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Simple Summary: Tumor mutation burden (TMB) represents the mutational load in the tumor cell
genome and serves as a surrogate marker for tumor neoantigen production and potential immuno-
genicity. TMB has been widely explored as a complementary or alternative biomarker for immune
checkpoint inhibitors in various malignancies including lung cancer. However, its clinical implication
in the targeted-therapy setting is scarcely investigated. This study demonstrates that high TMB is
independently associated with poor progression-free and overall survivals, and a low frequency of
secondary T790M mutation in patients with epidermal growth factor receptor (EGFR)-mutated lung
adenocarcinoma that are treated with tyrosine kinase inhibitors (TKIs). To the best of our knowledge,
this is the first study demonstrating the significant association between the TMB level and resistance
pattern after TKI failure.

Abstract: This study aimed to determine the association between TMB and treatment outcomes in
patients with epidermal growth factor receptor (EGFR)-mutated lung cancer that were treated with
tyrosine kinase inhibitors (TKIs). The TMB was assessed using a 409-gene targeted next-generation
sequencing panel. We compared the response rate (RR), progression-free survival (PFS), overall
survival (OS), and frequency of secondary T790M mutations among the different TMB groups. The
median TMB of the study population (n = 88) was 3.36/megabases. We divided 52 (59%) and
36 (41%) patients into the low and high TMB groups, respectively. A high TMB level was significantly
associated with liver metastasis and more advanced stage (all p < 0.05). RR was significantly lower in
the high TMB group than that of the low TMB group (50.0% vs. 80.7%, all p = 0.0384). In multivariate
analysis, high TMB was independently associated with a shorter PFS (hazard ratio [HR] = 1.80,
p = 0.0427) and shorter OS (HR = 2.05, p = 0.0397) than that of the low TMB group. Further, high
TMB was independently associated with decreased T790M mutation development. These results
suggest that high TMB may be a predictive biomarker for adverse treatment outcomes and represent
a patients’ subgroup warranting tailored therapeutic approaches.

Keywords: lung cancer; next-generation sequencing; tumor mutation burden; survival; epidermal
growth factor receptor; targeted therapy

1. Introduction

Tyrosine kinase inhibitors (TKIs) targeting epidermal growth factor receptor (EGFR)
have revolutionized the treatment landscape of the non-small cell lung cancers (NSCLCs)
which harbor EGFR sensitizing mutations over the past decades. First-generation EGFR-
TKIs including gefitinib and erlotinib have shown better efficacies over platinum-based
doublet, and second-generation TKIs including afatinib and dacomitinib, subsequently
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proved their efficacies which are comparable or superior to those of the first-generation
TKIs [1–3]. Nevertheless, a wide variation exists in the degree and duration of response to
these TKIs among patients, and most of the EGFR-mutant tumors inevitably progress within
8 to 14 months due to the emergence of resistance [4,5]. Studies have revealed that acquired
resistance can occur either in EGFR-dependent or EGFR-independent manner; the former
includes the acquisition of EGFR T790M or C797X mutations, and the latter includes bypass
track activation and other driving alterations such as MET amplification or histologic
transformation [6]. Another breakthrough was made when novel third-generation TKIs
were used to overcome the EGFR T790M-mediated resistance. In addition, osimertinib, a
third-generation TKI, is now the standard of care for first-line treatment of patients with
NSCLC harboring common EGFR mutations [7]. Hence, understanding the biology of
resistance is critical for the development of new therapeutic strategies and improving the
survival of the patients.

The advances in the molecular profiling techniques such as next-generation sequenc-
ing (NGS) have made a significant contribution toward current cancer precision medicine
including the discovery of novel biomarkers and the identification of resistance mecha-
nisms and potential therapeutic targets [8]. Tumor mutation burden (TMB), also called as
tumor mutational load, denotes the number of acquired somatic mutations in the coding
region of the cancer cell genome [9]. It has been widely explored as a complementary or
alternative biomarker for immune checkpoint inhibitors (ICIs) in various malignancies
including lung cancer [10–13]. High TMB refers to a high probability of tumor neoantigen
production, and therefore, the likelihood of immune recognition and clearance by effector
T-cells [14,15]. Meanwhile, in the context of targeted therapy, elevated TMB may be related
to the increased possibility of resistance mutations or subclones harboring different molecu-
lar characteristics, which is related to resistance to drugs. However, the clinical implication
of TMB in this treatment setting is largely unknown.

In this study, we aimed to determine the possible predictive or prognostic value of
TMB in patients with EGFR-mutant lung adenocarcinoma that were treated with first-line
TKIs. We also investigated the associations of TMB levels with the emergence of secondary
T790M mutations after TKI failure.

2. Materials and Methods
2.1. Study Subjects and Data Collection

We retrospectively enrolled patients with locally advanced or metastatic EGFR mutation-
positive lung adenocarcinoma who received EGFR-TKIs as the frontline therapy at Kyung
Hee University Hospital and Hanyang University Hospital, referral hospitals in South Ko-
rea, from March 2016 to July 2020. Patients with insufficient survival data, history of other
malignant tumors newly diagnosed within 5 years, or other oncogenic drivers, including
anaplastic lymphoma kinase (ALK), and ROS proto-oncogene 1 (ROS1) fusions, and those
with a prior history of radiation therapy or chemotherapy were excluded.

Chest computed tomography (CT) scan, brain magnetic resonance imaging, and 18F-
fluorodeoxyglucose positron emission tomography-computed tomography were used for
staging workup in all the patients. The eighth edition of the TNM staging system of lung
cancer by the International Association for the Study of Lung Cancer (IASLC) were used for
the clinical staging [16]. The treatment response was regularly assessed with chest CT scans
after every two or three cycles of systemic treatment according to the Response Evaluation
Criteria in Solid Tumors (RECIST) 1.1 [17]. Patients’ medical records were reviewed to
collect medical or social history, demographics, and survival data. The study protocol
was reviewed and approved by the Institutional Review Board of Kyung Hee University
Hospital (KHUH 2019-06-030). Written informed consent from all the participants that
were alive was obtained. This study was conducted in compliance with the Declaration
of Helsinki.
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2.2. Next-Generation Sequencing and Calculation of TMB

Formalin-fixed paraffin-embedded tumor tissues that were obtained before initial EGFR-
TKI treatment were used for genomic profiling. The detailed methods of sample preparation,
sequencing, quality assessment, and variant calling are described in the Supplementary Mate-
rial. Briefly, DNA extraction from tissues was performed using RecoverAllTM Multi-Sample
Isolation Kit (Thermo Fisher Scientific, Waltham, MA, USA) according to the manufacturer’s
instructions. TMB was assessed using a 409-gene targeted NGS panel (OncomineTM Tumor
Mutation Load assay, Thermo Fisher Scientific). For NGS library preparation, 5–40 ng of DNA
was used depending on the availability of the input material. The libraries were purified using
Agencourt AmpureXP beads (Beckman Coulter, Brea, CA, USA) and quantified by qPCR
using the Ion Universal Quantitation Kit (Thermo Fisher Scientific).

TMB calculations were performed on Ion ReporterTM Analysis Software v5.10 (IR)
using the OncomineTM Tumor Mutation Load w2.0 workflow. The TMB was calculated by
dividing the number of nonsynonymous (missense and nonsense) somatic single nucleotide
variants and coding indels by the number of exonic bases with at least 60X coverage and
expressed as the number of mutations per megabase (Mb) of genome. The TMB values
were rounded to two decimal places.

2.3. EGFR Mutation Testing

EGFR mutation tests were performed using tumor tissues. Genomic DNA was ex-
tracted from formalin-fixed, paraffin-embedded, 5-µm-thick tissue sections using the High
Pure Template Preparation Kit (Roche Applied Science, Mannheim, Germany). The ex-
tracted DNA was stored at −20 ◦C until analysis. PANAMutyperTM (PANAGENE Inc.,
Daejeon, Korea), a PNA-Clamping-based EGFR mutation detection kit was used for the
detection of EGFR mutations. The primer sets covered mutations or deletions spanning
exons 18–21 of the genes encoding the tyrosine kinase domain of EGFR. The results were
interpreted according to the manufacturer’s instructions.

2.4. Statistical Analyses

The cut-off value for differentiating between low and high TMB was defined as the
point with the lowest p-value by the log-rank test for all the possible TMB values. The
baseline characteristics of different groups were compared using the Chi-square test or
Fisher’s exact test, as appropriate. The clinical outcomes, including the response rate
(RR), progression-free survival (PFS), and overall survival (OS) were assessed. The RR
was defined as the percentage of patients who achieved complete or partial response.
PFS was defined as the period from the first day of treatment to disease progression or
death. OS was defined as the interval from the first day of treatment to death from any
cause. Data of patients without tumor recurrence or death were censored at the last follow-
up. Correlations between the survival outcomes and clinicopathological parameters were
estimated by univariate analysis using the log-rank test, followed by Cox proportional
hazard regression analysis. Parameters with p values < 0.2 in the univariate analysis were
included for the multivariate analysis. The Kaplan-Meier method was used to estimate
the survival rates. p < 0.05 was considered as statistically significant. All analyses were
performed using SPSS v.20.0 (IBM Corporation, Armonk, NY, USA).

3. Results
3.1. Clinicopathological Characteristics of Patients

During the study period, 735 patients were newly diagnosed with NSCLC, while
243 patients were diagnosed with advanced lung adenocarcinoma. Of these patients,
131 received frontline EGFR-TKIs for EGFR-positive diseases. A total of fifteen patients
with insufficient survival data, ten with concomitant cancers, and three who received other
cancer treatments before targeted therapy were excluded. There were fifteen patients that
were further excluded because the sequencing quality of their samples did not meet the
minimum requirements. Finally, 88 patients were included for the TMB calculation and sub-
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sequent analysis. The modalities that were used for tissue acquisition were bronchoscopic
biopsy (n = 5), transbronchial lung biopsy (n = 10), endobronchial ultrasonography-guided
transbronchial needle aspiration (n = 28), and percutaneous needle biopsy (n = 45).

Table 1 shows the clinical characteristics of the study population. All were Korean,
with a median age of 67 years (range, 40–89 years). A total of 47 (53.4%) patients were
aged ≥70 years, 44 (50.0%) were women, and 26 (29.5%) were current or former smokers.
A total of 70 (79.5%) patients had an Eastern Cooperative Oncology Group performance
status (ECOG PS) of 0 or 1. There were 15 (17.0%) and 73 (83.0%) patients that had Stage
III and IV diseases, respectively. Further, 21 (23.9%) had metastases involving three or
more organs, while 28 (31.8%) and 14 (15.9%) patients had the brain or liver metastases,
respectively. A total of 52 (59.1%) patients had exon 19 deletion (19del), 31 (35.2%) had
L858R point mutation, and 5 (5.7%) had uncommon or compound mutations. There were
68 (77.2%) patients that received afatinib, while 20 (22.9%) were treated with gefitinib or
erlotinib as a first-line therapy.

Table 1. Characteristics of the 88 study patients stratified by TMB levels.

No. of Patients (%)
TMB

p-Value
Low (≤2.53, n = 52) High (>2.53, n = 36)

Age 0.7370
<70 41 (46.6) 25 (48.1) 16 (44.4)
≥70 47 (53.4) 27 (51.9) 20 (55.6)

Sex 0.1933
Male 44 (50.0) 29 (55.8) 15 (41.7)
Female 44 (50.0) 23 (44.2) 21 (58.3)

Smoking history 0.1840
Never 62 (70.5) 35 (67.3) 27 (75.0)
Ever 26 (29.5) 17 (32.7) 9 (25.0)

Smoking intensity 0.7591
<30 pack-years 72 (81.8) 42 (80.8) 30 (83.3)
≥30 pack-years 16 (18.2) 10 (19.2) 6 (16.7)

ECOG PS 0.3791
0, 1 70 (79.5) 43 (82.7) 27 (75.0)
≥2 18 (20.5) 9 (17.3) 9 (25.0)

Stage 0.0171
III 15 (17.0) 13 (25.0) 2 (5.6)
IV 73 (83.0) 39 (75.0) 34 (94.4)

Involved organ 0.0249
<3 67 (76.1) 44 (84.6) 23 (63.9)
≥3 21 (23.9) 8 (15.4) 13 (36.1)

Brain metastasis 0.6532
No 60 (68.2) 35 (67.3) 25 (69.4)
Yes 28 (31.8) 17 (32.7) 11 (30.6)

Liver metastasis 0.0210
No 74 (84.1) 47 (90.3) 27 (75.0)
Yes 14 (15.9) 5 (9.7) 9 (25.0)

EGFR subtypes 0.1898
19del 52 (59.1) 29 (52.7) 22 (61.1)
L858R 31 (35.2) 20 (38.4) 12 (33.3)
Others 5 (5.7) 3 (5.7) 2 (5.5)

First-line TKI 0.2451
Gefitinib 14 (15.9) 8 (15.3) 6 (16.7)
Erlotinib 6 (6.8) 3 (5.7) 3 (8.3)
Afatinib 68 (77.2) 41 (78.8) 27 (75.0)

ECOG PS, Eastern Cooperative Oncology Group Performance Status; EGFR, epidermal growth factor receptor;
19del, deletion mutation at exon 19; TKI, tyrosine kinase inhibitor.

3.2. TMB and Molecular Landscape

Figure 1 shows the TMB distribution among the study population. The median TMB
of the study population was 3.36/Mb (range: 0.0–19.32). Among the 88 patients, 62 (70.4%)
patients had at least one concomitant genetic alteration coexisting with mutant EGFR.
The frequencies of the top 10 mutations are presented in Supplementary Figure S1. TP53
mutations were the most common occurring in 45.5% (40/88) of the patients, while PIK3CA
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(n = 17, 19.3%), CTNNB1 (n = 14, 15.9%), and SMARCA4 (n = 12, 13.6%) mutations also
occurred frequently, which is consistent with previous reports [18,19].
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3.3. Association between Clinicopathological Parameters and TMB

To investigate which clinicopathological parameters were associated with the TMB, we
compared the median TMB levels between the groups within each parameter. The median
TMB level showed a non-significant increasing trend in patients with more advanced
stages (p = 0.0543) and was significantly higher in patients with liver metastasis (p = 0.0030)
(Supplementary Table S1). We subsequently compared the distribution of patients according
to the TMB group. The optimal cut-off value for low and high TMB levels was determined
to be 2.53/Mb by the log rank test. Using this cut-off, 52 (59.1%) and 36 (40.9%) patients
were classified into the low and high TMB groups, respectively. As shown in Table 1,
TMB was not related to parameters such as age, sex, smoking history, ECOG PS, and
EGFR subtype. However, a high TMB level was significantly associated with a more
advanced stage (p = 0.0171), three or more organs involvement (p = 0.0249), and liver
metastasis (p = 0.0210).

3.4. Distribution of Co-Mutations according to TMB Levels

To further examine whether any of the co-mutations were enriched in the high TMB
group, we investigated the frequency of co-mutations at different TMB levels. TP53 muta-
tions were significantly more common in the high TMB group (23/36, 63.8%) than in the
low TMB group (17/52, 32.6%; p =0.0254; Supplementary Figure S2). PIK3CA (9/36, 25.0%
vs. 8/52, 15.4%) and CTNNB1 (7/36, 19.4% vs. 7/52, 13.4%) mutations were more frequent
in the high TMB group, but the differences were not statistically significant.

3.5. Response Rate and PFS According to TMB Level

The median follow-up period was 38.9 months (range: 3.3–57.8 months). Table 2 sum-
marizes the treatment response according to the TMB levels. In the low TMB group, three
(5.8%) and 40 (76.9%) patients showed a complete response (CR) and partial response (PR),
respectively, while 18 (50%) patients showed PR in the high TMB group. The RR was signif-
icantly lower in the high TMB group than that of the low TMB group (50.0% versus 80.7%,
respectively, p = 0.0384).

Table 3 shows the PFS analysis results according to clinicopathological parameters. A
total of 73 patients (82.9%) progressed during the follow-up period. The median PFS of the
study population was 17.7 months (range, 3.1–44.7 months). Univariate analysis showed
that male sex, three or more organ involvement, presence of liver metastasis, and positive
TP53 mutation were associated with poor PFS (all p < 0.05). In addition, a high TMB level
was significantly associated with shorter PFS (p = 0.0205). Multivariate analysis showed
that male sex (hazard ratio [HR] = 1.84, 95% confidence interval [CI]: 1.10–3.08), presence of
liver metastasis (HR = 2.01, 95% CI: 1.06–5.77), and high TMB (HR = 1.80, 95% CI: 1.17–4.43)
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were independently associated with shorter PFS. Patients with high TMB levels were likely
to have poor PFS compared to those with low TMB levels as shown in the Kaplan–Meier
survival curves (Figure 2a).

Table 2. Treatment response according to the different TMB levels.

No. of Patients (%)
p-Value

Low TMB (n = 52) High TMB (n = 36)

Response rate (CR + PR) 42 (80.7) 18 (50.0) 0.0384
CR 3 (5.8) 0 (0)
PR 40 (76.9) 18 (50.0)
SD 8 (15.4) 12 (33.3)
PD 1 (1.9) 6 (16.7)

CR, complete remission; PR, partial remission; SD, stable disease; PD, progressive disease.

Table 3. Progression-free survival analyses results according to clinicopathological parameters of all
the study subjects.

Median PFS
(Months)

Univariate Multivariate
HR (95% CI) p-Value HR (95% CI) p-Value

All 17.7
Age 0.4534 NA

<70 18.9 reference
≥70 16.6 1.2 (0.75–1.93)

Sex 0.0323 0.0214
Male 15.1 1.68 (1.04–2.69) 1.83 (1.11–3.22)
Female 20.9 reference reference

Smoking history 0.6920 NA
Never 18.6 reference
Ever 16.1 1.11 (0.66–1.87)

Smoking intensity 0.1567 0.3650
<30 pack-years 18.3 reference reference
≥30 pack-years 13.8 1.55 (0.85–2.84) 1.26 (0.74–2.79)

ECOG PS 0.3045
0, 1 19.3 reference
≥2 16.2 1.34 (0.77–2.36)

Stage 0.1771 0.8555
III 19.3 reference reference
IV 16.4 1.57 (0.82–3.04) 1.21 (0.56–2.37)

Involved organ 0.0172 0.3258
<3 19.5 reference reference
≥3 15.4 1.97 (1.13–3.43) 1.50 (0.78–2.98)

Brain metastasis 0.6139 NA
No 19.2 reference
Yes 15.5 1.14 (0.69–1.87)

Liver metastasis 0.0189 0.0371
No 19.1 reference reference
Yes 14.7 2.15 (1.46–5.19) 2.05 (1.09–5.86)

EGFR subtypes * 0.2630 NA
19del 18.7 reference
L858R 17.1 1.23 (0.23–2.44)

First-line TKI 0.0735 0.1321
Gefitinib/erlotinib 17.3 1.66 (0.97–4.16) 1.52 (0.89–6.73)
Afatinib 20.6 reference reference

TP53 mutation 0.0311 0.0894
Negative 19.1 reference reference
Positive 14.5 1.88 (1.12–3.09) 1.56 (0.26–4.15)

TMB level 0.0205 0.0427
Low (<2.53) 20.1 reference reference
High (≥2.53) 13.4 1.98 (1.09–2.89) 1.80 (1.17–4.43)

* Analysis for 83 patients excluding 5 patients with uncommon or compound mutations. ECOG PS, Eastern
Cooperative Oncology Group Performance Status; EGFR, epidermal growth factor receptor; 19del, deletion
mutation at exon 19; TKI, tyrosine kinase inhibitor; HR, hazard ratio; CI, confidence interval; NA, not analyzed.
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3.6. OS According to TMB Level

Table 4 shows the results of the OS analysis. The median OS of the study population
was 35.5 months (range, 3.1–54.8 months). Among 73 patients who progressed after first-
line TKI therapy, 52 (71.2%) underwent T790M mutation testing, all of whom received
second-line treatment. Overall, 22 patients (42.3%) harbored the T790M mutation. The
22 patients who progressed with T790M mutation after frontline EGFR-TKIs were treated
with osimertinib, and 30 patients received other treatments, either pemetrexed alone (n = 5)
or pemetrexed/platinum doublet (n = 23). Patients who underwent small cell lung cancer
transformation received etoposide/platinum (n = 2). Detailed data on salvage treatments
are provided in Supplementary Table S2. Univariate analysis showed that metastases
involving three or more organs and the presence of liver metastasis were significantly
associated with shorter OS (all p < 0.05). In addition, a high TMB level was also significantly
associated with shorter OS (p = 0.0080). Multivariate analysis showed that the presence
of liver metastasis (HR = 2.17, 95% CI: 1.14–4.57) and high TMB levels (HR = 2.05, 95%
CI: 1.04–4.07) were independently associated with shorter OS. Patients with high TMB
levels were likely to have poor OS compared to those with low TMB levels as shown in the
Kaplan–Meier survival curves (Figure 2b).

Table 4. Overall survival analyses results according to the clinicopathological parameters of all the
study subjects.

Median OS
(Months)

Univariate Multivariate
HR (95% CI) p-Value HR (95% CI) * p-Value

All 35.5
Age 0.7403 NA

<70 36.8 reference
≥70 32.2 1.12 (0.47–1.99)

Sex 0.4781 NA
Male 32.6 1.22 (0.70–2.13)
Female 36.9 reference

Smoking history 0.4489 NA
Never 36.8 reference
Ever 32.2 1.26 (0.69–2.31)
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Table 4. Cont.

Median OS
(Months)

Univariate Multivariate
HR (95% CI) p-Value HR (95% CI) * p-Value

Smoking intensity 0.5614 NA
<30 pack-years 36.8 reference
≥30 pack-years 32.6 1.24 (0.60–2.55)

ECOG PS 0.6378 NA
0, 1 37.7 reference
≥2 32.5 1.15 (0.73–2.22)

Stage 0.1443 0.5604
III 37.5 reference reference
IV 32.2 2.01 (0.79–5.04) 1.35 (0.49–3.76)

Involved organ 0.0346 0.4893
<3 36.9 reference reference
≥3 21.4 1.94 (1.05–3.57) 1.28 (0.64–2.56)

Brain metastasis 0.1690 0.3589
No 37.1 reference 1.35 (0.71–2.59)
Yes 30.4 1.53 (0.83–2.81) reference

Liver metastasis 0.0097 0.0314
No 36.9 reference Reference
Yes 21.9 2.34 (1.25–4.40) 2.17 (1.14–4.57)

EGFR subtypes * 0.2154 NA
19del 36.9 reference
L858R 30.8 1.56 (0.36–6.73)

First-line TKIs 0.2019
Gefitinib/erlotinib 30.2 1.70 (0.95–3.57) 0.0847 1.41 (0.69–3.27)
Afatinib 36.1 reference reference

TP53 mutation 0.3142 NA
Negative 35.7 reference
Positive 30.3 1.47 (0.89–5.23)

TMB level 0.0080 0.0397
Low (<2.53) 37.1 reference reference
High (≥2.53) 21.9 2.65 (1.50–4.67) 2.05 (1.04–4.07)

* Analysis for 83 patients excluding 5 patients with uncommon or compound mutations. ECOG PS, Eastern
Cooperative Oncology Group Performance Status; EGFR, epidermal growth factor receptor; 19del, deletion
mutation at exon 19; TKI, tyrosine kinase inhibitor; HR, hazard ratio; CI, confidence interval; NA, not analyzed.

3.7. Frequency of Acquired T790M Mutation According to TMB Levels

To identify whether the TMB level is associated with the development of a secondary
T790M mutation, we evaluated the mutation rates according to different TMB groups.
Among 73 patients who progressed after first-line TKI therapy, 52 (71.2%) underwent
T790M mutation testing. Table 5 summarizes the frequencies of T790M mutation stratified
by clinicopathological parameters of the 52 patients. The mutation rates were significantly
lower in patients with the L858R mutation and those who received TKI for less than
12 months (all p < 0.05). In addition, patients with high TMB levels showed a significantly
lower frequency of T790M mutation than that of those with low TMB levels (26.4.7% vs.
51.2%, respectively, p = 0.0377; Figure 3). Univariate analysis for the factors that were
associated with the frequency of T790M mutation showed that the L858R mutation, TKI
use for less than 12 months, and high TMB levels were significantly associated with a
lower incidence of T790M mutation (all p < 0.05). Multivariate analysis showed that the
L858R mutation (odds ratio [OR] = 0.46, 95% CI: 0.08–0.94), TKI use for less than 12 months
(OR = 0.28, 95% CI: 0.14–0.85), and high TMB levels (OR = 0.42, 95% CI: 0.17–0.96) were
independently associated with a low incidence of acquired T790M mutation.
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Table 5. Analysis for the factors that were associated with the emergence of secondary T790M
mutation (n = 52).

T790M
p-Value *

Univariate Analysis Multivariate Analysis

Negative (n = 30) Positive (n- = 22) OR (95% CI) p-Value OR (95% CI) p-Value

Age 0.3710 0.2513 NA
<70 15 (55.5) 12 (45.5) 0.62 (0.12–1.87)
≥70 15 (40.0) 10 (60.0) reference

Sex 0.5956 0.6947 NA
Male 19 (65.5) 10 (34.5) 0.82 (0.11–2.23)
Female 11 (47.8) 12 (52.2) reference

Smoking history 0.1781 0.2413 NA
Never 19 (54.2) 16 (45.8) 0.86 (0.23–4.57)
Ever 11 (64.7) 6 (35.3) reference

Smoking intensity 0.3124 0.2991 NA
<30 pack-years 18 (51.4) 17 (48.6) 0.75 (0.13–3.46)
≥30 pack-years 12 (70.5) 5 (29.6) reference

ECOG PS 0.4136 0.5660 NA
0, 1 16 (42.1) 12 (57.9) reference
≥2 14 (58.3) 10 (41.7) 0.41 (0.23–3.62)

Stage 0.5480 0.9608 NA
III 4 (44.4) 5 (55.6) reference
IV 26 (60.4) 17 (39.6) 0.78 (0.37–4.95)

Involved organ 0.9618 0.8068 NA
<3 20 (58.8) 14 (41.2) reference
≥3 10 (55.5) 8 (44.5) 0.95 (0.32–3.57)

Brain metastasis 0.2176 0.1425 0.9816
No 20 (64.5) 11 (35.5) reference reference
Yes 10 (47.6) 11 (52.4) 0.66 (0.17–3.05) 0.98 (0.25–3.89)

Liver metastasis 0.6902 0.5346 NA
No 22 (59.5) 17 (40.5) reference
Yes 8 (61.5) 5 (38.5) 0.70 (0.22–3.39)

EGFR subtypes 0.0471 0.0334 0.0406
19del 11 (50.0) 11 (50.0) reference reference
L858R 19 (63.3) 11 (36.7) 0.38 (0.17–0.99) 0.46 (0.08–0.94)

First-line TKIs * 0.8460 0.6291 NA
Gefitinib/erlotinib 11 (55.0) 8 (45.0) reference
Afatinib 19 (57.7) 14 (42.3) 0.75 (0.51–2.78)

Duration of TKI use 0.0324 0.0397 0.0423
<12 months 15 (75.0) 5 (25.0) 0.32 (0.10–0.91) 0.28 (0.14–0.85)
≥12months 15 (46.8) 17 (53.2) reference reference

TMB expression 0.0377 0.0416 0.0479
Low (<2.53) 16 (48.8) 17 (51.2) reference reference
High (≥2.52) 14 (73.6) 5 (26.4) 0.30 (0.07–0.88) 0.42 (0.17–0.96)

* Analysis after excluding 2 patients with uncommon or compound mutations. ECOG PS, Eastern Cooperative
Oncology Group Performance Status; EGFR, epidermal growth factor receptor; 19del, deletion mutation at exon
19; TKI, tyrosine kinase inhibitor; OR, odds ratio; CI, confidence interval; NA, not analyzed.
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Figure 3. Frequency of secondary T790M mutation after tyrosine kinase inhibitor failure according
to different TMB level. The rate of T790M mutation is significantly lower in the high TMB group
compared with the low TMB group (p = 0.0377).

4. Discussion

Our study demonstrated that a high TMB level was independently associated with
poor PFS and OS in patients with EGFR-mutated lung adenocarcinoma that were treated
with frontline targeted therapy. In addition, TMB was also associated with a lower rate
of secondary T790M mutations after TKI use. To the best of our knowledge, this is the
first study demonstrating the significant association between the TMB level and resistance
pattern after TKI failure.

The TMB level that was observed in the present study (median 3.36/Mb) was much
lower than that which was observed in previous studies on unselective NSCLC [20,21]
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but was comparable to those of previous studies that reported low TMB levels in EGFR-
mutant tumors [19,22]. In a study analyzing an MSK-IMPACT cohort (n = 1668 including
410 EGFR-mutant patients) from The Cancer Genome Atlas (TCGA) database, the median
TMB values of wild-type EGFR, non-sensitive EGFR mutations, exon 19 deletions, and
L858R were 6.12, 5.66, 3.77, and 4.72, respectively [22]. In that study, the authors also
reported a similar trend in TMB levels in the Chinese cohort in each patient group (6.10,
4.95, 4.10, and 3.10, respectively, n = 292). Another study that was conducted using MSK-
IMPACT NGS platform (n = 783 including 153 EGFR-mutant patients) reported a median
TMB of 3.77/Mb in an EGFR-mutant population, which is significantly lower than that of
EGFR-wild type [19]. Although we did not compare the TMB levels according to EGFR
mutational status, our study confirmed previous findings of relatively low TMB levels in
EGFR-positive tumors. Evidence indicates that ICIs are not effective in the oncogene-driven
lung cancers, and it is partly due to an immunosuppressive tumor microenvironment (TME)
in such tumors, including the recruitment of tumor-associated macrophages and regulatory
T-cells and the production of inhibitory cytokines that are induced by the activated EGFR
signaling [23]. TMB represents the mutational load in the tumor cell genome and serves as
a surrogate marker for tumor neoantigen production and potential immunogenicity. Thus,
based on the previous and our data, the low TMB can be another mechanism to explain
such poor efficacy of immunotherapeutic approaches in EGFR-positive lung cancer.

The current data showed that TP53 mutations were associated with short PFS in
univariate analysis and were more enriched among those with high TMB. Mutations
in TP53 can be found in 35–60% of NSCLC patients, more frequently in squamous cell
carcinoma, and in smokers [24,25]. TP53 mutations are associated with a poor response
and shorter survival in patients with lung cancer that were treated with chemotherapy or
surgical resection [26,27]. Similarly, accumulating evidence suggests that these mutations
are also negative prognostic factors in EGFR-positive NSCLC [28–30]. The mechanism by
which TP53 alterations are associated with poor outcomes in these populations remains
unclear. A recent study by Lee et al. demonstrated that mutant TP53-induced epithelial-
to-mesenchymal transition (EMT)-mediated resistance, and TP53 silencing led to primary
resistance to EGFR-TKIs through AXL induction, suggesting that these mutations can be
associated with both primary and acquired resistance to EGFR-TKIs [31]. In our data,
the association between high TMB and poor clinical outcomes remained significant, even
after adjusting for TP53 mutational status. This suggests that high TMB is an independent
predictive and prognostic factor in the EGFR-positive population, although the enrichment
of certain co-mutations in patients with higher TMB could contribute to worse outcomes.

In the present study, we identified that TMB was associated with more advanced
stage and liver metastasis. Cumulative evidence has demonstrated that liver metasta-
sis is associated with poor clinical outcomes in patients that are receiving the first- and
second-generation EGFR-TKIs [32–34]. In our study, patients with liver metastasis showed
significantly shorter PFS and OS, consistent with those previous findings. A very recent
real-world study comparing the efficacies of different EGFR-TKIs showed that osimertinib,
a third-generation EGFR-TKI, was not superior over other TKIs in patients with liver
metastasis, while it provided significant clinical benefits in patients with brain or bone
metastasis [35]. The association between liver metastasis and poor prognosis has been con-
sistently reported across different treatment settings, including immunotherapy [36]. The
exact underlying mechanism of the dismal prognostic impact of such a type of metastasis
in lung cancer has not been fully understood; however, it can be partly attributed to an
activation of the bypass tracts and enhanced escape from immune surveillance [37–39]. It
has been reported that insulin-like growth factor 1 (IGF-1), the ligand of the IGF-1 receptor
(IGF-1R), is highly expressed in the TME of the liver metastasis, and the signaling from IGF-
1R promotes the tolerance to osimertinib in EGFR-positive lung cancer [40]. In addition, the
expression of vascular endothelial growth factor (VEGF) is increased in the liver metastasis
compared with other metastatic sites, and VEGF and EGFR signaling share downstream
pathways [37]. Thus, the up-regulated EGFR signaling in EGFR-mutant cells can activate
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VEGF signaling through hypoxia-independent mechanisms, which in turn results in the
emergence of resistance to TKIs [37]. Notably, a clinical trial of the combinational effect of
an EGFR-TKI and an anti-VEGF receptor antibody demonstrated superior efficacy over
TKI alone in patients with liver metastases [38]. Moreover, lower CD8 + T-cell infiltra-
tion in both the primary tumors and extrahepatic metastatic lesions has been observed in
patients with liver metastasis, and this suggest that liver metastasis can induce systemic
immunosuppression [39,41]. There is no study evaluating the clinicopathological factors
which might be related with TMB so far. The present data suggest the possible association
between high TMB and liver metastasis, and the unfavorable prognosis in the high TMB
patients may be partly attributed to the accelerated liver metastasis. Our findings should
be validated by further investigations.

The relationship between high TMB and poor clinical outcome in EGFR-mutated
NSCLC has been suggested in two independent studies [19,22]. In one study, TMB was
significantly associated with a shorter time-to-treatment discontinuation and OS, and
the TMB levels were increased at the time of disease progression when comparing the
pretreatment and post-progression samples [19]. The other study also reported a negative
predictive value of TMB using TCGA data and validated their results using Chinese
cohort [22]. In the present study, TMB was associated with poor PFS and OS, which
is consistent with those previous data, and the association was significant even after
adjusting the effect of liver metastasis in the multivariate analysis. A growing number of
studies have demonstrated that various genomic alterations, including the activation of
oncogenes and inactivation of tumor suppressor genes, are related with organotropism
in metastasis in lung cancer [42]. For example, MYC, YAP1, or MMP13 overexpression
were shown to be associated with the incidence of brain metastasis [43]. However, data
on such genomic association or metastatic driver for liver metastasis in lung cancer are
very limited. A recent phylogenetic analysis using paired primary tumors and metastases
of lung adenocarcinoma reported that the genetic profiles are highly similar between the
primary lung lesions and liver metastasis, and tumor cells in liver metastasis are genetically
diverged from those in the primary tumor at a relatively later stage compared with the
brain metastasis [44]. Such findings indicate that the liver metastasis follows the linear
progression model of metastasis rather than the parallel model. In that study, the TMB
levels were comparable between the primary tumor and liver metastasis [44]. More recently,
another group analyzed the relationship between the genomic features of metastatic cancers
and their organ-specific patterns of metastasis (n = 21,546) and reported the significant
associations between TMB and organ-specific patterns of metastasis in several tumor
types [45]. In that study, high TMB was associated with (1) lung adenocarcinoma to the
brain and adrenal gland, (2) pancreatic adenocarcinoma to the liver, and (3) head and neck
squamous to head and neck cancer. Based on our and previous data, we hypothesize
that the high burden of somatic mutations can be a metastatic driver of liver metastasis
or can induce genetic instability to promote metastasis and tumor progression. Further
investigations are needed to validate our hypothesis.

The identification of secondary T790M mutation is critical for the management of
EGFR-mutant patients because T790M-positive resistance is readily responsive to third-
generation EGFR-TKIs, including osimertinib and lazertinib [46,47]. Previous data have
demonstrated that the association between the more frequent acquisition of T790M mu-
tation in 19del and the long duration of treatment with EGFR-TKIs [48–50]. Our results
confirmed these findings, and additionally suggest that high TMB level may be associated
with less emergence of T790M after prior TKI failure. The association between TMB and
the frequency of the T790M mutation has scarcely been evaluated. In a study, T790M-
negative tumor at progression showed relatively high TMB compared with T790M-positive
tumors [51]. Another study reported that the TMB level showed a non-significant trend
of increase in T790M-negative resistance [19]. Similarly, we found a significant associ-
ation between the TMB and the resistance pattern, and our data suggest that baseline
high TMB may be a negative predictor of T790M-positive resistance. It is well known that
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T790M-positive resistance is associated with more favorable outcomes than T790M-negative
resistance [5]. The low frequency of T790M mutations in the high-TMB group may explain
the worse OS in these populations. The mechanism by which TMB is associated with less
development of the resistance mutation is unclear; however, it may be explained by the
different durations of treatment with EGFR-TKI according to different TMB levels. As
suggested in the previous studies, T790M-positive cells can be enriched or newly emerged
during TKI treatment [52–54]. In addition, substantial time is required for the develop-
ment of T790M-dominant tumor because the cells harboring the mutation grow indolently
compared to T790M-negative cells [55]. Taken together, we can hypothesize that the low
frequency of T790M mutation can be attributed to the shorter duration of treatment in the
patients with high TMB.

The present data suggest that high TMB confers a distinct aggressive phenotype that
may require different treatment strategies. As TKI monotherapy could be less effective
in patients with a high TMB level, other therapeutic strategies, such as a combinational
approach using chemotherapy or immunotherapy, might be feasible. Notably, a previous
study showed that gefitinib plus platinum doublet showed better clinical outcomes in terms
of PFS and OS compared with gefitinib alone in EGFR-mutant NSCLC [56]. Very recently,
amivantamab, a bispecific EGFR-MET antibody, in combination with lazertinib, a third-
generation EGFR-TKI, showed promising results in patients who are previously treated
with osimertinib and platinum-based chemotherapy [57]. Prospective investigations are
required to determine the optimal treatment strategy for those with different TMB levels.

This study had several limitations. First, it was a relatively small retrospective study
that was performed at only two institutes, and using a data-driven TMB cutoff value, which
could have increased the risk of bias. Second, all the patients were treated with either the
first-or second-generation EGFR-TKIs, and data on the use of frontline osimertinib were
not available. Third, unlike the FoundationOne and MSK-IMPACT panel tests, which were
approved by the FDA, the assay that was adopted in this study (Oncomine Tumor Muta-
tional Load assay) has not yet been validated for clinical use. However, previous studies
revealed good concordance with TMB assessment by whole exome sequencing [58,59], and
a recent study that was conducted by the Onconetwork Immuno-Oncology Consortium
showed that the platform that we used demonstrated robustness and reproducibility for
TMB evaluation [60]. Fourth, data on TMB levels at the time of disease progression and
blood TMB levels were not analyzed. The blood TMB, determined using circulating tumor
DNA, is emerging as a useful biomarker in different anti-cancer treatment settings [61].
Thus, the dynamics of TMB levels in tumor tissues and in the blood during treatment could
be an interesting topic for future studies. Finally, we did not simultaneously explore the
immune phenotypes that could affect the TKI resistance. We are currently working on the
possible impact of immunologic signatures on the prognosis of EGFR-mutant populations.

5. Conclusions

The present data demonstrate that a high TMB level was associated with dismal
clinical outcomes, not only due to the poor response to frontline TKI treatment but also
the less emergence of T790M-associated resistance. Although further studies are needed
to verify our results, the current findings highlight that a high TMB level might confer
an aggressive phenotype, requiring tailored therapeutic approaches among EGFR-mutant
patients. Future investigations should focus on the determination of the optimal cutoff
of TMB among different NSG platforms, the possible predictive value of TMB in other
malignancies harboring driver oncogenes, and the optimal treatment strategy for the TMB-
high patients. Large prospective studies may facilitate the clinical use of TMB for the
prediction of prognosis and risk stratification.
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