figure S4 and Figure S7), suggesting
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that overfitting, if any, was modest. However, to avoid

inflating performance estimates as a result of overfitting,

we applied a leave-one-variant-out (LOO) strategy such

that each variant used (i.e., having non-zero weight) in

training was excluded in turn from the VARITY_R (or VAR-

ITY_ER) model used to score that variant, yielding a set of

VARITY_R_LOO (or VARITY_ER_LOO) scores.

Extracting intuition from VARITY models

To better understand the rationale for each VARITY score,

we used Shapley additive explanation values59,60 to assess

the contributionsmade by features and their pairwise com-

binations. For each variant, contributions were estimated

both to VARITY score and, if the variant was used in

training, to model performance (see material and

methods). For each feature group (Table S1), we estimated

the total contribution (including independent and pair-

wise contribution) to model performance as weighted

average of the contribution from all training examples by

using weight of each training example that was optimized

during hyperparameter tuning (Figure 4). Contributions to

model performance at the level of individual features and

feature pairs were also evaluated (Figure S9).
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Figure 3. Assigning weights to variants
in training add-on sets
Here, we illustrate weight assignment to
variants in common and rare gnomAD47

add-sets of negative (putatively benign)
training examples based on the allele
frequency and number of homozygotes
observed in gnomAD.
(A) Weights of all gnomAD47 variants (the
union of the rare and common gnomAD47

add-on sets) assigned via logistic function
that takes number of homozygotes as an
input.
(B) Weights of variants from either rare or
common gnomAD47 add-on set assigned
via logistic function that takes allele
frequency as an input.
(C) The final weights of gnomAD47 vari-
ants by taking the product of the weights
assigned by (A) and (B) for each variant.
(D) Another view of the final weights of
gnomAD47 variants with �log10(allele fre-
quency) as the y axis and showing the final
weights by color.
For the VARITY_R model, we found that conservation-

based features were the most important for model perfor-

mance, which is perhaps unsurprising given that they are

foundational to most computational predictors of variant

function. Among these, Provean24, SIFT,25,26 EVMuta-

tion,27 and LRT29 provided the greatest contribution. The

next most important feature group was ‘‘delta AA proper-

ties,’’ a set of features capturing differences in physico-

chemical properties between the missense and wild-type

amino acid. Among these, the ‘‘delta cyclic property’’

(capturing whether a proline residue has been substituted

for a non-proline residue or vice versa) was the most

important. The ‘‘delta sulfur property’’ (capturing whether

a cysteine or methionine residue has been substituted for a

non-sulfur-containing residue or vice versa) and the ‘‘delta

hydropathy index’’ were also very helpful. Next were fea-

tures related to ‘‘surface-accessible area,’’ representing the

extent to which the amino acid is exposed to solvent,

and ‘‘PPI,’’ a group of features modeling the extent to

which the environment of an amino acid changes upon

protein-protein interaction (see material and methods).

Features and feature groups will of course combine to

contribute to VARITY models in a non-additive way. For

example, the ‘‘IN/OUT Pfam domain’’ feature (capturing

whether an amino acid position falls within a conserved

protein domain), which is derived frommultiple sequence

alignments, contributed to the performance of the ‘‘con-

servation scores’’ feature group. It is therefore understand-

able that this feature group masks the predictive value of

‘‘IN/OUT Pfam domain’’ (as indicated by negative pairwise

performance contribution values forVARITY_R in Figure 4).

A negative pairwise performance contribution for individ-

ual features was also observed among nine conservation

scores. Because these conservation scores are similar, par-
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tial redundancy with one another was to be expected

(see Figure S9). We also have observed that the combina-

tion of ‘‘conservation scores’’ with other feature groups

such as ‘‘delta AA properties’’ and ‘‘PPI’’ provides a positive

(synergistically favorable) pairwise feature contribution to

model performance. Features contributing to each VAR-

ITY_ER model prediction score were also identified, and

the performance contributions of individual and grouped

features was again analyzed with the weighted training ex-

amples, yielding similar results (Figure S10 and Figure S11).

Assessing VARITY with de novo variants in

neurodevelopmental disorder studies

To assess VARITY, we examined missense variants from

neurodevelopmental case/control studies, focusing on

253 genes enriched for de novo variation in neurodevelop-

mental disease patients.57,58 For performance comparison,

we considered all rare de novo variants in these genes that

had not been used in training by VARITY and were not an-

notated by HGMD46 (see material and methods). After re-

taining only variants that had MAF < 0.5% and that had

been scored by all 23 of the methods to be compared, there

were 188 variants in the case group and 27 in the control

group.

We wished to judge performance using both receiver

operating characteristics (ROC) and precision versus recall

analysis. Precision versus recall analysis has the advantage

of beingmore intuitively related to the needs ofmost users.

However, precision varies as a function of the prior proba-

bility, and this prior is by default determined by the

fraction of test examples with a Positive (putatively patho-

genic) label. Moreover, this default prior may not have any

relationship with the prior probability that is most rele-

vant to a clinical geneticist using our output. To enable
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Figure 4. Feature group contribution to
model performance for VARITY_R model
The contribution of each feature group to
VARITY_R model performance was aver-
aged (weighted) across all training exam-
ples via the weight of each training
example as optimized during hyperpara-
meter tuning. The first column (left)
indicates the total contribution to model
performance of each feature group. For
each feature group, the total contribution
can be decomposed into the individual
feature contribution (matrix cell with a
star symbol on the corresponding row)
and the differential contribution of that
feature when it is combined with each
other feature group (matrix cells without
a star symbol on the corresponding row).
Red and blue color indicates positive and
negative contribution to model perfor-
mance, respectively. A blue-colored cell
for pairwise differential feature contribu-
tion indicates there is a certain amount
of redundancy between two feature groups
(e.g., between conservation scores and
IN/OUT Pfam domain).
greater intuition and fairer comparisons, we therefore

transformed each empirical precision-recall curve to the

curve corresponding to a balanced (50% probability of

pathogenicity) prior. Thus, our performance measures

were as follows: area under the ROC curve (AUROC), area

under the balanced precision recall curve (AUBPRC), and

recall at 90% balanced precision (R90BP; see material and

methods for details). For this de novo variant application,

we used the case/control status of the patient(s) in which

each variant appears as a proxy for pathogenicity.

VARITY_ER numerically outperformed all othermethods

in terms of AUBPRC. When performance was measured

with the subset of variants that had been scored by all

methods, AUBPRC performance improvement achieved

statistical significance (p < 0.05) relative to every method

except MPC41 (p ¼ 0.125) and M-CAP17 (p ¼ 0.099). More-

over, when we used larger variant sets that had been scored

by MPC41 (285 variants in case group and 38 variants in

control group) or M-CAP17 (320 variants in case group

and 45 variants in control group), VARITY_ER’s perfor-

mance improvement was statistically significant (p ¼
0.048 and 0.029 for MPC41 and M-CAP17, respectively).

When the score threshold for every method was tuned to

achieve 90% balanced precision, VARITY_ER recovered

10% more (presumed pathogenic) variants from the case

group than the closest non-VARITY method. VARITY_ER

outperformed VARITY_R with a 2% greater AUBPRC (p ¼
0.122), which may be explained by the fact that

most de novo missense variants are extremely rare. How-

ever, VARITY_R also numerically outperformed all other

methods (see Figure 5 and Table S5 for AUBPRC compari-

son; Figure S12 and Table S6 for AUROC comparison;

Table S7 for individual comparisons with MPC41 and

M-CAP17).
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Assessing VARITY with experimental variant effect maps

As another form of independent validation, we wished to

assess agreement between impact scores and systematic

experimental assessments of variant function. We there-

fore evaluated the ability of scores from each computa-

tional method to predict the quantitative scores from

each of six recently published missense variant effect

maps on human disease related genes.6–11 Because five

out of six maps (all except VKORC1 map) had been indi-

rectly used in VARITY training, we included leave-one-

variant-out scores (VARITY_R_LOO and VARITY_ER_LOO)

for comparison. VARITY_ER_LOO showed best correspon-

dence in terms of Pearson correlation coefficient (PCC)

with variant effect map scores (PCC ¼ 0.405), significantly

outperforming all other non-VARITY predictors (p < 0.05;

Figure 6 and Table S8 for PCC results; Table S9 for Spear-

man’s rank correlation coefficient [SRC] results).

More broadly assessing VARITY performance via nested

cross-validation

To further compare generalization performance of VARITY

models with previously developed computational predic-

tors of missense variant effects, we used the high-quality

core sets from ClinVar.44 To avoid possible circularity

frommodel training and hyperparameter tuning, we adop-

ted a nested cross-validation strategy (see material and

methods).

VARITY_R significantly outperformed all 23 methods on

rare variants from ClinVar44 (MAF < 0.5%; VARITY_R core

sets) by all criteria (i.e., AUBPRC, R90BP, and AUROC; p <

0.05 via one-sided paired t test), recovering 13% more

pathogenic rare missense variants at 90% balanced preci-

sion than the next-best method, REVEL16 (Figure 7 and Ta-

ble S10 for AUBPRC comparison; Figure S13 and Table S11
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Figure 5. Assessing VARITY balanced precision recall performance for de novo variants in neurodevelopmental disorder studies
Here, we show balanced precision versus recall curves for VARITY_ER, VARITY_R, and 23 other variant pathogenicity predictors. Predic-
tors designed specifically for nucleotide variants are indicated with a ‘‘(d).’’ Here, the test set was a total 215 rare de novo variants (188
positive and 27 negative examples, see material and methods). Recall was averaged over 2,000 bootstrapped test sets with standard error
indicated by the surrounding gray region. As overall performance measures, AUBPRC and R90BP (the black dotted line) and their stan-
dard errors are shown. Statistical significance relative to VARITY_ER applied a one-sided Z test based on 2,000 bootstrapped test sets (p
values in brackets were indicated with a ‘‘*’’ where p < 0.05). Other test statistics, such as 95% confidence interval and effect size, can be
found in Table S5. When individual comparison used a larger variant set that had been scored by MPC41 (285 variants in case group and
38 variants in control group) or M-CAP17 (320 variants in case group and 45 variants in control group), VARITY_ER’s improved AUBPRC
performance was statistically significantly (p ¼ 0.048 and 0.029 for MPC41 and M-CAP,17 respectively; Table S7).
for ROC comparison). EVMutation27 and DeepSequence42

had few scores available for core set variants and, because

we limited the overall comparison to variants assessed by

all methods, their inclusion would have dramatically

reduced the space of test variants. However, direct compar-

ison of VARITY_R with each method with the intersection

of test variants scored by each respective method showed

that VARITY_R significantly outperformed both methods

(Table S12). Methods designed to evaluate amino acid sub-

stitutions generally outperformed methods that were de-

signed for nucleotide-level changes (see predictors marked

with ‘‘(d)’’ in Figure 7). Indeed, among nucleotide-level

methods, only CADD18 (which may have benefited from

amino-acid-level PolyPhen219,20 scores as training fea-

tures) was able to outperform an amino-acid-level method.

To evaluate the extent to which VARITY’s success de-

pended on the variant-weighting scheme, we retrained a

‘‘VARITY_R_unweighted’’ model, giving equal weight to

all core and add-on variants. This reduced AUBPRC perfor-

mance from 92% to 90.9% (p ¼ 6.53 10�5; Student’s t test

comparing the two sets of outer-loop validation perfor-
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mance values). We expected that performance for the no-

variant-weighting version of VARITY would fall further as

more add-on training examples with uncertain quality

are included. To evaluate this, we included additional gno-

mAD47 variants that were originally excluded from the pu-

tatively-benign add-on training set because they had never

been seen in a homozygous individual. After including

these variants in training, the nested cross-validation

AUBPRC performance of VARITY_R_unweighted was

reduced further from 90.9% to 89.9% (p ¼ 2.1 3 10�4).

We also evaluated VARITY_ER performance by using the

core set of extremely rare variants from ClinVar44 (MAF <

10�6; VARITY_ER core sets), again with 10-fold nested

cross-validation. VARITY_ER outperformed all 23 methods

by all criteria (p < 0.05 via one-sided paired t test), recov-

ering 12% more pathogenic rare missense variants at

90% balanced precision than the next-best method

REVEL16 (Figure S14 and Table S13 for AUBPRC compari-

son; Figure S15 and Table S14 for ROC comparison).

Although EVMutation27 and DeepSequence42 were again

excluded, VARITY_ER outperformed EVMutation27 in a
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Figure 6. Performance of VARITY_R model and other predictors on variant effect maps
Evaluation of VARITYmodels (VARITY_R and VARITY_ER) and 19 other computational predictors according to correlation (Pearson cor-
relation coefficient or PCC) with variant function scores of rare (MAF < 0.5%) missense variants from six experimental variant effect
maps.
SIFT,25,26 PolyPhen2_HVAR,19,20 PolyPhen2_HDIV,19,20 and MutationAccessor33 were not included because we did not have their scores
for all six variant effect maps. Because some of the variant effect maps were indirectly used in VARITY training, we included
VARITY_R_LOO and VARITY_ER_LOO for comparison. VARITY_ER_LOO had the overall best performance and was significantly better
than all other models. Standard error of PCCwas derived from the set of PCC values from each variant effect map. Statistical significance
of each predictor’s performance was evaluated relative to VARITY_ER_LOO via a one-sided paired t test with 5 degrees of freedom (p
values in brackets were indicated with a ‘‘*’’ where p < 0.05). For compactness, four methods that have correlation less than 0.1 are
not shown (see Table S8). Other information, such as 95% confidence intervals and differences in PCC values, is in Table S8. The
PCC comparison for each individual variant effect map is also in Table S8.
pairwise comparison based on extremely rare core set var-

iants with available EVMutation27 scores (Table S15).

Only 16 extremely rare benign core set variants had Deep-

Sequence42 scores, leaving too few variants in each held-

out subset during 10-fold nested cross-validation to

accurately evaluate performance.

Discussion

Evidence to evaluate variant pathogenicity is typically less

available for rare as opposed to common variants. Detecting

population-level correlation between a trait and a genotype

has reduced power at lower minor allele frequencies and is

futile for extremely rare variants. Experimental functional

evidence is also less available for lower-allele-frequency var-

iants. For these reasons, and because the majority of unique

clinically observed variants are rare, there is a particularly

strong motivation to improve computational methods for

inferring the pathogenicity of rare variants.

Here, we developed predictors of variant pathogenicity

that were specifically optimized for performance on rare

and extremely rare missense variants. Given previous evi-

dence that common variants are not representative of
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rare variants in the context of training pathogenicity

models,16 perhaps the primary advantage of VARITY

models is that rare variants have been given greater weight

in training. Other key advantages are that VARITY makes

use of large sets of potentially biased or error-prone

training data while optimizing the potential for these

add-on variant sets to increase performance. VARITY

models benefitted not only from the process of filtering

and weighting add-on examples but also from the use of

features that have, either individually or in combination,

not been used previously. To limit protein-specific bias

and circularity, VARITY models also excluded features

that are informative about protein identity or that

may have been informed by previous pathogenicity

annotations.

VARITY models performed well when evaluated via an

independent set of de novo missense variants collected

from neurodevelopmental case-control studies. Here, we

only considered the subset of de novo missense variants

that were in genes previously reported as being enriched

for de novo missense and/or likely-gene-disruptive variants

in neurodevelopmental disease cases. Because this

certainly excluded some disease-relevant genes/variants,
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Figure 7. Comparing balanced precision recall performance of VARITY_R with other predictors in predicting a high-quality ‘‘core’’
variant set (MAF < 0.5%)
We compare balanced precision versus recall performance for VARITY_R (with nested cross-validation) with 23 other variant pathoge-
nicity predictors. For compactness, one predictor with AUBPRC < 0.6 is not shown (See Table S10). Predictors that had been designed
specifically for nucleotide variants are indicatedwith a ‘‘(d).’’ The test set was 9,719 variants (5,912 positive and 3,807 negative examples)
from the core set, after removing variants annotated by HGMD46 and retaining only variants that had been scored by all methods. Recall
was averaged over all ten outer-loop folds, and the standard error is indicated by the surrounding gray region. As overall performance
measures, AUBPRC and R90BP (the black dotted line) and their standard errors are shown. Statistical significance of performance relative
to VARITY_R used a one-sided paired t test with 9 degrees of freedom (p values in brackets were indicated with a ‘‘*’’ where p < 0.05).
Other test statistics, such as 95% confidence interval and effect size, are in Table S10.
it would be interesting in future studies to expand the

gene/variant set based on more permissive identification

of relevant genes/variants. VARITY models might also be

used for identification of candidate causal variants in other

genes, e.g., in patients for whom a predicted-damaging

variant has not been observed in an already-known disease

gene.

More broadly, we used nested cross-validation to esti-

mate the generalization performance of VARITY models

on the core set of ClinVar44 variants. We note that the

set of ClinVar44 variants is influenced by historical ascer-

tainment biases, in that they are enriched in disease genes

discovered earlier, and some annotations were most likely

influenced by early computational methods, such as

BLOSUM15 and SIFT.25,26 Therefore, although ClinVar44

variants enable useful measures of relative performance,

it is difficult to estimate performance on an absolute scale

for variants that will be observed in the future. Although

the de novo variant evaluation set was free from these

biases, it was necessarily limited in scope so that VARITY’s

generalization performance should in the future also be

evaluated with additional independent test sets.
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We provided information about which features and

feature combinations were most useful in training VARITY

models and feature contributions for the prediction made

for each variant.We also note that the quantitative VARITY

scores themselves can provide some intuition, e.g., there is

a clear trend relating VARITY_R scores to the probability of

pathogenicity (Figure S16).

The gradient boosted tree method has the advantage that

training and testing examples for which some feature values

are missing can be used directly without requiring imputa-

tion. Nevertheless, predictions may be less accurate for

variants that are missing important features such as conser-

vation-based scores and structure associated features. For

example, if we remove all structural features from the core

set, VARITY_R nested cross-validation performance (via

AUBPRC) dropped from 92% to 91.5%.

For VARITY training, we eliminated protein-identifying

features to reduce protein-specific biases in our training

set. However, we might want to augment VARITY scores

in the future by explicitly deriving a prior probability of

missense variant pathogenicity (i.e., the probability of

pathogenicity before considering the identity of the
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missense variant) for each protein or protein region. How-

ever, because these priors may vary with the application

setting, we suggest that the user should be explicitly

informed about these priors and given the option to adjust

them.

There are several avenues for future improvement of

VARITY models. More training examples could be added,

e.g., adding putatively benign variants from primates as

PrimateAI21 has done. One might also develop specialized

models for different classes of proteins or variants, e.g.,

those in predicted membrane-spanning domains. More

quality-informative properties could be added to improve

add-on set weighting. More features could also be added,

e.g., based on knowledge of genetic or protein-protein in-

teractions. We are also currently lacking features related

to the typical mode of inheritance for a given gene and

associated disease (e.g., dominant or recessive), the typical

mechanistic class (e.g., gain or loss of function), or typical

penetrance or variable expressivity of variants. Although

adding mode-of-inheritance features would be compli-

cated by the fact that this information is often unavailable

and can differ for different variants within the same gene,

it could improve performance in general.

To our knowledge, no previous computational variant

effect prediction method has used the strategy of weight-

ing variants used in training. However, it is not uncom-

mon in machine learning to weight training examples.

For example, the AdaBoost ensemble algorithm assigns

higher weight to examples misclassified by previous classi-

fiers in each learning iteration.62 Where multiple annota-

tors have provided possibly noisy labels, the weight and

the true label of each example can be learned together

with the model via a maximum-likelihood approach.63

We also note that the modeling approach we describe is

just one way to address the problem of model learning

with noisy labels, which is the subject of intensive research

especially within the deep learning field.64–68 Given that

variant effect interpretation is greatly limited by the avail-

ability of high-confidence unbiased training data, this field

will be worth watching closely for future inspiration.

Other models tuned for other types of variation could

employ this framework by simply changing the core and

add-on training examples. For example, a computational

model specialized for predicting the pathogenicity of varia-

tion in membrane-spanning domains could be trained by

limiting the core set to variants from regions predicted to

be in the membrane while still using all other variants as

add-on training sets subject to differential weighting.

Models for predicting deleteriousness of nucleotide-level

variation in non-coding regions or spliced regions would

require more extensive separate assembly of relevant fea-

tures and both core and add-on variant sets but could then

benefit from the algorithmic framework we describe here.

As the performance of computational variant effect pre-

dictors improves, an important unsolved problem is how

to translate these gains to have a commensurate impact

on clinical variant interpretation. The increasing quantity
The American Jo
of systematically collected large-scale functional evidence

about missense variation has led to new recommendations

for its use in the context of clinical interpretation.69 We

expect that a similarly quantitative evaluation of computa-

tional predictions will support a more nuanced use of

computational evidence in clinical variant interpretation.

Users may search, browse, and download both

VARITY_R and VARITY_ER scores (with associated feature

contributions) for any of �18,000 human proteins via

the VARITY web portal (see web resources).
Data and code availability

All weighted core and add-on training data for the VARITY_R

model can be found at http://varity.varianteffect.org/downloads/

VARITY_R_training.csv and, for the VARITY_ER model, at http://

varity.varianteffect.org/downloads/VARITY_ER_training.csv. Addi-

tional validation data (for de novo missense variants in neurodeve-

lopmental disorder case/control studies and variants for six

human-disease-related variant-effect maps) can be found at

http://varity.varianteffect.org/downloads/VARITY_validation.zip.

All sources for features used in training are summarized in Tables S1

and S2, and sources for labeling training variants can be found in

Table S3. All data are publicly available from the sources listed,

except for (1) three MAVE datasets for NCS1 (MIM: 603315; Ma-

veDB: [urn:mavedb:00000065-a-1]), GDI1 (MIM: 300104; Ma-

veDB: [urn:mavedb:00000066-a-1]), and TECR (MIM: 610057;

MaveDB: [urn:mavedb:00000067-a-1]), which are currently un-

published but have been deposited to MaveDB14 (and will be

made available no later than 6 months after publication of this

study), and (2) HGMD,46 which was obtained under a commercial

license that is generally available from QIAGEN/BioBase. All py-

thon code for training VARITY models is available at https://

github.com/joewuca/varity.
Supplemental information

Supplemental information can be found online at https://doi.org/

10.1016/j.ajhg.2021.08.012.
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HGMD, http://www.hgmd.cf.ac.uk/

HumsaVar, https://www.uniprot.org/docs/humsavar
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