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Dynamic heterogeneity and non-Gaussian statistics
for acetylcholine receptors on live cell membrane
W. He1, H. Song2, Y. Su2, L. Geng3, B.J. Ackerson4, H.B. Peng3 & P. Tong2

The Brownian motion of molecules at thermal equilibrium usually has a finite correlation time

and will eventually be randomized after a long delay time, so that their displacement follows

the Gaussian statistics. This is true even when the molecules have experienced a complex

environment with a finite correlation time. Here, we report that the lateral motion of the

acetylcholine receptors on live muscle cell membranes does not follow the Gaussian statistics

for normal Brownian diffusion. From a careful analysis of a large volume of the protein

trajectories obtained over a wide range of sampling rates and long durations, we find that the

normalized histogram of the protein displacements shows an exponential tail, which is robust

and universal for cells under different conditions. The experiment indicates that the observed

non-Gaussian statistics and dynamic heterogeneity are inherently linked to the slow-active

remodelling of the underlying cortical actin network.
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C
ell membranes, which define cell boundaries and maintain
communication with the outside world, display an
intriguing array of structural complexes of lipids/

cholesterols and various proteins essential to the existence and
functioning of the cell. In the original fluid mosaic model1, the
cell membrane was thought of as a quasi-two-dimensional fluid
layer in which proteins are dispersed randomly at a low
concentration and can float unencumbered. From the wealth of
new data obtained in recent years, our general view of membrane
architecture has evolved into a new paradigm in which the
membrane has variable patchiness and thickness and a higher
protein occupancy than previously thought2. The lipids
and proteins on the membrane are not ideally mixed, and form
molecular complexes ranging from nano-scale ‘lipid rafts’3,4

and protein clusters to micron-sized stable domains such as
caveolae, microvilli and focal adhesions.

Moving in a structured membrane, the proteins do not enjoy
continuous and unrestricted lateral diffusion as was originally
envisioned5. Instead, proteins diffuse in a very complex landscape
with considerable lateral heterogeneity in the membrane6,7.
Transmembrane proteins also interact strongly with the
underlying cytoskeletal cortex4. Using single-particle tracking
(SPT) techniques7,8, one can directly observe and follow the
motion of individual proteins. The measured protein trajectories
have been found to be quite heterogeneous6,7,9, with some
moving fast and appearing to diffuse freely while others are
transiently confined to small membrane domains. A main issue in
the continuing discussion is whether the dynamic heterogeneity
of the transmembrane proteins is caused by the effect of
clustering imposed by membrane clusters3,10, such as lipid rafts,
or by membrane partitions generated by interactions with the
underlying cortical actin network4, such as ‘membrane-skeleton
fences’7,11,12. Most of the theoretical discussions assumed
that membrane organization is governed by equilibrium
processes, such as critical thermal fluctuations and ligand-
binding equilibrium.

The available SPT data are not conclusive because the protein
trajectories were sampled over a relatively short time (due to
the finite lifetime of the florescent probes used), and thus heavily
influenced by the surrounding molecules without revealing
their long-time behaviour and their interactions with distant
molecules on the membrane13. In addition, the current analysis
of protein motion often focuses on identifying only a few targeted
single molecular events, while ignoring other molecular events
of possibly equal importance owing to the lack of systematic
statistical analysis. Such analysis is extremely important,
because stochastic fluctuations at the single molecular level
are significant14. The lack of a systematic analysis of the protein
motion is partially due to the fact that direct measurement of
the statistical properties, such as the probability density
function (normalized histogram or PDF) P(Dx) of the protein
displacement Dx, often requires a large volume of individual
protein trajectories, which are difficult to obtain from living cells.
As a result, most previous studies in this area only measured the
mean-squared displacement (the lowest moment of P(Dx)),
which requires less statistics but is not adequate to describe
the complex motion of proteins in a living cell15.

In this paper, we report a systematic study of the lateral motion
of a transmembrane protein on live muscle cell membranes
cultured from Xenopus embryos. The protein chosen for the study
is acetylcholine receptor (AChR), which is a well characterized
neurotransmitter receptor for the study of neuromuscular
junctions16,17. The lateral mobility of AChRs plays an essential
role in determining the response of the postsynaptic membrane to
neurotransmitter stimuli. The individual AChRs are labelled by
bright and photostable fluorescent quantum dots (QDs). With the

help of an advanced single-molecule tracking algorithm, we are
able to obtain a significantly large volume of individual AChR
trajectories from more than 360 live cells over a wide range of
sampling rates (up to 80 Hz) and long durations (up to 200 s).
A central finding of this investigation is that the moving
trajectories of the individual AChRs do not follow the Gaussian
statistics for normal Brownian diffusion. Instead, we show for the
first time that the measured PDF P(Dx) has an exponential tail,
which is robust and universal for cells under different conditions.
A theoretical model is developed to explain why the structurally
identical AChRs have very different dynamic behaviours with an
exponential-like distribution in their diffusion coefficient.

Results
Characterization of the AChR trajectories. In the experiment,
we obtain the AChR trajectories from consecutive images of the
QDs, and find their position r(t) (and hence the position of
AChRs) at time t using a homemade SPT program with a spatial
resolution of B20 nm. Because the viscosity of the plasma
membrane is B1,000 times higher than that of the extracellular
medium, the motion of the QD-labelled AChRs is determined
primarily by their transmembrane domains18. From the AChR
trajectories, we compute the statistics of the two-dimensional
displacement vector, Dr(t)¼ r(tþ t)� r(t), over delay time t,
such as the mean-squared displacement (MSD) hDr2(t)i and
the PDF P(Dx) of the x-component of Dr. We also compute
the radius of gyration Rg of the AChR trajectories Rg

2(t)¼
(1/N)

P
i
N[(xi�hxi)2þ (yi�hyi)2], where N is the total number

of time steps in each trajectory, xi and yi are the projection of the
position of each trajectory step on the x- and y-axis, respectively,
and hxi and hyi are their mean values. Physically, Rg quantifies
the size of an AChR trajectory generated during the time lapse t.

Figure 1a shows a representative collection of 130 AChR
trajectories over a time interval of 60 s. These identical AChRs
exhibit a huge amount of dynamic heterogeneity as evidenced by
the large variation in trajectory sizes; some being mobile
(red trajectories) and others nearly immobile (black trajectories).
Among the mobile AChRs, some move fast (with a large
trajectory size) and others slower (with a smaller trajectory size).
The situation shown in Fig. 1a is in great contrast with the
Brownian motion of colloidal particles in a simple fluid, as show
in Fig. 1b. The distribution of the Brownian trajectories is much
more uniform than that of the AChR trajectories.

To have a quantitative description of the AChR trajectories, we
calculate their normalized radius of gyration R0g ¼ Rg=hRgi, where
hRgi is the mean value of Rg. For Brownian diffusion, one has
Rg(t)¼ [(2/3)D0t]1/2 with D0 being the diffusion coefficient
(see Supplementary Note 1 for more details). For live cells, we
define hRgi¼ [(2/3)hDLit]1/2, where hDLi is the long-time
diffusion coefficient averaged over 365 cells (see more discussions
on Fig. 4 below). The use of the normalized R0g allows us to
compare the AChR trajectories taken over different t and/or
under different sample conditions. Figure 2 shows the measured
PDF (normalized histogram) hðR0gÞ of R0g for the AChR
trajectories taken under different sample conditions. All of
the measured hðR0gÞ

0s collapse onto a single master curve,
once the normalized R0g is used. The PDFs from different
frogs and embryos and from cells cultured for different days and
sampled at different t exhibit a universal form (for clarity, some
of the curves are not shown here). The measured hðR0gÞ has a peak
at R0g ’ 0:15 followed by an exponential tail (black solid line).
For silica spheres undergoing the Brownian motion, their hðR0gÞ
has a narrow distribution peaked at R0g ’ 1 (blue dashed line, see
Supplementary Note 1 for more discussions). Figure 2 reveals that
there are many fast moving AChRs, whose R0g is larger than that
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for normal Brownian diffusion. The vertical red line indicates the
cutoff value ðR0gÞc ¼ 0:3 used in the experiment, below which the
AChR trajectories are treated as immobile ones (black trajectories
in Fig. 1).

Mean-squared displacement. Figure 3 shows the measured MSD
hDr2(t)i as a function of t for the AChR trajectories taken at two
sampling rates of 80 and 5 frames per second (fps). The red and

black dashed lines obtained at the two different sampling rates do
not superimpose with each other in the common region of t
between 0.2 and 3 s. To achieve the higher sampling rate, the
viewing area of the camera is cropped. Because of the spatial
inhomogeneity of the immobile AChR distribution, we find the
number ratio g of the mobile AChR trajectories to the total
number of trajectories obtained at the two sampling rates is
different. Once the immobile trajectories are removed from the
ensemble average, the measured hDr2(t)i becomes reproducible
and the two curves (red and black circles) superimpose well with
each other. The final MSD curve (circles) in the log–log plot is not
a linear function and goes as hDr2(t)iBta with 0.4oao0.9 in
the small-t range 0.0125–1 s. Only at the long-time limit (t44 s),
does the measured MSD become diffusive with aC1 (blue solid
line). In this case, hDr2(t)iC4DLt, where DL is the long-time
diffusion coefficient of the AChRs.

The long-time behaviour of hDr2(t)i is best presented in the
linear plot as shown in the inset of Fig. 3. Because of the high
efficiency of our tracking algorithm (see Supplementary Methods
for more details), we are able to obtain long-time trajectories of
the AChRs with adequate statistics. About 1,160 samples are used
to obtain hDr2(t)i at the largest delay time tC160 s. The statistics
for hDr2(t)i at smaller values of t are even better with the error
bars smaller than the size of the symbols used in Fig. 3. In the
wide range of t between 4 and 160 s in which the AChRs have
diffused more than 750 times of their own diameter, the
measured hDr2(t)i can be well described by a linear function of
t (red solid line). From the slope of the fitted solid line, we obtain
DL¼ 0.05 mm2 s� 1.

Figure 4 and its inset show, respectively, the final statistics of
the measured DL and the mobile ratio g for the AChRs
from different frogs and from cells cultured with different days.
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Figure 1 | Observed dynamic heterogeneity in the AChR trajectories.

(a) Overall 130 representative AChR trajectories with 300 time steps

(60 s). These trajectories are taken from the bottom membrane of a

Xenopus muscle cell. Red trajectories indicate fast moving AChRs and black

ones indicate ‘nearly immobile’ AChRs. (b) A total of 52 representative

trajectories of silica spheres 2.14mm in diameter undergoing Brownian

diffusion in water over a flat substrate with 1,000 time steps (47 s).
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Figure 2 | Normalized histogram of the radius of gyration of AChR

trajectories. Measured PDF hðR0gÞ of the normalized R0g for the AChR

trajectories taken under different sample conditions: cultured for 1 day after

dissection (red circles), cultured for 4 days (magenta triangles), and

cultured for 8 days (green diamonds). Each hðR0gÞ is obtained by averaging

the data from 10 cells cultured under the same condition. The black circles

are obtained by averaging the data from 70 cells. Their statistics is

considerably improved with small error bars indicating the standard

deviations. The solid black line shows the exponential function,

hðR0gÞ ’ 1:1 expð� 1:35R0gÞ. The dashed blue line shows the measured hðR0gÞ
for silica spheres undergoing Brownian diffusion. The vertical red line

indicates the cutoff value ðR0gÞc ¼ 0:3 used to define the immobile

trajectories.
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The value of DL has a fairly narrow distribution with
hDLi¼ 0.041±0.015 mm2 s� 1. The distribution of g is broader
with hgi¼ 0.64±0.17. These mean values are obtained from 365
cells. The value of g tends to be smaller for unhealthy cells and for
cells cultured over a long period of time. We also examined
the MSD curves obtained in different regions of the membrane in
the same cell, both on the upper (away from the substrate) and lower
(facing the substrate) portions of the membrane. The measured
MSD in different regions remains approximately the same,
suggesting that the AChRs on the same membrane have appro-
ximately the same value of DL, which can be used as a parameter to
characterize the mobility of membrane proteins in living cells.
Because the bottom portion of the membrane has a large planer view
with more than 100 QDs in each frame, we used this imaging setup
to collect more data for a better statistical analysis.

Probability density function. Another important quantity to
characterize the motion of AChRs is the PDFs (normalized
histograms), P(Dx0) and P(Dy0), of the x- and y- components
of Dr(t) at a fixed value of t. Here, Dx0 ¼Dx/(2DLt)1/2 and
Dy0 ¼Dy/(2DLt)1/2 are the displacements normalized by the
diffusion length (2DLt)1/2. Figure 5 shows the measured P(Dx0)
and P(Dy0) for mobile AChRs obtained under different sample
conditions. Although the measured DL varies considerably under
different cell conditions, the PDFs collapse onto a single master
curve, once the normalized Dx0 (and Dy0) is used. Except for a
sharp peak near the origin, all of the PDFs have an exponential
tail (red solid line). The error bars show the standard deviation of
the black circles averaged over 10 cells. Because of the reduced
number of data points, the diamonds have relatively larger
experimental uncertainties. Figure 5 thus reveals that AChRs have
a heavy-tailed distribution in their mobility, and this distribution

is universal among the cells under different sample conditions.
Similar P(Dx0) (and P(Dy0)) are also found for the AChRs on the
upper portion of the membrane away from the substrate
(see Supplementary Fig. 7 for more details). Evidently, the
exponential PDF is a leptokurtic distribution, which has a higher
peak and a heavier tail compared with the Gaussian PDF19.

Immobile trajectories and statistical sampling conditions.
Figure 3 reveals that the measured hDr2(t)i under two different
sampling conditions (red and black dashed lines) has different
values in the common region of t. We find that the immobile
trajectories have a dominant role in determining the value of
hDr2(t)i. The measured hDr2(t)i for the immobile AChRs (green
triangles) is about two orders of magnitude smaller than the value
of hDr2(t)i in the long-time regime (t\4 s) for the mobile
AChRs (black circles) and thus contributes many near-zero values
to the ensemble average. At the higher sampling rate (80 fps), the
viewing area of the camera is cropped and the number of
immobile trajectories recorded in the movie becomes different
from that obtain at the lower sampling rate (5 fps). This is caused
by the spatial inhomogeneity of the immobile AChR distribution.
As shown in Fig. 3, once the immobile trajectories are removed
from the ensemble average, the measured hDr2(t)i under two
different sample conditions becomes identical in the common
region of t (red and black circles).

By carefully examining the AChR trajectories, we also find that
even the mobile trajectories still have some immobile segments of
varying lengths (durations). As shown in the Supplementary
Movie, the AChRs often move for a while and are transiently
confined to a small region on the membrane for a different
amount of time (up to seconds) and then move again.
The transient confinement of AChRs is also reflected in the
measured hðR0gÞ in Fig. 2, P(Dx0) in Fig. 5 and PDF f(d) of the
‘instantaneous’ diffusion coefficient d in Fig. 6 below. For a fixed
delay time t, the immobile segments in a mobile trajectory tend to
have smaller values of R0g, Dx0, and d and hence give rise to a peak
in the corresponding histograms at small values of R0g, Dx0 and d.
We believe that the transient confinement of AChRs is caused by
the transient binding of the AChRs to the underlying cortical
actin network. A similar effect was also observed for the Kv21
channel proteins in HEK 293 cells20.
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Figure 3 | Crossover from sub-diffusion to normal diffusion observed

from the MSD curve. Measured hDr2(t)i as a function of delay time t for

the AChR trajectories taken at two sampling rates of 80 fps (red dashed line

and circles) and 5 fps (black dashed line and circles). Data from a single cell

are used in the ensemble average. The red and black dashed lines are

obtained when both the mobile and immobile trajectories are included in

the calculation. The red and black circles are obtained when only the mobile

trajectories are included in the ensemble average. The green triangles are

obtained when only the immobile trajectories are included in the ensemble

average. The blue solid line indicates the relationship hDr2(t)iBt with a

slope of unity in the log–log plot. Inset shows a linear plot of the

measured hDr2(t)i as a function of t and the red solid line is a linear fit to

the data points.
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The above observation of non-reproducible hDr2(t)i resulting
from different sampling of the immobile AChR trajectories may
shed light on the problem of nonergodicity between the time- and
space-averaged MSDs, which has been observed for a number of
molecules in live cells, such as Kv21 channel proteins20,
messenger RNAs in Escherichia coli21 and lipid granules in
yeast cells22. The origin of the nonergodicity in live cells has
remained elusive20–24. The immobile trajectories may have an
important role in determining the difference between the
time- and space-averaged hDr2(t)i, because the immobile
trajectories are typically included in the space-averaged
hDr2(t)i, whereas in the time-averaged hDr2(t)i, one usually
only samples the mobile trajectories20–22.

Crowding effects and anomalous diffusion. In the original
model of membrane diffusion5, the cell membrane was
considered as a continuum fluid layer, which is true only if the
membrane is homogenous and the diffusing particle is much
larger than the surrounding membrane molecules. For AChRs,
however, their size is comparable to that of the surrounding
membrane proteins and lipids, and their motion is hindered by
the direct interactions with the surrounding macromolecules. In a
crowded molecular solution, a tracer molecule faces a
heterogeneous environment and its MSD is no longer a simple
linear function of t. Instead, the MSD often exhibits a
sub-diffusive behaviour with hDr2(t)iBta, where ao1
(refs 15,24,25). Such anomalous diffusion has been observed in
a variety of dense fluid systems, such as colloidal diffusion near its
glass transition26,27 and over an external random potential28.

Membrane proteins in live cells were also found to exhibit
anomalous diffusion7,11,20,29. Because of the limited number and
time span of the protein trajectories obtained, the measured MSD
in some previous studies, however, only revealed a sub-diffusive
regime without showing a crossover to the long-time diffusion.
Some of the measurements also suffered relatively large statistical
uncertainties at large delay times t. The MSD shown in Fig. 3

clearly reveals a crossover behaviour from sub-diffusion to
long-time diffusion with the crossover time tLC4 s. In the
long-time diffusion regime as shown in the inset of Fig. 3,
the measured MSD remains as a linear function of t up to the
longest tracking time 160 s, indicating that the membrane is very
fluidic for AChRs. During this time, the AChRs diffuse more than
6 mm (or about 860 times of their own diameter) and no
permanent fence is found at this length scale to confine the
motion of AChRs.

In the short-time sub-diffusion regime (to4s), the measured
hDr2(t)i decreases with decreasing t and reaches an asymptotic
value hDr2i0C24.4� 10� 3 mm2 for the mobile AChRs. The value
of hDr2iA for the immobile AChRs is about half the value for the
mobile AChRs with hDr2iAC12.4� 10� 3mm2. At the t-0 limit,
the measured MSD becomes the mean square fluctuation,
hDr2i0¼

P
i(hDr2i0)i, which is a sum of (hDr2i0)i from all

independent fluctuation sources i. By subtracting out the
background noise, hDr2iBC3.11� 10� 3mm2, from the
immobile QDs, which are physically attached to the glass
substrate, we find the immobile AChRs jiggle in a typical range
R0¼ [hDr2iA�hDr2iB]/4]1/2C48.2 nm. This 48.2-nm-ranged
jiggling may result from the agitation of the underlying cortical
actin network, which the immobile AChRs are bound to
(see more discussions below). With this understanding, one
may define the net MSD of the mobile AChRs without the
influence of independent agitations of the actin network as
(ref. 30), hDr2(t)iAChR¼hDr2(t)i� hDr2iA, which differs from
the measured hDr2(t)i in Fig. 3 only in the small-t range
(tt0.5 s). The resulting hDr2(t)iAChR still goes as ta, but the
value of a varies in a narrower range 0.7–0.9 with a typical value
aE0.8. We note that the above analysis can only remove the
effect of independent agitations from the actin network and the
correlated effect with the cortical network still remains in the
measured MSD of the mobile AChRs.

Theoretical models of anomalous diffusion of membrane
proteins have considered the effects of diffusion obstruction by
permanent or transient obstacles and confinement by transient
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binding of diffusing proteins to a hierarchy of traps7,15,25,31. In
the latter case, the time that the protein molecules are confined in
the traps was assumed to have a power-law distribution15,24,32,
which gives rise to a non-converging mean trapping time.
While these models can predict certain aspects of anomalous
diffusion, such as the sub-diffusion exponent a, the present
experiment reveals some new features of membrane diffusion,
which have not been considered in the previous models. The new
features of membrane diffusion include the persistent exponential
tail in the measured P(Dx0) (and P(Dy0)), which is invariant with
delay time t, and a crossover to apparently normal diffusion
(in terms of MSD) at long-delay times (t44s) but with non-
Gaussian statistics. One could introduce a crossover to normal
diffusion by assuming that the trapping time of the protein
molecules has an upper bound at equilibrium and thus their
correlation time is finite. In this case, the protein trajectories
would eventually be randomized at the long-time limit, and their
displacement Dx0 (and Dy0) would follow the Gaussian statistics.
Therefore, a new crossover mechanism is needed in order to
explain the non-Gaussian diffusion dynamics of AChRs on live
cell membrane in both the short- and long-time regimes.

Dynamic heterogeneity and non-Gaussian statistics. Figure 5
clearly demonstrates that the lateral motion of AChRs on the live
cell membrane does not follow the Gaussian statistics. For the
first time, we have obtained a universal PDF with its amplitude
varied by more than three decades. With such a large number of
statistics, we are able to pin down the functional form of P(Dx0)
(and P(Dy0)). The fit shown in Fig. 5 (red solid line) reveals that
the measured P(Dx0) has a simple exponential form, P(Dx0)Cexp
(�b|Dx0|), with b¼ 1.4 (which is a straight line in the semi-log
plot). The obtained exponential PDFs are found to be universal
independent of delay time t, the measured value of DL, and the
origin and cultured days of the cells.

In fact, the observed exponential form of P(Dx0) is directly
linked to the dynamic heterogeneity in the diffusion coefficient.
Assuming that the entire ensemble of mobile AChRs can be
divided into independent subgroups, and that each subgroup
obeys the Gaussian statistics with a diffusion coefficient d:

gðDx; dÞ ¼ 1

ð4pdtÞ1=2 e�Dx2=ð4dtÞ; ð1Þ

and let d have an exponential-like distribution, f0(d)¼
(1/DL)exp(� d/DL), where DL is the mean value of d measured
in the inset of Fig. 3. The ensemble averaged P(Dx0) then takes
the form,

PðDx0Þ ¼
Z1

0

gðDx; dÞf0ðdÞdd ¼
1

ð4DLtÞ1=2 e�
ffiffi
2
p
jDx0 j ; ð2Þ

where Dx0 ¼Dx/(2DLt)1/2 is the normalized displacement.
Equation (2) thus explains the exponential PDF shown in
Fig. 5. The predicted decay rate b ¼

ffiffiffi
2
p

is in excellent agreement
with the measured b¼ 1.4.

To further test equation (2), we directly measure the
‘instantaneous’ diffusion coefficient d¼hDr2(t)it/(4t) with the
delay time set at t¼ 1 s and the averaging time t¼ 4.2 s, above
which the measured MSD becomes diffusive (see Fig. 3). Figure 6
shows the measured PDF f(d0) of the normalized diffusion
coefficient d0 ¼ d/DL for three groups of cells under different
culture conditions. The measured PDFs for the cells from
different embryos or cultured on different days all collapse onto
a single master curve, once the normalized d0 is used in the plot.
They have a universal shape with a sharp peak for small values of

d0 followed by an exponential-like tail (red solid line). Figures 5
and 6 thus confirm the theoretical prediction in equation (2).

Because of sampling fluctuations, the measured d0 (or d) will
have its own distribution f(d0) even for Brownian diffusion
without any dynamic heterogeneity33,34. The blue dashed line in
Fig. 6 shows the measured f(d0) for the silica spheres undergoing
normal Brownian diffusion, which is a narrowly peaked function
with its most probable value at d0C1. It is found that the
measured f(d0) for Brownian diffusion obeys the w2-distribution,
which depends sensitively on the number 2N of degrees of
freedom for the statistical variable d0 (see Supplementary Fig. 4
for more details). In our case, we have 2N¼ 8, where N¼ (t� t0)/
t¼ 4 and t0¼ 0.2 s is the sampling time used in the experiment.
Compared with Brownian diffusion, the measured f(d0) for the
AChRs reveals a heavier tail with many AChR trajectories
having large values of d0. In addition, the measured f(d0) for the
AChRs is found to be insensitive to the change of 2N
(see Supplementary Fig. 5 for more details). These findings
further confirm that the exponential-like distribution of AChR’s
diffusion coefficient, as shown in Fig. 6, has its own dynamic
origin and does not result from the sampling statistics
(see Supplementary Discussion for more discussions).

Discussion
Figure 6 reveals that the AChRs on live cell membrane have an
exponential-like distribution in their diffusion coefficient d, even
though they are structurally identical. There are two possible
causes for the observed dynamic heterogeneity in d. One is
that the AChRs form equilibrium clusters (or domains) with
the surrounding proteins/lipids; and the other is that the
motion of AChRs involves some active (non-equilibrium) process
with a long correlation time to which the central limit theorem
does not apply. There are several hypotheses in the literature on
equilibrium membrane organization. One is the lipid raft model,
which conceives the membrane to be compartmentalized by
cholesterol organized glycolipoprotein nano-domains3. The
typical size of the lipid rafts was estimated as 26±13 nm35 and
they float freely in the membrane bilayer36. However, our results
in Figs 5 and 6 cannot be explained by these features of the lipid
rafts. If AChRs diffuse together with the lipid rafts, the difference
in raft size is not enough to produce an exponential distribution
of d. This is because d scales with the domain size a as ln(1/a)
(ref. 5), which is essentially a constant for a moderately narrow
distribution of raft size. As a result, the PDF P(Dx0) for
lipid rafts of similar size should be of Gaussian form at the
limit of long delay times, as they diffuse on the membrane at
equilibrium with only a finite correlation time. In fact, this
argument also applies to other models of membrane organization
involving phase separation and critical fluctuations in membrane
at equilibrium37,38.

Another hypothesis is the picket-fence model7,11,12, which
envisions that the membrane is compartmentalized by cortical
actin ‘fences’ and anchored transmembrane protein ‘pickets.’ For
short times, the motion of membrane proteins and lipids is
transiently confined in the corrals made of the protein pickets.
Over long times, the proteins and lipids can hop among different
corrals following a thermal activation process. Although this
model of hop diffusion can qualitatively explain some previous
SPT results, it contains two key assumptions that are inconsistent
with the findings of the present experiment. First, the model
assumes that the corrals are quasi-periodic with a size ranging
from 32 to 230 nm depending on the cell type7,11,12. As
mentioned above, it is difficult to produce an exponential f(d)
with motion confined by corrals with a narrow size distribution.
Second, the model assumes that the hopping of membrane
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molecules among different corrals is made by thermal
fluctuations, an equilibrium process with a finite correlation
time which is unlikely to produce the non-Gaussian statistics
shown in Fig. 5.

On the basis of the above experimental results, we propose a
dynamic picket-fence model involving slow-active remodelling of
the cortical actin network to explain the observed dynamic
heterogeneity. In this model, we postulate that the anchored
transmembrane proteins (both immobile and transiently confined
proteins) have a dominant role in determining the diffusion
dynamics of other (mobile) membrane molecules. We find that
36% of the AChRs, on average, are immobile during
the experimental observation time (10–15 min). For other
transmembrane proteins with stronger interactions with the
cortical actin network, this ratio may be even larger. Due to the
abundance of membrane proteins2, the anchored proteins can
form a continuous random network, partitioning the membrane
into domains (corrals) of various sizes. Within each corral, the
motion of the membrane molecules is strongly hindered by the
rigid boundary of the protein network, giving rise to a local
diffusion coefficient d, which is strongly influenced by the size of
the corral. Because the protein network on the membrane is
anchored to the underlying cortical actin network, the two
networks should share the same topological structure and
dynamics. Without external stimulations, the protein network
on the membrane will be randomly orientated having a large
variety of meshes (corrals) of different sizes39. For short times, the
mobile proteins and lipids on the membrane can move within the
corrals, and over long times they also move between different
corrals as the network remodels.

Our hypothesis has important biological implications, as it
provides a mechanism of membrane organization for live cells to
actively control the membrane fluidity and regulate the molecular
transport on the membrane. It has specific predictions that can be
tested in future experiments. First, the membrane protein
network is not permanently stationary, as this would provide
permanent barriers inhibiting the mobile proteins and lipids from
moving over long distances, which is inconsistent with the
measurements shown in the inset of Fig. 3. Although thermal
fluctuations and ligand-binding equilibrium may provide some
mobility for the protein network, these are Gaussian-like
agitations and cannot produce the exponential (non-Gaussian)
PDF as shown in Fig. 5. Under the dynamic picket-fence model,
the dynamics of the protein network (and hence the long-time
diffusion of the mobile proteins and lipids) is determined by the
dynamics of the underlying cortical actin network, which is under
constant active remodelling40–43. The slow-active remodelling of
the cortical network (and hence the protein network) is caused by
the activity of molecular motors (for example, myosin II motors)
and other non-equilibrium cellular processes44,45, and thus is
capable of producing fluctuations with a long correlation time, to
which the central limit theorem does not apply.

Second, the long-time non-Gaussian statistics shown in Fig. 5
should be a universal behaviour for all mobile molecules on the
membrane including lipids and lipid-tethered proteins on the
outer leaflet of the membrane, which do not have direct
interactions with the underlying cortical actin network. In a
recent experiment (W. He et al., manuscript in preparation), we
studied the lateral motion of ganglioside GM1, which is a
glycosphingolipid residing on the outer leaflet of the Xenopus
muscle-cell membrane. The GM1s was found to have a similar
non-Gausian behaviour as that of the AChRs. Finally, because the
non-Gaussian dynamics of the membrane molecules is regulated
by the active remodelling of the cortical actin network, it will
change sensitively with the dynamics of the cortical network.
Various drug manipulations of the actin network, such as

depletion of adenosine triphosphate and inhibition of myosin II
motors, may be used to further test this prediction.

Methods
Cell culture. The AChR is a cation-selective, ligand-gated ion channel and consists
of five subunits with diameter dC7 nm. It is an integral membrane protein that
responds to the binding of acetylcholine, which is a neurotransmitter. The AChR
spans the membrane of muscle cells with most of its mass in the extracellular
space46. Xenopus muscle cells are dissected from myotomes of the fertilized
Xenopus embryos developed at the stages 20–22, following the protocol described
in ref. 47. The dissected muscle cells are seeded on the glass cover slips coated with
Entactin, Collagen-IV, and Laminin (ECL, purchased from Upstate Co.), which are
immersed in a culture medium composed of 88% Steinberg’s solution, 10% L-15
medium (purchased from Leibovitz Co.), 1% foetal bovine serum and 1%
penicillin/streptomycin/gentamincin47. The muscle-cell cultures are maintained at
23 �C and can be stored for 3 weeks if they are not contaminated.

QD labelling. To track the AChRs on a live muscle cell membrane, the individual
AChRs are labelled by bright and photostable fluorescent QDs8,17. This is achieved
by first labelling the AChRs with biotinylated a-bungarotoxin (biotin-BTX,
purchased from Invitrogen Co.) for 10 min. The cells are then washed with the
culture medium three times (5 min each). The concentration of biotin-BTX applied
to the cells is adjusted according to the final labelling density of the QDs required.
Typically, for a fast movie recording (for example, 80 and 5 fps), 0.5 nM
biotin-BTX is used. For a slow movie recording (for example, 0.33 fps), 0.25 nM
biotin-BTX is used. Lower QDs concentration is used to reduce tracking
ambiguities between the consecutive images of the QDs. After repeated washing to
remove unbounded biotin-BTX, 2.5 nM streptavidin-conjugated Qdot 655 solution
(purchased from Invitrogen Co.) is added to the cells for 10 min after which the
cells are washed with the culture medium three times (5 min each). The entire
staining process requires B1.5 h. Xenopus muscle cells in the primary culture
present a large area for optical observation, typically 0.05 mm2 on the bottom
membrane and 0.002 mm2 on the top apical membrane. QD-labelled AChRs are
abundant on the membrane of the quiescent muscle cells. This is true even for
sparsely labelled samples to avoid trajectory entanglement. In the experiment,
several hundreds of AChRs are tracked concurrently. For a typical bottom
membrane tracking at 5 fps, 200 QDs are labelled.

Other experimental details about the optical imaging and SPT are given in
Supplementary Methods.

Data availability. The data that support the findings of this study (such as
figure source data and supplementary information files) are available from the
corresponding author (P.T.) upon request.
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