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a b s t r a c t 

Most emerging human infectious diseases have an animal origin. While zoonotic diseases originate from 

a reservoir, most theoretical studies have principally focused on single-host processes, either exclusively 

humans or exclusively animals, without considering the importance of animal to human transmission (i.e. 

spillover transmission) for understanding the dynamics of emerging infectious diseases. Here we aim to 

investigate the importance of spillover transmission for explaining the number and the size of outbreaks. 

We propose a simple continuous time stochastic Susceptible-Infected-Recovered model with a recurrent 

infection of an incidental host from a reservoir (e.g. humans by a zoonotic species), considering two 

modes of transmission, (1) animal-to-human and (2) human-to-human. The model assumes that (i) epi- 

demiological processes are faster than other processes such as demographics or pathogen evolution and 

that (ii) an epidemic occurs until there are no susceptible individuals left. The results show that during 

an epidemic, even when the pathogens are barely contagious, multiple outbreaks are observed due to 

spillover transmission. Overall, the findings demonstrate that the only consideration of direct transmis- 

sion between individuals is not sufficient to explain the dynamics of zoonotic pathogens in an incidental 

host. 

© 2018 Elsevier Ltd. All rights reserved. 
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. Introduction 

Recent decades have seen a surge of emerging infectious dis-

ases (EIDs), with up to forty new diseases recorded since the

970s ( Jones et al., 2008 ). Sixty percent of emerging human infec-

ious diseases are zoonotic, i.e. are caused by pathogens that have

n animal origin ( Jones et al., 2008; Taylor et al., 2001 ). The World

ealth Organization defines zoonotic pathogens as “pathogens that

re naturally transmitted to humans via vertebrate animals”. The

pidemics caused by EIDs impact the societal and economical equi-

ibria of countries by causing unexpected deaths and illnesses

hereby increasing the need for health care infrastructures and by

nterfering with travel ( Morens and Fauci, 2013 ). Moreover, the risk

f EIDs being transmitted to humans from wildlife is increasing

ecause of the recent growth and geographic expansion of hu-

an populations, climate change and deforestation, which all in-
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rease the number of contacts between humans and potential new

athogens ( Jones et al., 2008; Keesing et al., 2010; Murray and

aszak, 2013 ). Given most EIDs have an animal origin, it is cru-

ially important to understand how infections spread from animal

o human populations, i.e. by spillover transmission. 

There is numerous empirical evidence that the epidemiological

ynamics of infectious diseases is highly dependent on the trans-

ission from the reservoir (the reservoir will be defined following

shford’s definition (1997), i.e. a pathogen is persistent in the envi-

onment of the incidental host, see Table 1 for details). The start of

n outbreak is promoted by a primary contact between the reser-

oir and the incidental host (i.e. host that becomes infected but is

ot part of the reservoir) leading to the potential transmission of

he infection to the host population. Moreover, multiple outbreaks

re commonly observed during an epidemic of zoonotic pathogens

n human populations, for instance in the case of the epidemic

f the Nipah Virus between 2001 and 2007 ( Luby et al., 2009 ).

ith regards to the Ebola virus, some twenty outbreaks have been

ecorded since the discovery of the virus in 1976 ( De La Vega et al.,

015 ). This number of outbreaks undoubtedly underestimates the

https://doi.org/10.1016/j.jtbi.2018.08.017
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jtb
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jtbi.2018.08.017&domain=pdf
mailto:marina.voinson.etu@univ-lille.fr
mailto:marina.voinson@ed.univ-lille1.fr
https://doi.org/10.1016/j.jtbi.2018.08.017
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Table 1 

Definitions of a reservoir from the literature. The reservoir is mostly used as defined by the Centre for Disease Control and prevention (CDC). Two other definitions have 

been proposed to clarify and complete the notion of reservoir in the case of zoonotic pathogens. On the one hand, Haydon et al. (2002) define the reservoir from a 

practical point of view in order to take into account all hosts epidemiologically connected to the host of interest (i.e. target host), to implement better control strategies. 

On the other hand, Ashford (1997) establishes a more generalizable definition: for a given pathogen there is a single reservoir. 

Definitions of a reservoir Authors Refs 

“any animal, person, plant, soil, substance or combination of any of these in which the infectious agent 

normally lives”

Centre for Disease Control and Prevention (2018) 

“all hosts, incidental or not, that contribute to the transmission to the target host (i.e. the population of 

interest) in which the pathogen can be permanently maintained”

Haydon et al. (2002) 

“an ecologic system in which an infectious agent survives indefinitely” Ashford (1997, 2003) 
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total number of emergences because not all emergences necessar-

ily lead to the spread of the infection from an animal reservoir to

the host population ( Jezek et al., 1999 ). While the reservoir has an

important role for causing the emergence of outbreaks, the role of

spillover transmission on the incidental epidemiological dynamics

is rarely discussed. 

Empirically, it is generally difficult to distinguish between direct

transmission and transmission from the reservoir. Only in the case

of non-communicable diseases it is easily possible to measure the

importance of the recurrent transmission from the reservoir, since

all infected individuals originate from a contact with the reservoir.

For instance, the H7N9 virus, for which most human cases are due

to a contact with an infected poultry, approximately 132 spillovers

have been listed during the epidemic of 2013 ( Zhou et al., 2013 ).

For pathogens that are able to propagate from one individual to

another, the origin of the infection can be established according to

patterns of contacts during the incubation period ( Chowell et al.,

2014; Luby et al., 2009 ). Most often, if an infected individual has

been in contact with another infected individual in his recent past,

direct transmission is considered as the likeliest origin of the in-

fection. However, both individuals might have shared the same en-

vironment and thus might have been independently infected by

the reservoir. This leads to overestimating the proportion of cases

that result from person-to-person transmission. Moreover, when

the pathogen infects an individual and the latter does not produce

secondary cases then the detection of emergence is unlikely. 

Pathogen spillover is often neglected in epidemiological theo-

retical models. It is generally assumed that the epidemiological dy-

namics of outbreaks is driven by the ability of the pathogen to

propagate within hosts. For instance, a classification scheme for

pathogens has been proposed by Wolfe et al. (2007) , including

five evolutionary stages in which the pathogen may evolve rang-

ing from an exclusive animal infection (Stage I) to an exclusive

human infection (Stage V) ( Fig. 1 ) ( Wolfe et al., 2007 ). The inter-

mediate stages are those found for the zoonotic pathogens (Stages
Fig. 1. Representation of the classification scheme of pathogens proposed by Wolfe et al

only humans (Stage V). Each stage corresponds to a specific epidemiological dynamics in

to humans with no possible transmission between humans. Stage III corresponds to few

Stage IV corresponds to large outbreaks in human population but the pathogen cannot be
I–IV). Lloyd-Smith et al. (2009) , proposed to enhance the classi-

cation scheme by differentiating the Stages II–IV by the ability

f pathogens to propagate between individuals in the incidental

ost (i.e. as a function of the basic reproductive ratio R 0 ): the non-

ontagious pathogens ( R 0 = 0 , Stage II), pathogens barely conta-

ious inducing stuttering chains of transmission (0 < R 0 < 1, Stage

II) and contagious pathogens inducing large outbreaks ( R 0 > 1,

tage IV) ( Lloyd-Smith et al., 2009 ). However, the role of the reser-

oir is not clearly defined, and spillover effects on the epidemio-

ogical dynamics are not discussed. 

Only a few models have investigated the dynamics of EIDs by

aking into account explicitly the transmission from the reservoir

o the incidental host. Lloyd-Smith et al. (2009) have analysed

42 modelling studies of zoonotic pathogens and concluded that

odels incorporating spillover transmission are dismayingly rare.

ore recent models aimed at investigating the dynamics of EIDs

y taking into account the spread of the pathogen using multi-

ost processes but disregarding the persistence of the pathogen in

he reservoir ( Singh et al., 2013 ), or by focusing on the dynamics

nd conditions of persistence of the pathogen between two pop-

lations ( Fenton and Pedersen, 2005 ). Models that have consid-

red an endemic reservoir are disease-specific and do not generate

eneralizable dynamics ( Chowell et al., 2014; Nieddu et al., 2017 ).

ore recently, Singh and Myers (2014) developed a Susceptible-

nfected-Recovered (SIR) stochastic model coupled with a constant

orce of infection. The authors are mostly interested in the ef-

ect of population size and its impact on the size of an outbreak.

owever, this approach does not allow teasing apart the contri-

ution of the incidental host transmission from that of the trans-

ission from the reservoir in modulating the dynamics of zoonotic

athogens. 

In this paper, we aim to provide general insights into the dy-

amics of a zoonotic pathogen (i.e. pathogens classified in stages

I–IV) emerging from a reservoir and its ability to propagate in an

ncidental host. To do so, we developed a continuous time stochas-
. (2007) . A pathogen may evolve from infecting only animals (Stage I) to infecting 

 the incidental host. Stage II corresponds to few spillovers from animals (e.g. bats) 

 stuttering chains of transmission between humans that go extinct (no outbreaks). 

 maintained without the reservoir. 
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ic model that can dissociate the effect of between-host (i.e. direct)

ransmission from the effect of spillover (i.e. reservoir) transmis-

ion. A multi-host process with a reservoir and an incidental host

s considered. The epidemiological processes are stochastic, which

s particularly relevant in the case of transmission from the reser-

oir and more realistic because only a small number of individu-

ls are expected to be infected at the beginning of an outbreak.

he model makes a number of assumptions. First, the epidemio-

ogical processes are much faster than the demographic processes.

econd, the pathogen in the reservoir is considered as endemic

nd might contaminate recurrently the incidental host. Third, an

ndividual cannot become susceptible after having been infected.

s a consequence, the total number of susceptible individuals in

he incidental host decreases during the epidemic. This is what is

xpected for an epidemic spreading locally during a short period

f time (at the scale of a few thousands individuals during weeks

r months, depending on the disease and populations considered).

e then harness the model to predict the effects of both spillover

ransmission and direct transmission on the number and the size

f outbreaks. Outbreaks occur when the number of cases of dis-

ase increases above the epidemiological threshold. In the case of

on emerging infectious diseases, an epidemiological threshold is

sed to gauge the start of outbreaks. For instance for the seasonal

nfluenza the epidemiological threshold is calculated depending on

he incidence of the disease during the previous years ( Tay et al.,

013 ). In the case of emerging infectious diseases, no incidence is

ormally expected in the population so from a small number of

nfected individuals, the outbreak can be considered to spread. We

how that, regarding the epidemiological dynamics, the recurrent

mergence of the pathogen from the reservoir in the incidental

ost is as important as the transmission between individuals of

he incidental host. We conclude by discussing the implications of

hese results for the classification of pathogens proposed by Lloyd-

mith et al. (2009) . 

. Model 

A continuous time stochastic Susceptible-Infected-Recovered

SIR) compartmental transmission model ( Kermack and McK-

ndrick, 1927 ) with recurrent introduction of the infection into an

ncidental host by a reservoir is considered ( Fig. 2 ). Our goal here
ig. 2. Representation of the stochastic model with transitions. A reservoir ( A ) has been

haracterized by their epidemiological status in the incidental host ( S : susceptible; I : infec

ransitions with associated rates are listed in the table. A susceptible individual becomes

t rate τS . An infected individual recovers at rate γ . 
s not to study a disease in particular but to provide general in-

ights of the reservoir effect on the epidemiological dynamics of

he incidental host. The infection is assumed to propagate quickly

elatively to other processes such as pathogen evolution and de-

ographic processes. The reservoir is defined as a compartment

here the pathogen is persistently maintained, this pathogen is

hen considered as endemic. The population is fully mixed. An in-

ividual can be infected through two types of transmission, from

he reservoir by the spillover transmission and by direct contact

etween individuals. We neglect the possibility for reverse infec-

ion from the incidental host to the reservoir. 

The incidental host is composed of N individuals. The infection

an spillover by contact between the reservoir and the incidental

ost at rate τS where S is the number of susceptible individuals

nd τ is the rate at which an individual becomes infected from

he reservoir. In the incidental host, the infection can propagate

y direct contact at rate βSI where I is the number of infected

ndividuals and β is the individual rate of infection transmission.

n infected individual can recover at rate γ . The propensity of the

athogen to be transmitted between individuals within host is ex-

ressed in terms of the basic reproductive ratio of the pathogen,

 0 , which is widely used in epidemiology. R 0 corresponds to the

verage number of secondary infections produced by an infected

ndividual in an otherwise susceptible population. In a determin-

stic model, for a pathogen to invade the population, R 0 must be

arger than 1 in the absence of reservoir. In a stochastic model, the

igher the R 0 the higher the probability for the pathogen to in-

ade the population. In a SIR model, the basic reproductive ratio R 0 
quals to βN / γ . Individuals in the recovered compartment do not

ontribute anymore to the transmission process. Since we assume

hat demographic processes are slower than epidemic processes,

he number of susceptible individuals decreases during the epi-

emic due to the consumption of susceptible by the infection until

he extinction of the susceptible population. In other words, in our

odel, R 0 will decrease because of the successive spillovers from

he reservoir. We expect this to occur especially at short space

nd time scales (a local population during the course of weeks or

onths). 

To analyse the dynamics in the incidental host, three statistics

ill be studied (i) the mean number of outbreaks, (ii) the mean

ize of the recurrent outbreaks during an epidemic and (iii) the
 added to a classical SIR model where the pathogen is persistent. Individuals are 

ted; R : recovered). S, I and R are measured in numbers of individuals. All stochastic 

 infected through the transmission by contact at rate βSI or through the reservoir 
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Fig. 3. Examples of stochastic simulations. Three examples of epidemiological dynamics corresponding to the three Stages II, III and IV (see Fig. 1 ) respectively with low 

values of both direct and spillover transmissions ( R 0 = 0 . 2 and τ = 10 −7 ), intermediate values of direct or spillover transmission ( R 0 = 1 . 5 and τ = 10 −4 ), high value of direct 

or spillover transmission ( R 0 = 2 and τ = 10 −1 ). 

Table 2 

Parameters used and their values. UT 

denotes the unit of time which can be 

expressed in days or weeks. 

Parameters Values 

R 0 Variable 

γ 0.1 UT −1 

τ Variable (UT −1 ) 

c 5 infected individuals 

N 10 0 0 individuals 
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r  
mean size of the largest outbreak occurring during an epidemic.

We consider the appearance of an outbreak when the incidence of

the infection exceeds the threshold c and define the maximum size

of an outbreak as the largest number of infected individuals during

the largest outbreak. 

2.1. Analysis of the model 

Stochastic simulations. The epidemiological dynamics described

previously can be simulated with the following algorithm (simu-

lations were run in C++). The population state is assumed to be

known at time t . A total event rate ( �), only depending of the state

of the population at time t , is calculated for each iteration. 

A) The total event rate � of the continuous time stochastic SIR

model is given by: 

� = βSI + τS + γ I. 

B) The next event time is t ′ = t + δ where δ is exponentially dis-

tributed with parameter �. 

C) The next event to occur is randomly chosen: direct transmis-

sion, spillover transmission or recover with respective probabil-

ities βSI / �, τS / � and γ I / �. 

We performed stochastic individual-based simulations of the

epidemics with spillover transmission, using rates as presented in

Fig. 2 . The incidental host is initially ( t = 0 ) composed of 10 0 0 sus-

ceptible individuals ( N = S = 10 0 0 ). The infection is considered as

endemic in the reservoir. Simulations are stopped when there are

no susceptible individuals anymore. An outbreak begins when the

number of infected individuals reaches the epidemiological thresh-

old c ( c = 5 infected individuals in the simulations) and ends when

there is no infected individuals anymore ( I = 0 ). Stochastic simula-

tions were run for values of the basic reproductive ratio ( R 0 ) rang-

ing from 0 to 10 and of the spillover transmission ( τ ) ranging from

10 −10 to 10 −1 , 10,0 0 0 simulations are performed for each parame-

ter set. All other parameter values are detailed in Table 2 . 

Approximation by a branching process. The epidemiological model

with recurrent introduction of the infection into an incidental host
y a reservoir can be approximated by a branching process with

mmigration from the reservoir to the incidental host at the be-

inning of the infectious process (thus assuming that individual

birth” and “death” rates of infected individuals are constant dur-

ng the starting phase of an outbreak). The individual birth and

eath rates are respectively βN , the transmission rate and γ , the

ecovery rate. The immigration rate corresponds to the spillover

ate, τN , at the beginning of the infection. In other words, we as-

ume that the number of susceptibles is N to study the beginning

f the infection, which is a good approximation as long as few in-

ividuals have been infected. We distinguish between two regimes

n the incidental host, the subcritical regime when R 0 < 1 and the

upercritical regime when R 0 > 1. We suppose that at time t = 0 a

ingle individual is infected by the spillover transmission. 

. Results 

.1. The epidemiological dynamics in the incidental host 

As illustrated in Fig. 3 , three patterns are observed (i) a stut-

ering chain of transmission that goes extinct, i.e. infection spreads

nefficiently, (corresponding to Stage II in Wolfe’s classification, see

ig. 1 ), (ii) a large outbreak and few stuttering chains of transmis-

ion (corresponding to Stage III, see Fig. 1 ) and (iii) a single large

utbreak consuming a large number of susceptible individuals (cor-

esponding to Stage IV see Fig. 1 ). 

Fig. 4 shows the roles of the direct transmission, R 0 , and the

pillover transmission, τ , in the occurrence of the three patterns

epicted in Fig. 3 , in the case of a threshold c = 5 and c = 10 . Stut-

ering chains of transmission occur when the pathogen is barely

ontagious between individuals (small R 0 ) and when the recur-

ent emergence of the pathogen ( τ ) is low. At the opposite, when

he pathogen is highly contagious (large R 0 ) or when the spillover

ransmission is high ( τ ), only one large outbreak is observed. Fi-

ally, both dynamics (a large outbreak and stuttering chains of

ransmission) are observed for intermediate value of both direct

nd spillover transmission. The dynamics observed in the three

tages depend both of the value on the direct transmission ( R 0 )

nd the effect of the reservoir ( τ ). 

The three stages are observed when spillover transmission ( τ )

r the direct transmission ( R 0 ) is low, two stages appear when di-

ect or spillover transmission is intermediate and only one stage is

bserved when at least one of the two transmission is high. Hence,

oth types of transmission are important in the emergence of epi-

emiological dynamics. 

Fig. 4 shows that the epidemiological threshold c little affects

he observed dynamics. For both values c = 5 and c = 10 , the three

atterns are observed. However, the values of both transmissions

 τ and R 0 ) on the frontiers between stages are different. The pa-

ameter range for which the patterns of the stages II and IV are ob-
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Fig. 4. Classification scheme of the epidemiological dynamics observed in simulations. The general epidemiological dynamics is depicted as a function of the direct trans- 

mission ( R 0 ) and the spillover transmission ( τ ). The epidemiological dynamics of stochastic simulations are classified following the stages described by Wolfe et al. (2007) , 

Stage II: stuttering chains of transmission (i.e. less than one outbreak), Stage III: one large outbreak and stuttering chains of transmission (i.e. more than one outbreak) and 

Stage IV: a single large outbreak. 
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s

erved are wider for a higher threshold value (compare Fig. 4 a and

), whereas stage III is narrower. When the direct and the spillover

ransmissions are low, it is more difficult for the infection to reach

 higher threshold. Thus, there are more stuttering chains of trans-

ission. In the same way, when the direct or the spillover trans-

ission is high, a large outbreak is observed then some stuttering

hains of transmission occur but do not reach the epidemiological

hreshold. 

For both values of epidemiological threshold ( Fig. 4 (a) and (b)),

 “bulb” is observed in the Stage III where the direct transmis-

ion is high. After the occurrence of a large outbreak, the suscep-

ible population became small. Hence the next excursion is very

nlikely to reach the epidemiological threshold. However, a high

nough spillover transmission rate is able to counterbalance the

mall effective R 0 and to produce other outbreaks after the large

ne. The “bulb” is less pronounced in the case of a higher thresh-

ld ( Fig. 4 (b)) because the susceptible population consumed during

he large outbreak is important leading to the failure for the next

xcursion to reach a high epidemiological threshold. 

.2. Number of outbreaks when the effect of the reservoir is low 

.2.1. Case of a barely contagious pathogen ( R 0 < 1) 

We aim at approximating the mean number of outbreaks in the

ase where the spillover transmission rate τ and the reproductive

umber R 0 are small (subcritical case corresponding to R 0 < 1). The

ethod of approximation is the following: let us denote by S i the

umber of susceptible individuals at the beginning of the i th ex-

ursion. During the i th excursion, we set this number of suscepti-

les to its initial value S i , and consider that the rate of new infec-

ions is βIS i . We thus obtain a branching process with individual

irth (infection) rate βS i and individual death (recovery) rate γ .

hen there is no more infected individuals, we compute the mean

umber of recovered individuals produced by this branching pro-

ess excursion, denoted by E [ K(S i , β, γ )] , and make the approxi-

ation that 

 i +1 = S i − E [ K(S i , β, γ )] , (1)

here E [ K(S i , β, γ )] can be computed and equals (see

ppendix A ): 

 [ K(S i , β, γ )] = 

γ

γ + βS i 

∞ ∑ 

k =0 

(2 k )! 

(k !) 2 

(
γβS i 

(γ + βS i ) 2 

)k 

. (2)

n other words, the initial number of susceptible individuals for

he ( i + 1 )th excursion is the initial number of susceptible individ-

als for the i th excursion minus the mean number of recovered
ndividuals produced during the i th excursion under our branching

rocess approximation. We repeat the procedure for the ( i + 1 )th

xcursion, and so on, until k satisfies S k > 0 and S k +1 ≤ 0 (no sus-

eptible anymore). In order to be considered as an outbreak, an

xcursion has to exceed c individuals, where we recall that c is the

pidemiological threshold. Under our branching process approxi-

ation, the probability for the i th excursion to reach the epidemi-

logical threshold (see Appendix A ) is: 

 (S i , β, γ ) = 

(γ /βS i ) − 1 

(γ /βS i ) c − 1 

. (3)

s a consequence, our approximation of the mean number of out-

reaks ( E [ O (N, β, γ )] ) reads: 

 [ O (N, β, γ )] = 

k ∑ 

i =0 

P (S i , β, γ ) , (4)

here S 1 = N, and the S i ’s are computed as described in (1) . 

The mean number of outbreaks computed with the branching

rocess is a good approximation compared to numerical simula-

ions for a small spillover transmission ( 10 −10 ≤ τ ≤ 10 −6 ) ( Fig. 5 ).

he spillover transmission added in our model introduces the in-

ection recurrently and allows the infection to spread even for

 pathogen barely contagious ( R 0 < 1). According to Fig. 5 when

 0 < 1 the number of outbreaks increases when the direct trans-

ission between individuals increases. Indeed, the higher the di-

ect transmission, the higher the probability for the excursions to

each the epidemiological threshold ( c ). The number of outbreaks

an be high because when the direct transmission is smaller than

, the infection spreads inefficiently and does not consume a large

umber of susceptibles allowing the next excursion to exceed the

pidemiological threshold. 

Fig. 6 shows that the average number of outbreaks is a

on-monotonic function of the direct transmission ( R 0 ) and the

pillover transmission ( τ ). More precisely, Fig. 6 (b) shows that for

ntermediate and low values of spillover transmission ( 10 −6 ≤ τ ≤
0 −4 ), the average number of outbreaks increases until R 0 ∼ 1 then

ecreases until it reaches one outbreak when the direct transmis-

ion is high ( R 0 > 2.5). Moreover, we observed an increasing num-

er of outbreaks with τ when the pathogen is barely contagious.

y contrast, in Fig. 6 (a), we show that the average number of out-

reaks decreases when τ becomes large ( τ � 5 . 10 −4 ). 

.2.2. Case of a contagious pathogen R 0 > 1 

The supercritical case ( R 0 > 1) is now considered and the

pillover transmission rate ( τ ) is still supposed small. 
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Fig. 5. Average number of outbreaks for a low spillover transmission. The orange and black dotted curves represent the results, from numerical simulations and branching 

process approximation, respectively. The average number of outbreaks approximated is evaluated when the spillover transmission τ is small. For the numerical simulations, 

τ = 10 −10 has been chosen. There is a break in the dotted curve (branching process) because our approximation is not valid in the critical regime (when R 0 is close to 1). 

Fig. 6. Average number of outbreaks obtained from stochastic simulations. The average number of outbreaks is depicted as a function of the direct transmission 0 < R 0 < 4 

and the spillover transmission (a) 5 . 10 −4 ≤ τ ≤ 10 −1 and (b) 10 −6 ≤ τ ≤ 10 −4 and for an epidemiological threshold c = 5 . 
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In this case, two different types of excursions occur in the inci-

dental host: (i) a large outbreak which consumes, with a probabil-

ity close to one, a large proportion of susceptible individuals and

(ii) multiple excursions before and after a large outbreak which

each consumes few susceptible individuals. We let O before ( N, β , γ )

and O after ( N, β , γ ) denote the number of outbreaks occurring re-

spectively before and after the large outbreak. Because R 0 > 1, the

probability to have one large outbreak is close to one. Hence we

make the approximation that one large outbreak occurs during the

epidemic, and the total number of outbreaks ( O total ( N, β , γ )) can

be approximated by: 

O total (N, β, γ ) = O be f ore (N, β, γ ) + 1 + O a f ter (N, β, γ ) . (5)

To be part of outbreaks occurring before the large one, an ex-

cursion has to satisfy two conditions (i) to have a size higher than

the epidemiological threshold c , and (ii) to be of a size not too

large otherwise it would correspond to the large outbreak. To be

more precise, this condition will correspond to the fact that the

supercritical branching process used to approximate this excursion

does not go to infinity. As a consequence, O before ( N, β , γ ) can be

approximated by (See Appendix B ): 

O be f ore (N, β, γ ) = 

1 

(βN/γ ) c − 1 

. (6)

To approximate the number of outbreaks after the large outbreak

( O after ( N, β , γ )), we need to know how many susceptible individ-

uals remain in the population. The number of susceptibles con-

sumed before the large outbreak is negligible with respect to
he number of susceptibles consumed during the large outbreak.

ence we can consider that the initial state of the large outbreak

s N susceptibles, one infected individual and no recovered individ-

al. The number of susceptibles remaining after the large outbreak

an be approximated with the deterministic SIR model. 

The large outbreak stops when there is no infected individual

nymore in the incidental host. Using that 
˙ S 

S 
= −βI = 

−β

γ
˙ R , we

et: 

(N − γ

β
log N) − (S − γ

β
log S) = 0 (7)

hich has one trivial solution ( S = N) and a non-trivial solution

ith no explicit expression denoted N after ( N, β , γ ). After the large

utbreak, the reproductive ratio for the next excursions, denoted

 0 a f ter 
, is subcritical ( R 0 a f ter 

< 1 ) (see Appendix B ) and the number

f outbreaks after the large one, denoted O after , can be approxi-

ated using Eqs. (2) –(4) . 

The branching process approximations of the mean number of

utbreaks in the supercritical regime, depicted in Fig. 5 , are close

o the mean number of outbreaks computed by numerical simu-

ations when the recurrent infection from the reservoir is small.

he number of outbreaks decreases when the pathogen becomes

ighly contagious to reach one outbreak when R 0 > 2.5. When the

nfection is introduced in the incidental host by the spillover trans-

ission, the probability to reach the epidemiological threshold de-

ends on the direct transmission between individuals. When the

irect transmission increases the infection spreads more efficiently
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onsuming a large number of susceptible individuals allowing few

r no other excursion to reach the epidemiological threshold and

roducing only one outbreak when R 0 > 2.5. 

.3. What is the effect of the reservoir on the number of outbreaks? 

We now focus on the effect of the spillover transmission with

 pathogen barely contagious ( R 0 < 1) on the number of outbreaks.

e exclude for the sake of simplicity the cases very close to the

ritical case, that is to say, 1 − R 0 is not too close to 0. Because

e consider the subcritical case ( R 0 < 1), the excursions are small

nd at the beginning of the epidemiological dynamics, we make

he approximation that the spillover transmission rate is constant

qual to τN , and the direct transmission rate is equal to βNI . We

hus consider a birth and death process with constant immigration

ate τN , individual birth rate βN and individual death rate γ . We

re interested in the effect of the parameter τ on the mean num-

er of outbreaks. In particular we aim at estimating the value of τ
aximising the mean number of outbreaks, denoted τ opt . 

A first quantity which will help giving us an idea of the order of

agnitude of the values of τ to be considered is the mean number

f infected individuals at large times. This quantity, denoted m I ,

quals (see for instance Eq. (8.74) in Bailey, 1990 ): 

 I = 

τN 

γ − βN 

= 

τN/γ

1 − R 0 

. 

In particular, when 

 I � c ⇐⇒ 

τN 

γ
� c(1 − R 0 ) , (8)

he mean number of infected individuals is much larger than c , and

hen on the contrary 

 I 
 c ⇐⇒ 

τN 

γ

 c(1 − R 0 ) , (9)

he mean number of infected individuals is negligible with respect

o c . 

Let us first consider the first case ( Eq. (8) ), and choose α > 1

uch that 

τN 

γ
≥ α(c − 1)(1 − R 0 ) . 

hen we can show (see Appendix C.1 ), that the probability p c that

 first infection by the reservoir gives rise to an outbreak (that is to

ay the number of infected individuals reaches c before 0) is larger

han: 

p c ≥ (α − 1)(1 − R 0 ) 

1 + α(1 − R 0 ) 
→ 

α→∞ 

1 . (10) 

oreover, we can show that if an excursion reaches the level c ,

t has a probability close to one to lead to a large outbreak con-

uming a large number of susceptible individuals. Thus only few

tuttering chains of transmission will emerge. In Fig. 7 (a), when τ
s large ( τ > 10 −2 thus τN/ (cγ (1 − R 0 )) ≥ 25 ), only one outbreak

s observed because the large number of spillovers prevents the

utbreak from dying out. 

Let us now consider the second case ( Eq. (9) ). Recall that in the

ase of emerging infectious diseases, the threshold c can be con-

idered as small. Hence we may consider without loss of generality

hat (9) implies: 

τN 

γ
≤ 1 − R 0 

2 

. (11) 

n this case, we can prove (see Appendix C.2 ) that the probability

hat the number of infected individuals is higher than the thresh-

ld c is : 

 (I > c) ≤ τN 

cγ (1 − R 0 ) 

(
1 + R 0 

1 − R 0 

)(
1 + R 0 

2 

)1 / ln (2 / (1+ R 0 )) −1 

. 
Thus the probability for the number of infected individuals to

each the epidemiological threshold c is small under condition

9) . As a consequence, few outbreaks will occur. Indeed, the suc-

essive spillovers by the reservoir will produce outbreaks with a

mall probability, but will nevertheless consume susceptible indi-

iduals, until there is no more susceptible in the population. Ac-

ording to Fig. 7 (a), when a small effect of spillover transmission

 τ < 10 −6 ) and a small reproductive ratio ( R 0 ≤ 0.6) are considered

 τN/ (cγ (1 − R 0 )) < 2 . 10 −2 ) then the number of outbreaks is small.

n the case of a slightly higher direct transmission rate ( R 0 = 0 . 8 ),

ach spillover has a non negligible probability to become an out-

reak (more precisely 0.12 when c = 5 ) and the number of out-

reaks is higher. 

We thus predict that the number of outbreaks will tend to be

arge when the average size of an excursion is close to the epi-

emiological threshold ( m I � c ). These observations allow us to give

 first rough upper bound of the optimal value τ opt . Indeed, if the

ean number of infected individuals ( E [ I ]) is equal to c , the ra-

io V ar(I ) / E 

2 [ I ] equals 1 / (c(1 − R 0 )) (where Var [ I ] represents the

ariance of the number of infected individuals, see Appendix C.3 )

nd whose value belongs to [0.25,1] when c = 5 for the values of

 0 considered, which is large. Moreover in this case the distribu-

ion of I is skewed to the right (see Fig. C.10 ). This implies that the

umber of infected individuals will be larger than c a large fraction

f the time producing outbreaks which do not go extinct before a

ew infection by the reservoir, and thus producing few outbreaks.

ence we may conclude that τ opt is smaller than the τ leading

o a mean number of infected individuals c . For instance for the

arameters considered in Fig. 7 (a), this gives that τ opt is smaller

han: 

• 10 −4 when R 0 = 0 . 8 , 
• 2 . 10 −4 when R 0 = 0 . 6 , 
• 3 . 10 −4 when R 0 = 0 . 4 , 
• 4 . 10 −4 when R 0 = 0 . 2 , 

Let us now be more precise on the estimation of τ opt . To this

im, we will apply two results of the theory of branching pro-

esses with immigration. The first one, which can be found in

ailey (1990 , Eq. (8.74)) describes the total infectious lines over the

ourse of the infection, denoted by m : 

 = ( 1 − R 0 ) 
− τ

β = (1 − R 0 ) 
− τN 

γ R 0 . (12)

Notice that m is necessarily larger than 1 as an infection from

he reservoir is needed to generate the first infectious line. 

The second result is the mean number of infectious lines ex-

ected to be present at any time, that is to say in the theory of

ranching processes the number of distinct immigrants which have

escendants alive at a given moment. For large times, this mean

umber ( M I ) is equal to: 

 I = τNE [ T 0 ] 

see Chapter 8.7 in Pardoux, 2007 ), where E [ T 0 ] denotes the mean

ifetime of a branching process without immigration, with individ-

al birth rate βN , individual death rate γ , and initial state 1. This

xpression can be computed explicitly (see Appendix C.3.1 ) and

quals: 

 [ T 0 ] = 

1 

βN 

log 

(
1 

1 − R 0 

)
, 

hus leading to the expression: 

 I = 

τN 

γ R 0 

log 

(
1 

1 − R 0 

)
. (13) 

We will divide an excursion into m / M I blocks of M I simultane-

us infectious lines (thus without immigration). The idea for such

n estimation is the following: it is known that if a Poisson process
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Fig. 7. Average number of outbreaks as a function of the spillover transmission. The average number of outbreaks is represented as a function of the basic reproductive ratio 

(0.2 < R 0 < 0.8) and the spillover transmission rate of a pathogen ( Log 10 [10 −10 ] ≤ τ ≤ Log 10 [10 −1 ] ). The rectangle in figure (a) represents the results enlarged in figure (b). In 

figure (b) the dots represent the estimation of the value of the spillover transmission ( τ opt ) for each basic reproductive ratio where the number of outbreaks is maximal. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3 

Values of the optimal spillover transmission from numerical simulations and es- 

timations. The optimal spillover transmission is calculated for R 0 being equal to 

0.2, 0.4, 0.6, and 0.8. We present the values of the optimal spillover for two val- 

ues of epidemiological threshold c = 5 (bold) and c = 10 (not bold). The errors 

are ranging from 3 to 33% with a mean error of 15%. 

R 0 c τ opt esti τ opt simu error 

0.8 5 7 . 7 × 10 −5 1 . 1 × 10 −4 30 

0.8 10 1 . 4 × 10 −4 2 . 1 × 10 −4 33 

0.6 5 1 . 4 × 10 −4 1 . 7 × 10 −4 18 

0.6 10 2 . 7 × 10 −4 2 . 8 × 10 −4 4 

0.4 5 2 . 1 × 10 −4 2 . 2 × 10 −4 5 

0.4 10 4 . 3 × 10 −4 4 . 1 × 10 −4 5 

0.2 5 3 . 0 × 10 −4 2 . 9 × 10 −4 3 

0.2 10 6 × 10 −4 4 . 9 × 10 −4 22 
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has k jumps during a time interval, the jumps are uniformly dis-

tributed during this time interval. As the infections by the reservoir

follow approximately a Poisson process with parameter τN , and we

know that in expectation m infections by the reservoir occur be-

fore all infected individuals are removed, we divide the epidemic

in homogeneous blocks. We choose these blocks to have an initial

number of M I infected individuals to allow the use of results on

branching processes with immigration. The initial number of in-

fected individuals in each block is thus M I , and as a consequence

the infection has a probability 

R 

−M I 

0 
− 1 

R 

−c 
0 

− 1 

to reach the threshold c (see Appendix C.5 ). Hence the probability

for the whole excursion to reach the threshold c can be approxi-

mated by 

1 −
(

1 − R 

−M I 

0 
− 1 

R 

−c 
0 

− 1 

)m/M I 

. 

We want this probability to be not too close to 0, otherwise most

susceptible individuals would be consumed without giving rise to

an outbreak. We also want this probability to be not too close to

1. Indeed, as we have shown in the beginning of this section, this

would correspond to a case where τN / γ is much larger than c(1 −
R 0 ) and once the infected number of individuals has reached the

value c it would be very likely to reach a large value and consume

a large number of susceptible individuals. As a consequence, we

would have at the limit only one large outbreak. We thus choose

to equalize this probability to one half to get an estimation of τ opt .

Notice that this choice is arbitrary but has only a small effect on

the final results. For instance, a choice of 0.3 or 0.7 would give very

close results. The most important is to stay away from 0 and 1. As

a conclusion, τ opt is estimated as the unique solution to: 

(
1 − R 

−M I 

0 
− 1 

R 

−c 
0 

− 1 

) m 
M I 

= 

⎛ 

⎝ 1 − R 

τopt N log (1 −R 0 ) 

γ R 0 

0 
− 1 

R 

−c 
0 

− 1 

⎞ 

⎠ 

− γ R 0 (1 −R 0 ) 
−τopt N/ (γ R 0 ) 

τopt N log (1 −R 0 ) 

= 

1 

2 

.

(14)

The unicity of the solution is proved in Appendix C.5 . 

Fig. 7 (b) presents the values of τ maximising the number of

outbreaks and their estimations (dots) obtained by the branching

process approximations. The estimates derived under the branch-

ing process approximation give good results, with error ranging

from 3 to 33 % regardless the value of the epidemiological thresh-

old ( Table 3 ). 
To get the estimation of τ opt we have made several approxima-

ions. First we have considered that the spillover rate by the reser-

oir is constant equal to τN , whereas it is decreasing and equals

o τS , and that the rate of direct transmission due to infected in-

ividuals in the population is βNI and not βSI . We believe that

hese approximations are reasonable because the probability for

n excursion to reach the threshold decreases with the consump-

ion of susceptible individuals, and as a consequence, most of the

utbreaks will occur at the beginning of the process. However, the

eal τ opt should be a little bit higher than the one we estimate, to

ounterbalance the fact that the real infection rates (by the reser-

oir and the infected individuals) are smaller than the one we use

n our calculations. This may explain why in most of the cases we

nderestimate the real τ opt (see Table 3 ). 

The following approximation we made is the decomposition of

he excursions into blocks with an initial number of individuals

 I . In the real process there are no simultaneous infections by the

eservoir. However this approximation allows to take into account

revious infections by the reservoir whose infectious lines are still

resent. 

When the ratio, V ar[ I ] / E 

2 [ I ] = τN/γ , is small (see

ppendix C.3 ), the value of I stays close to its expectation and

ew outbreaks occur, as the number of infected individuals rarely

eaches 0. For instance, for R 0 = 0 . 2 and τ = 4 . 9 . 10 −4 , τN / γ ∼ 0.2.

s decreasing τ increases this ratio, this could explain why we

verestimate τ opt for small values of R 0 (because smaller values of

 0 necessitate higher values of τ to get the same probability to

each the threshold c ). 
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Fig. 8. The average maximum number of infected individuals during the largest 

outbreak. The number of infected individuals during the largest outbreak ( Imax ) is 

numerically found with the deterministic model (line) and the numerical simula- 

tions of the continuous time stochastic model (dashed line). The situation is in- 

dicated for a reproductive ratio ( R 0 ) varying from 0 to 10 and with the recurrent 

emergence rate of the pathogen ( τ ) varying from 10 −6 to 10 −1 . 
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.4. What is the effect of the reservoir on the expected size of the 

argest outbreak? 

During the epidemic, a large outbreak can occur depending on

he value of the direct transmission ( R 0 ) and the spillover trans-

ission ( τ ) and corresponds to the largest number of infected in-

ividuals. To analyse the effect of the recurrent emergence of the

athogen on the size of the largest outbreak, we model the largest

utbreak by a SIR deterministic model with a spillover transmis-

ion: 
 

 

 

˙ S = −βSI − τS 
˙ I = βSI + τS − γ I 
˙ R = γ I. 

(15) 

Since no explicit expression of the size of the outbreak can be

btained with the deterministic model, we estimated it using nu-

erical analyses. 

Fig. 8 shows that the maximal number of infected individuals

uring the largest outbreak increases with the direct transmission

 R 0 ) and the spillover transmission ( τ ). When the direct transmis-

ion ( R 0 ) is small, the size of the largest outbreak can differ by

rders of magnitude with varying spillover transmission ( τ ). Fur-

hermore, a large outbreak can be observed for a pathogen barely

ontagious ( R 0 < 1) when the recurrent emergence of the pathogen

s high ( τ � 10 −3 ). 

. Discussion 

Zoonotic pathogens constitute one of the most pressing con-

erns with regards to future emerging diseases, but studies investi-

ating the importance of the role of animal reservoirs for the epi-

emiological dynamics of infectious diseases are lacking. Indeed,

ost theoretical works only consider pathogen transmission be-

ween conspecifics for predicting disease epidemiology. Here, we

uild a continuous time stochastic SIR model to consider the sta-

istical process underlying a spillover transmission, i.e. transmis-

ion from an animal reservoir to a host. We analyse the model to

redict the number and the size of outbreaks as a function of both

he spillover transmission and within host. The model shows that

pillover transmission influences the epidemiological dynamics as

uch as the transmission by direct contact between individuals.

hree different dynamics are observed, ranging from the absence

f outbreaks to a single large outbreak. The findings have implica-

ions for (1) modelling the dynamics of EIDs, (2) understanding the
ccurrence of outbreaks in the case of pathogens that are barely

ontagious and (3) control strategies. 

In our results, the appearance of outbreaks depends on both the

ransmission from the reservoir and the direct transmission be-

ween individuals. Generally, the occurrence of epidemics in hu-

ans is attributed to the ability of the pathogen to propagate be-

ween individuals. In the case of a single-host process, the notion

f the basic reproductive ratio R 0 seems sufficient to evaluate the

pread of the pathogen in a population entirely composed of sus-

eptible individuals. In EIDs, R 0 is also used to gauge the risk of

andemics. In this way, Lloyd-Smith et al. (2009) delineate the

hree stages identified for a zoonotic pathogen ( Wolfe et al., 2007 )

y using the ability of the pathogen to spread between individu-

ls. Each stage corresponds to a specific epidemiological dynamics

anging from a non-contagious pathogen making an outbreak im-

ossible (Stage II, R 0 = 0 ) to a barely contagious pathogen with few

utbreaks and stuttering chains of transmission (Stage III, R 0 < 1)

o a contagious pathogen making a large outbreak possible (Stage

V, R 0 > 1). The aim of the Wolfe’s classification is to establish each

tage at which a zoonotic pathogen may evolve to be adapted to

uman transmission only, in order to identify pathogens at po-

ential risk of pandemics. However, in our model, by taking into

ccount the recurrent emergence of the pathogen from the reser-

oir, the three dynamics that define the three stages will depend

n both the spillover transmission and the direct transmission of

he pathogen between individuals. The results suggest that in the

ase of pathogen spilling recurrently over an incidental host, the

irect transmission should not be the only parameter to consider. 

The presence of a reservoir and its associated recurrent

pillovers dramatically impact the epidemiological dynamics of

nfectious diseases in the incidental host. Without transmission

rom the reservoir, the probability to have an outbreak when the

athogen is barely contagious only depends on the direct trans-

ission between individuals, and the outbreak rapidly goes extinct.

y contrast, the results show that the recurrent emergence of the

athogen from a reservoir increases the probability to observe an

utbreak. Spillover transmission enhances the probability to both

bserve longer chains of transmission and reach the epidemiologi-

al threshold (i.e. threshold from which an outbreak is considered)

ven for a pathogen barely contagious. Moreover, this coupling

odel (reservoir-human transmission) allows the appearance of

ultiple outbreaks depending on both the ability of the pathogen

o propagate in the population and the transmission from the

eservoir. Zoonotic pathogens such as MERS, Ebola or Nipah are

oorly transmitted between individuals ( R 0 estimated to be less

han 1) ( Althaus, 2014; Chowell et al., 2014; Luby et al., 2009;

umla et al., 2015 ) yet outbreaks of dozens/hundreds/thousands of

nfected individuals are observed. We argue that, as suggested by

ur model, the human epidemic caused by EIDs could be due to a

ecurrent spillover from an animal reservoir. 

In the case of zoonotic pathogens, it is of primary importance

o distinguish between primary cases (i.e. individuals infected from

he reservoir) and secondary cases (i.e. individuals infected from

nother infected individual) to specify which control strategies to

mplement and how to optimize public health resources. Accord-

ng to the stochastic SIR model coupled with a reservoir anal-

sed here, the same dynamics can be observed depending on the

elative contribution of the transmission from the reservoir and

he direct transmission by contact with an infected individual (see

ig. 4 ). For example, a large outbreak is observed either for a high

pillover transmission or for a high direct transmission. The pro-

osed stochastic model makes it possible to understand the effects

f the infection from the reservoir or from direct transmission on

he epidemiological dynamics in an incidental host when empiri-

ally this distinction is difficult. Empirically, the origin of the in-

ection is established by determining the contact patterns of in-
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Fig. A.1. Probability for an excursion to be of size k . The situation is indicated for a 

reproductive ratio ( R 0 ) varying from 0.2 to 0.8. 
fected individuals during the incubation period. Thereafter, the role

of control programs implemented could be evaluated in order to

determine better strategies. 

We have considered that the reservoir is a unique population

in which the pathogen can persist, which is a simplifying assump-

tion. The pathogen is then endemic in the reservoir and the reser-

voir has a constant force of infection on the incidental host. The

reservoir can be seen as an ecological system comprising several

species or populations in order to maintain the pathogen indef-

initely ( Haydon et al., 2002 ). For example, bat and dromedary

camel ( Camelus Dromedarius ) populations are involved in the per-

sistence of MERS-CoV and in the transmission to human popula-

tions ( Sabir et al., 2016 ). In these cases, the assumptions of a con-

stant force of infection can be valid because the pathogen is en-

demic. However, zoonotic pathogens can spill over multiple inci-

dental hosts and they can infect each other. In the case of the Ebola

virus, which infects multiple incidental hosts such as apes, goril-

las and monkeys ( Ghazanfar et al., 2015 ), the principal mode of

contamination of the human population is the transmission from

non-human primate populations. Moreover, the contact patterns

between animals and humans is one of the most important risk

factors in the emergence of avian influenza outbreaks ( Meyer et al.,

2017 ). These different epidemiological dynamics with transmission

either from the reservoir or from other incidental hosts can largely

impact the dynamics of infection observed in the human popula-

tion, and the investigations of those effects can enhance our un-

derstanding of zoonotic pathogens dynamics. 

In our model, we make a second simplifying assumption by

considering that the infection propagates quickly relatively to other

processes such as pathogen evolution and demographic processes.

This assumption can be not valid in the case of low emergence

of the pathogen from the reservoir. Indeed, the time between two

spillovers can be long and makes the evolution of the pathogen

possible inside the reservoir. Moreover, during the time between

two spillovers, the demography in the incidental host can vary

and impact the propagation of the pathogen. In the case of low

spillover transmission in the incidental host, the effect of both

pathogen evolution and demographic processes can be a topic for

future research on the epidemiological dynamics of emerging in-

fectious diseases. 

In this paper, we have argued that the conventional way for

modelling the epidemiological dynamics of endemic pathogens in

an incidental host should be enhanced to account for spillover

transmission in addition to conspecifics transmission. We have

shown that our continuous time stochastic SIR model with a reser-

voir produces similar dynamics to those found empirically (see the

classification scheme for pathogens from Wolfe et al., 2007 ). This

model can be used to better understand the ways in which EIDs

transmission routes impact disease dynamics. 

Acknowledgements 

The authors have been supported by the “Chair Modélisa-

tion Mathématique et Biodiversité” of Veolia Environnement-Ecole

Polytechnique-Museum National d’Histoire Naturelle-Fondation X,

France. 

Appendices 

In this appendix, we derive results on the branching process ap-

proximation stated in Section 3 . The main idea of this approxima-

tion is the following: when the epidemiological process is subcrit-

ical ( R 0 < 1), an excursion will modify the state of a small number

of individuals with respect to the total population size. During the

i th excursions, the direct transmission rate βSI will stay close to

βS I where S denotes the number of susceptibles at the beginning
i i 
f the i th excursion. Hence, if we are interested in the infected

opulation, the rate βS i I can be seen as a constant individual birth

ate βS i . Similarly, γ I , which is the rate at which an individual in

he population recovers, can be interpreted as a constant individ-

al death rate γ in the population of infected individuals. 

ppendix A. Number of outbreaks in the subcritical case 

 R 0 < 1) 

In this section, we focus on the number of outbreaks when

 0 < 1 and when the rate of introduction of the infection by the

eservoir is small ( τ 
 1). That is to say, we consider that each in-

roduction of the infection by the reservoir occurs after the end of

he previous excursion created by the previous introduction of the

nfection by the reservoir. According to Eq. (12) , this approxima-

ion is valid as long as the ratio τ / β is small. We first approximate

he mean number of susceptible individuals consumed by an ex-

ursion. Let us consider a subcritical branching process with indi-

idual birth rate βN and individual death rate γ . As this process is

ubcritical, we know that the excursion will die out in a finite time

nd produce a finite number of individuals. Then from Britton and

ardoux (2018) or Van Der Hofstad (2016) , if we denote by K [ N, β ,

] the total number of individuals born during the lifetime of this

ranching process (counting the initial individual), we know that: 

 (K(N, β, γ ) = k ) = 

(2 k − 2)! 

k !(k − 1)! 

(
βN 

γ + βN 

)k (
γ

γ + βN 

)k −1 

, 

here P denotes a probability, and hence 

 [ K(N, β, γ )] = 

βN 

γ + βN 

∞ ∑ 

k =0 

(2 k )! 

(k !) 2 

(
γβN 

(γ + βN) 2 

)k 

, 

here E is the expectation. 

By definition, an excursion is considered as an outbreak only if

he maximal number of individuals infected at the same time dur-

ng this excursion is larger than an epidemiological threshold that

e have denoted by c . Hence in order to approximate the num-

er of outbreaks we still have to compute the probability for an

xcursion to be an outbreak. This is a classical result in branching

rocess theory which can be found in Athreya and Ney (1972) for

nstance. 

 (N, β, γ ) : = P ( more than c individuals infected 

at a given time ) = 

γ /βN − 1 

(γ /βN) c − 1 

. (A.1)

ith these results in hands, the method to approximate the mean

umber of outbreaks is the following: the probability that the first

xcursion is an outbreak is 

γ /βN − 1 

(γ /βN) c − 1 

. 
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he number of susceptibles at the beginning of the second excur-

ion is approximated by 

 2 = N − E [ K(N, β, γ )] . 

he second excursion has a probability 

γ /βS 2 − 1 

(γ /βS 2 ) c − 1 

o be an outbreak. The number of susceptibles at the beginning of

he third excursion is approximated by 

 3 = S 2 − E [ K(S 2 , β, γ )] , 

nd the third excursion has a probability 

γ /βS 3 − 1 

(γ /βS 3 ) c − 1 

o be an outbreak. The procedure is iterated as long as there is still

 positive number of susceptible individuals. This gives 4 . 

ppendix B. Number of outbreaks in the supercritical case 

 R 0 > 1) 

We now focus on the case R 0 = βN/γ > 1 . In this case the ap-

roximating branching process is supercritical and go to infinity

ith a positive probability. In the case where the epidemic pro-

ess describes small excursions, the branching process approxima-

ion is still valid, but in the case where it describes a large excur-

ion, then a large fraction of susceptible individuals is consumed

nd the branching approximation is not valid anymore. However,

s all the quantities (susceptible, infected and recovered individu-

ls) are large, a mean field approximation is a good approximation

f the process. Here the mean field approximation is the determin-

stic SIR process, whose dynamics is given by: 
 

 

 

˙ S = −βSI 
˙ I = βSI − γ I 
˙ R = γ I. 

(B.1) 

Let us first focus on the small excursions occurring before the

arge one. 

As they are small, they can be approximated by a branching

rocess. Here, unlike in the previous section, the approximating

ranching process Z is supercritical, as βN > γ . We compute its

robability to drift to infinity: 

p G := P ( Z ∞ 

= ∞ ) = 

βN − γ

βN 

. 

s we will see, a supercritical branching process with individual

irth rate βN and individual death rate γ conditioned to go extinct

as the same law as a subcritical branching process with individual

irth rate γ and individual death rate βN . Indeed, if we denote by

 n the successive values of this branching process, we get for every

ouple of natural numbers ( n, k ): 

P (Z n +1 =k + 1 | Z n = k, Z ∞ 

=0)= 

P (Z n +1 = k + 1 , Z n = k, Z ∞ 

= 0) 

P (Z n = k, Z ∞ 

= 0) 

= 

P (Z ∞ 

= 0 | Z n +1 = k + 1 , Z n = k ) P (Z n +1 = k + 1 | Z n = k ) 

P (Z ∞ 

= 0 | Z n = k ) 

= 

P (Z ∞ 

= 0 | Z n +1 = k + 1) 

P (Z ∞ 

= 0 | Z n = k ) 

βN 

βN + γ

= 

(
γ

βN 

)k +1 ( γ

βN 

)−k βN 

βN + γ
= 

γ

βN + γ
. 

here P (A | B ) denotes the probability of the event A when B is re-

lised. We used again in this series of equalities classical results on

ranching processes that can be found in Athreya and Ney (1972) .
s a consequence, if we denote by G [ N, β , γ ] the number of sus-

eptible individuals consumed by the excursion of a supercriti-

al branching process with individual birth rate βN and individual

eath rate γ conditioned to go extinct, we get: 

 [ G (N, β, γ )] = 

γ

γ + βN 

∞ ∑ 

k =0 

(2 k )! 

(k !) 2 

(
γβN 

(γ + βN) 2 

)k 

, 

nd the probability for this excursion to have a size bigger than

he epidemiological threshold c is 

βN/γ − 1 

(βN/γ ) c − 1 

. 

s the number of susceptible individuals stays large until the large

xcursion occurs, we may keep N as the initial number of suscep-

ibles at the beginning of the excursions instead of replacing it by

heir mean value, as we have done in the previous section. 

The different quantities we have just computed allow us to ap-

roximate the number of small excursions before the large excur-

ion: in expectation, we have 

∞ 

 

k =1 

(k − 1) p G (1 − p G ) 
k −1 = 

1 − p G 
p G 

= 

γ

βN − γ

mall excursions, which consume 

γ 2 

(βN) 2 − γ 2 

∞ ∑ 

k =0 

(2 k )! 

(k !) 2 

(
γβN 

(γ + βN) 2 

)k 

usceptibles and produce 

γ

βN − γ

βN/γ − 1 

(βN/γ ) c − 1 

= 

1 

(βN/γ ) c − 1 

utbreaks. 

Now we focus on the large excursion. We use Eq. (B.1) to ap-

roximate its dynamics. This equation is well-known, and it is easy

o obtain the equation satisfied by the final number of susceptible

ndividuals: from (B.1) 

˙ S 

S 
= −βI = −β

γ
˙ R . 

ence 

n (S(t)) − ln (S(0)) = −β

γ
(R (t) − R (0)) = −β

γ
(N − I(t) − S(t)) . 

n particular, if we are interested in the time T f when there is no

ore infected individual and we suppose that at time 0 there is

nly one infected individual we get 

n (S(T f )) − ln (S(0)) = 

β

γ
(S(T f ) − S(0)) . 

hat is to say, S ( T f ) and S (0) are related by the equation 

(T f ) −
γ

β
ln (S(T f )) = S(0) − γ

β
ln (S(0)) . 

igorously, the value of S (0) depends on the number of susceptible

ndividuals consumed by the small excursions before the large ex-

ursion, but we have seen that this number is small compared to

he population size, N . Hence the number of susceptible individu-

ls remaining after the large excursion can be approximated by the

mallest solution of: 

(T f ) −
γ

β
ln (S(T f )) = N − γ

β
ln (N) . (B.2)

as the largest solution is S(T f ) = N). 

Notice that it is easy to have an idea of the error caused by

 small variation of the initial state. Indeed, if we denote by S f 
he smallest solution of (B.2) and by S f − l(k ) the solution when

(0) = N − k for a k small with respect to N , we get: 
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Fig. C.1. Distribution of the number of infected individuals in a branching process 

with immigration for large times. The legend corresponds to the values of R 0 con- 

sidered. 
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(
S f −

γ

β
ln (S f ) 

)
− (S f − l(k ) − γ

β
ln (S f − l(k ))) 

= 

(
N − γ

β
ln (N) 

)
−

(
N − k − γ

β
ln (N − k ) 

)
, 

or in other terms 

l(k ) + 

γ

β
ln (1 − l(k ) /S f ) = k + 

γ

β
ln (1 − k/N) . 

As k and l ( k ) are small with respect to N , this can be approximated

by 

l(k ) ∼ k 

(
1 − γ

βN 

)
/ 

(
1 − γ

βS f 

)
. 

Finally, notice that in (B.1) , S is a decreasing quantity, and I is a

non-negative quantity, which varies continuously. Hence ˙ I = I(βS −
γ ) has to be negative before I hits 0. As a consequence, 

βS f 

γ
< 1 . 

This ensures that the epidemic is subcritical after the large out-

break. 

Appendix C. Effect of the reservoir on the number of outbreaks

In this section, we focus on the effect of the reservoir transmis-

sion rate (parameter τ ) on the number of outbreaks when the in-

fection is subcritical ( R 0 < 1). The idea is the following: first, as ex-

cursions of subcritical branching processes are small, we can make

the approximation that, at the beginning, the infection rate by the

reservoir is constant equal to τN , and that the direct transmission

rate is equal to βNI . Making this approximation allows us to han-

dle the two processes of infection (by contact and by the reservoir)

independently, and to use known results on branching processes

with immigration. 

C.1. Large τ

Recall that I denotes the number of infected individuals. We

first assume (8) and prove inequality (10) . Let us choose α > 1 such

that 

τN 

γ
≥ α(c − 1)(1 − R 0 ) . 

Then for any 1 ≤ k ≤ c − 1 , the jump rates of the process I are: 

τ (k → k + 1) = τN + βNk = γ

(
τN 

γ
+ R 0 k 

)
≥ γ k ((1 − R 0 ) α + R 0 )

τ (k → k − 1) = γ k. 

Hence 

τ (k → k + 1) 

τ (k → k − 1) 
≥ 1 + (α − 1)(1 − R 0 ) . 

This implies that once one individual is infected, the probability

for the number of simultaneously infected individuals to reach c

before the recovery of all infected individuals is larger than the

probability that a birth and death process with initial state 1 and

birth ( b ) and death ( d ) rates satisfying 

b 

d 
= 1 + (α − 1)(1 − R 0 ) 

reaches the state c . Applying (A.1) , we deduce that this probability

p c C.3 satisfies: 

P

p c = 

1 − (1 + (1 − R 0 ) α + R 0 ) 
−1 

1 − (1 + (1 − R 0 ) α + R 0 ) −c 
≥ 1 − (1 + (1 − R 0 ) α + R 0 ) 

−1 

= 

(α − 1)(1 − R 0 ) 

1 + (α − 1)(1 − R 0 ) 
. 

his proves (10) . 

Moreover, as α has been taken large, the infectious process

tays supercritical (in the sense that the next event is more likely

o be an infection than a recovery) until a size k satisfying 

k = τN + βNk ≥ γ (α(c − 1)(1 − R 0 ) + R 0 ) , 

nd thus if the number of infected individuals reaches c it is likely

o reach a large value and consume a large number of susceptible

ndividuals. 

.2. Small τ

As we approximate the infection process by a branching pro-

ess with constant immigration, the law of I under this approxi-

ation converges to a well-known law, provided by Eq. (8.75) in

ailey (1990) : 

 [ x I ] = 

(
1 − R 0 x 

1 − R 0 

)− τN 
γ R 0 

, 0 ≤ x ≤ 1 . (C.1)

rom this law, we can deduce the probability for I to be equal to

ny integer k : 

 (I = k ) = (1 − R 0 ) 
τN 
γ R 0 

1 

k ! 

k −1 ∏ 

i =0 

(
τN 

γ
+ iR 0 

)
, 

nd thus, the probability for I to be larger than c is 

 (I > c) = (1 − R 0 ) 
τN 
γ R 0 

∞ ∑ 

k = c+1 

1 

k ! 

k −1 ∏ 

i =0 

(
τN 

γ
+ iR 0 

)
. 

Recall that we assumed that 

τN 

γ
≤ 1 − R 0 

2 

. 

e thus get the following inequality 

 (I > c) ≤ τN 

γ (1 − R 0 ) 

∞ ∑ 

k = c+1 

1 

k ! 

k −1 ∏ 

i =1 

(
1 − R 0 

2 

+ iR 0 

)
. 

ow let us notice that for any i ≥ 1: 

1 − R 0 

2 

+ (i − 1) R 0 < i 
1 + R 0 

2 

. 

e thus get 

 (I > c) ≤ τN 

γ (1 − R 0 ) 

∞ ∑ 

k = c+1 

k ∏ 

i =2 

(1 − R 0 ) / 2 + (i − 1) R 0 

i 
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A

A  
≤ τN 

γ (1 − R 0 ) 

∞ ∑ 

k = c+1 

(
1 + R 0 

2 

)k −1 

= 

τN 

γ (1 − R 0 ) 

(
1 + R 0 

2 

)c−1 2 

1 − R 0 

≤ τN 

cγ (1 − R 0 ) 

(
1 + R 0 

1 − R 0 

)(
1 + R 0 

2 

)1 / ln (2 / (1+ R 0 )) −1 

, 

here to get the last inequality we computed the maximum of the

unction x 
→ xa x −1 for a = (1 + R 0 ) / 2 . As a conclusion, for a fixed

 0 < 1 and a small enough τ , the probability for the number of

nfected individuals at a given time to be higher than c is bounded

y a function of R 0 time τN / (cγ (1 − R 0 )) . This probability is thus

mall when the last term is small. 

.3. Variance of the process 

Recall Eq. (C.1) . It allows us to compute the variance of I , as

ollows: 

 [ I] = ∂ x E [ x I ] | x =1 = 

τN 

γ R 0 

R 0 

1 − R 0 

= 

τN 

γ (1 − R 0 ) 
, 

nd 

 [ I(I − 1)] = ∂ xx E [ x I ] | x =1 = 

τN 

γ R 0 

(
τN 

γ R 0 

+ 1 

)(
R 0 

1 − R 0 

)2 

= 

τN 

γ (1 − R 0 ) 2 

(
τN 

γ
+ R 0 

)
. 

hus 

ar [ I] = E [ I(I − 1)] + E [ I] − E 

2 [ I] 

= 

τN 

γ (1 − R 0 ) 2 

(
τN 

γ
+ R 0 + 1 − R 0 − τN 

γ

)
= 

τN 

γ (1 − R 0 ) 2 
. 

n particular, 

V ar[ I] 

E 

2 [ I] 
= 

τN 

γ
. 

.3.1. Duration of the excursion of a subcritical branching process 

In this section we provide an expression for the term E [ T 0 ]

hich appears in the definition of M I (see Eq. (13) ). This expres-

ion derives from the following equality, which can be found in

threya and Ney (1972) . Let t ≥ 0 and T 0 denotes the extinction

ime of the excursion of a branching process, with one individual

t time 0. Then we have 

 (T 0 > t) = 

γ − βN 

γ e (γ −βN) t − βN 

. 

his allows one to compute the expectation of T 0 as follows: 

 1 [ T 0 ] = 

∫ ∞ 

0 

tP (t < T 0 ≤ t + dt) = −
∫ ∞ 

0 

t∂ t P (T 0 > t) dt 

= 

∫ ∞ 

0 

P (T 0 > t ) dt , 

here we made an integration by parts. Thus 

 1 [ T 0 ] = 

∫ ∞ 

0 

γ − βN 

γ e (γ −βN) t − βN 

= lim 

1 

log 

(
γ − βNe −(γ −βN) t 

)
= 

1 

log 

(
γ

)
. 
t→∞ βN γ − βN βN γ − βN 

A

.4. Approximating blocks 

Recall that if we consider a branching process with individual

irth rate βN , individual death rate γ , and initial state k ≤ c , the

robability for this process to reach the size c is 

R 

−k 
0 

− 1 

R 

−c 
0 

− 1 

see Athreya and Ney, 1972 for instance). We use this result to ap-

roximate the probability for a block of the excursion to reach the

hreshold c by 

R 

−M I 

0 
− 1 

R 

−c 
0 

− 1 

, 

here we recall that M I is the mean number of simultaneous ex-

ursions generated by different infections from the reservoir. No-

ice that this is an approximation, as M I is not necessarily an inte-

er. 

.5. Unicity of the solution 

We end this appendix with the proof of the unicity of the so-

ution to (14) . To simplify the notations, we introduce the function

 , which at x associates: 

 (x ) := 

(
1 − R 

−x 
0 

− 1 

R 

−c 
0 

− 1 

)e x /x 

. 

opt is thus a solution to 

 

(
τN 

γ R 0 

log 

(
1 

1 − R 0 

))
= 

1 

2 

. (C.2) 

irst we notice that F is only defined for x ≤ c . Otherwise the term

n brackets would be negative. Second, notice that if x ≤ 1 and for

ny c ≥ 2 and R 0 < 1, 

R 

−x 
0 

− 1 

R 

−c 
0 

− 1 

≤ R 

−1 
0 

− 1 

R 

−c 
0 

− 1 

≤ R 

−1 
0 

− 1 

R 

−2 
0 

− 1 

= 

1 

1 + R 

−1 
0 

< 

1 

2 

. 

his shows that if x ≤ 1, F ( x ) > 1/2. We now determine the sign of

 

′ ( x ) for x belonging to the interval [1, c ]. A direct computation

ives: 

 

′ (x ) = F (x ) 

⎛ 

⎝ 

e x R 

−x 
0 

log R 0 

(R 

−c 
0 

− 1) x 
(

1 − R −x 
0 

−1 

R −c 
0 

−1 

)

+ 

e x 

x 

(
1 − 1 

x 

)
log 

(
1 − R 

−x 
0 

− 1 

R 

−c 
0 

− 1 

))
. 

s the two logarithms are negative for x belonging to (1, c ), we

educe that F ′ ( x ) < 0 for x belonging to (1, c ). As F (1) > 1/2 and

 (c) = 0 , we conclude that F (x ) = 1 / 2 has a unique solution on

he interval (1, c ). This is equivalent to the fact that (C.2) has a

nique solution τ opt which belongs to 

γ R 0 

N 

log 
−1 

(
1 

1 − R 0 

)
, c 

γ R 0 

N 

log 
−1 

(
1 

1 − R 0 

))
. 

his ends the proof. 
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