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Abstract

Background: Surrogate endpoints (SEs), such as progression-free survival (PFS) and
objective response rate (ORR), are frequently used in clinical trials. The relationship
between SEs and overall survival (OS) has not been well described in metastatic
urothelial cancer (MUC).
Objective: We evaluated trial-level data to assess the relationship between SEs and
OS. We hypothesize a moderate surrogacy relationship between both PFS and ORR
with OS.
Design, setting, and participants: We systematically reviewed phase 2/3 trials in MUC
with two or more treatment arms, and report PFS and/or ORR, and OS.
Outcome measurements and statistical analysis: Linear regression was performed, and
the coefficient of determination (R2) and surrogate threshold effect (STE) estimate
were determined between PFS/ORR and OS.
Results and limitations: Of 3791 search results, 59 trials and 62 comparisons met the
inclusion criteria. Of the 53 trials that reported PFS, 31 (58%) reported proportional
hazard regression for PFS and OS. Linear regression across trials demonstrated an
R2 of 0.60 between hazard ratio (HR) for PFS (HRPFS) and HR for OS (HROS), and
an STE of 0.41. Linear regression of DPFS (median PFS in months of the treatment
arm – that of the control arm) and DOS demonstrated an R2 of 0.12 and an STE of
14.1 mo. Thirty trials reported ORRs. Linear regression for ORRratio and HROS among
all trials found an R2 of 0.08; an STE of 95% was not reached at any value and DORR
and HROS similarly demonstrated a poor correlation with an R2 value of 0.03.
Conclusions: PFS provides only a moderate level of surrogacy for OS; An HRPFS of
�0.41 provides 95% confidence of OS improvement. ORR is weakly correlated with
OS and should be de-emphasized in MUC clinical trials. When PFS is discussed, pro-
portional hazard regression should be reported.
Patient summary: We examined the relationship between surrogate endpoints,
common outcomes in clinical trials, with survival in urothelial cancer trials.
Progression-free survival is moderately correlated, while objective response rate
sevier B.V. on behalf of European Association of Urology. This is an open access article
mmons.org/licenses/by-nc-nd/4.0/).

* Corresponding author. Department of Urology, University of Washington School of Medicine, 318
10th Avenue E, Unit B7, Seattle, WA 98102, USA. Tel. +1 626 329 9705.
E-mail address: fghali@uw.edu (F. Ghali).

https://doi.org/10.1016/j.euros.2022.11.003
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.euros.2022.11.003&domain=pdf
mailto:fghali@uw.edu
https://doi.org/10.1016/j.euros.2022.11.003
https://doi.org/10.1016/j.euros.2022.11.003


E U R O P E A N U R O L O G Y O P E N S C I E N C E 4 7 ( 2 0 2 3 ) 5 8 – 6 4 59
had a poor correlation with survival and should be de-emphasized as a primary
endpoint.

� 2022 The Authors. Published by Elsevier B.V. on behalf of European Association of
Urology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The selection of proper endpoints for clinical trials is imper-
ative to the accurate interpretation of trial results, and to
achieving the goal of novel therapies to prolong and/or
improve the quality of patients’ lives [1,2]. In oncology tri-
als, overall survival (OS) is the gold-standard clinical end-
point. Surrogate endpoints (SEs), conversely, are
measurable outcomes that are not intrinsically beneficial
for patients, but are known or thought to predict a mean-
ingful clinical benefit outcome, such as OS [3–5]. SEs are uti-
lized because they shorten clinical trial times, and often
sample size, resulting in decreased cost and quicker regula-
tory review with possible expedited access of novel thera-
pies to patients [4,6–8].

Recently, SE utilization in therapy approval has
increased, often without demonstrating an OS benefit
[3,9–12]. This trend is in response to a 1992 policy shift
by the Food and Drug Administration (FDA) allowing for
the approval of certain therapies based on a demonstration
of an SE benefit in a single phase 2 trial, rather than the
prior requirement to demonstrate an OS benefit in phase
3 trials [3,5,13]. Careful attention to this trend is warranted
as the relationship between SEs and OS may not be estab-
lished fully in the context of each malignancy type, and thus
an unverified assumption about clinical benefit undergirds
a significant proportion of novel therapeutics [4,14].

Urothelial cancer (UC) is a frequent and aggressive
malignancy, with 83 730 new cases and an estimated num-
ber of 17 200 deaths in 2021 [15]. Although the relationship
between SEs and OS has been explored in multiple other
malignancies evaluating trial-level data, metastatic UC
(mUC) trials have not been examined. As the relationship
between SEs and OS can also be a function of the biology
of the specific cancer, as well as the class of therapy being
evaluated (among several other potential confounders),
endpoint surrogacy must be evaluated within each cancer
therapy setting [3,16,17]; our analysis is focused on mUC.
To address this gap in knowledge, we reviewed clinical tri-
als in mUC to explore the relationship between commonly
used surrogates: progression-free survival (PFS) and objec-
tive response rate (ORR), with OS. We hypothesize a moder-
ate surrogacy relationship (R2 of �0.5–0.7 [18]) between
PFS and ORR with OS.
2. Patients and methods

2.1. Database search

Search strings for PubMed and EMBASE (Elsevier) with the assistance of

an information specialist used controlled vocabulary and free text terms

for (1) UC, (2) advanced or metastatic stage, and (3) clinical trials with

two or more arms. Databases were searched in August 2021. Search
results were deduplicated in EndNoteX9 [19] and exported to Excel for

title, abstract, and full-text reviews. Studies were included if these inves-

tigated mUC, had multiple arms, were randomized clinical trials, were

not surgical or radiation trials, and reported one SE and OS. Meeting

abstracts, nonrandomized clinical trials, prospective cohort, reviews,

and retrospective studies were excluded. Studies that included both

upper-tract UC and bladder cancer were included in the analysis, but

studies that investigated only patients with upper tract tumors were

excluded. Trials that did not report both OS, and PFS and/or ORR were

excluded.
2.2. Selection strategy

Search results underwent a two-pass review for inclusion: a focused

review of publication titles and abstracts was performed for initial

screening. A secondary review of the text of articles and data abstraction

was then carried out.
2.3. Data abstraction

Pertinent data were extracted from each manuscript. These included the

first author, publication year, participant number, percentage (%) of male

participants, crossover allowance in the study design, intervention/drug

type, median follow-up, OS, PFS, and ORR for each arm, and hazard ratio

(HR) for OS (HROS) and PFS (HRPFS).
2.4. Data analysis

Median values and interquartile ranges (IQRs) for the number of

patients, publication year, percent male participants, DPFS in months

(median PFS in months of the treatment arm minus that of the control

arm), HRPFS, ORRratio (calculated as ORRtreatment/ORRcontrol), DORR (me-

dian ORR [%] of the treatment arm minus that of the control arm), HROS,

and DOS (median OS [mo] of the treatment arm minus that of the con-

trol arm) were determined. Prespecified subgroups were described sep-

arately, including trials without crossover, trials with an immune

checkpoint inhibitor (ICI) agent as a treatment-arm intervention, non-

ICI trials, and trials with follow-up of longer than 24 mo.

The relationship between PFS and OS was evaluated in the following

ways: linear regression between HRPFS and HROS, and R2 was computed.

Linear regression between differences in median PFS (DPFS, in months)

and DOS was also performed. We similarly evaluated the relationship

between ORR and OS in two different ways: ORRratio and DOS, and DORR

(ORRtreatment – ORRcontrol) and DOS were correlated by linear regression,

and R2 was computed. Additionally, the surrogate threshold effect (STE),

the observed surrogate value that provides 95% confidence of an

expected OS benefit, was calculated as follows: (1) linear regression is

performed, (2) 95% predicted confidence interval (CI) bands are com-

puted and graphed, and (3) if the dependent variable was HROS, then

the STE was calculated by identifying the value at which the upper

95% predicted CI intercepts with the Y axis at Y = 1. When the dependent

variable was DOS, then the STE was calculated by identifying the value

at which lower 95% predicted CI intercepts the X axis (Y = 0) [17,20].

All analyses were performed using SPSS version 22.0 (IBM Corp.,

Armonk, NY, USA).
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3. Results

3.1. Data collection

From the original search of two databases, 996 PubMed and
2795 Embase results were retrieved. After deduplication
and manual screening, 3735 were excluded as those did
not meet the criteria (Fig. 1); 59 trials and 62 comparisons
were included in the analysis (Supplementary Table 1).
3.2. Trial description

The median trial sample size was 135 (IQR 85, 389), year of
publication was 2016 (2007, 2020), HRPFS was 0.86 (0.71,
1.03), DPFS was 0.2 (–1.55, 1.35) mo, ORRratio was 1.07
(0.76, 1.40), DORR was 3.0% (–10.0, 11.2%), HROS was 0.90
(0.80, 1.08), and DOS was 0.60 (–1.20, 2.58) mo. The median
follow-up was 23.5 (14.9, 41.2) mo. Ten of 62 (16%) trials
included crossover of the control arm to the treatment
Fig. 1 – Systematic clinical trial review schema. OS = overall sur
arm in the protocol, and 13 (21%) were evaluating immune
checkpoint inhibition interventions (Table 1). Descriptive
statistics of subgroups are shown in Table 1.
3.3. Correlation between SEs and OS

Of the 53 trials that reported PFS, 31 (58%) performed and
reported proportional hazard regression for PFS and OS. Lin-
ear regression of all trials demonstrated an R2 of 0.60
between HRPFS and HROS, and the STE was calculated and
found to be 0.41 (Fig. 2). Trials that did not allow crossover,
ICI and non-ICI trials, trials with follow-up of >24 mo, and
first-line and non–first-line trials were evaluated separately
(Table 2).

Linear regression between DPFS and DOS demonstrated
an R2 of 0.12 and an STE of 14.1 mo (Fig. 2). Subgroups were
analyzed with respect to DPFS and DOS (Table 2).

Linear regression for ORRratio and HROS including all trials
demonstrated an R2 of 0.08, and an STE of 95% was not
vival; SE = surrogate endpoint; UCC = urothelial carcinoma.



Table 1 – Descriptive analysis of trial comparisons of mUC

All trials No crossover ICI Non-ICI Longer follow-up

Trial comparisons (%) 62 (100) 50 (81) 13 (21) 49 (79) 17 (27)
N 135 (85, 389) 121 (85, 370) 686 (176, 732) 110 (82, 237) 263 (110, 643)
% Male 76 (74, 80) 76 (74, 81) 75 (75,77) 77 (73, 81) 75 (74, 82)
Year of publication 2016 (2007, 2020) 2014 (2005, 2018) 2020 (2019, 2020) 2013 (2005, 2017) 2013 (2005, 2020)
HRPFS 0.86 (0.71, 1.03) 0.85 (0.70, 1.06) 0.80, 0.64, 0.97) 0.87 (0.73, 1.07) 0.87 (0.75, 1.00)
DPFS (mo) 0.20 (–1.55, 1.35) –0.10 (–1.80, 1.35) 0.60 (–1.90, 1.90) 0.20 (–1.53, 1.30) –0.90 (–3.03, 1.23)
ORRratio 1.07 (0.76, 1.40) 1.04 (0.77, 1.35) 1.07 (0.70, 1.83) 1.05 (0.77, 1.35) 0.74 (0.67, 1.22)
DORR (%) 3.0% (–10.0, 11.2%) 2.5% (–10.5, 11.6%) 3.0% (–13.8, 9.9%) 2.6% (–8.8, 13.5%) –9.3% (–16.5, 9.5%)
HROS 0.90 (0.80, 1.08) 0.89 (0.80, 1.08) 0.86 (0.73, 0.94) 0.94 (0.83, 1.14) 0.87 (0.75, 0.94)
DOS (mo) 0.60 (–1.20, 2.58) 0.55 (–1.23, 2.35) 2.60 (0.85, 3.15) 0.20 (–1.30, 1.90) 1.10 (–1.10, 2.50)

HR = hazard ratio; ICI = immune checkpoint inhibitor; mUC = metastatic urothelial cancer; ORR = objective response rate; OS = overall survival; PFS = pro-
gression-free survival.
Longer follow-up indicates trials with follow-up of �24 mo.

Δ

Δ

Δ %

Fig. 2 – Linear regression analysis between (A) HRPFS and HROS, (B) DPFS and DOS, (C) ORRratio and HROS, and (D) DORR and HROS among all trial comparisons.
Longer follow-up indicates trials with follow-up of ≥24 mo. HR = hazard ratio; IO = immunotherapy; ORR = objective response rate; OS = overall survival;
PFS = progression-free survival; STE = surrogate threshold effect.
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reached at any value (Fig. 2) or in any subgroup (Table 2).
Linear regression for DORR and HROS demonstrated a poor
correlation with an R2 value of 0.03, and an STE of 95%
was not reached (Fig. 2). Similarly, a subgroup analysis of
DORR and HROS revealed low R2 values, and no STE was
found for any subgroup (Table 2).
4. Discussion

We report a systematic trial-level analysis of the relation-
ship between candidate SEs and OS in MUC. Among avail-
able comparisons, there was a moderate correlation
between HRPFS and HROR, but a weak correlation between
DPFS and DOS, and DORR or ORRratio with HROS. Despite a
moderately strong R2, an STE of 0.41 is computed for HRPFS,
while an STE for ORR was not reached. Taken together, our
findings indicate that PFS is a moderately good surrogate for
OS and an observed HRPFS of �0.41 provides 95% confidence
of an improvement in OS. An ORR, conversely, represents a
poor surrogate for OS.

SEs are increasingly used in lieu of OS as primary end-
points in studies of novel cancer therapies [4,9]. Chen
et al. [4] reported that since 1996, the rate of FDA drug
approval based on SEs alone has increased dramatically,
with <30% ultimately reporting requisite postmarket OS or
quality of life data [21]. This trend is a response to FDA pol-
icy shifts implemented in the 1990s in the form of an accel-
erated approval tract intended for therapies to urgently life-



Table 2 – Coefficient of determination, R2, and STE for PFS and ORR with OS including all trials, as well as key subgroups

PFS N R2 HRPFS STE HRPFS N R2 DPFS STE DPFS (mo)

All trials 31 0.60 0.41 53 0.12 14.10
No crossover 27 0.65 0.44 45 0.13 15.42
ICI 6 <0.01 NR 11 0.07 NR
Non-ICI 24 0.63 0.33 41 0.15 16.10
Longer follow-up 9 0.76 0.59 14 0.21 9.94
First line 16 0.48 0.24 28 0.02 NR
Non–first line 15 0.74 0.34 22 0.41 4.67

ORR with OS N R2ORRratio STE ORRratio N R2DORR STE DORR (% difference)

All trials 30 0.08 NR 30 0.03 NR
No crossover 25 0.05 NR 25 0.02 NR
ICI 10 0.17 NR 10 0.07 NR
Non–ICI 19 0.16 NR 19 0.09 NR
Longer follow-upa 11 0.17 NR 11 0.30 NR
First line 31 <0.01 NR 29 <0.01 NR
Non–first line 18 0.20 NR 20 0.24 NR

HR = hazard ratio; ICI = immune checkpoint inhibitor; NR = not reached; ORR = objective response rate; OS = overall survival; PFS = progression-free survival;
STE = surrogate threshold effect.
a Longer follow-up indicates trials with follow-up of ≥24 mo.
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threatening conditions, such as acquired immunodeficiency
syndrome, and later expanded to include cancers. Among
several changes, the FDA accepted the use of SEs as the basis
for approval of new drugs rather than OS [13]. The validity
of this increasing reliance on SEs hinges on a strong correla-
tion between SEs and OS since cancer therapies that
improve only PFS or ORR, but do not extend patients’ lives,
are of questionable clinical benefit [1,2].

Validation attempts of SEs in other malignancies have
yielded mixed results, and meta-analyses find that most
tumors are characterized by a poor correlation between
SEs and OS [3,14]. Nevertheless, of medicines approved on
the bases of SEs alone, 61% had insufficient or no prior SE
validation, and 16% occur in a setting where validations
have found a poor correlation with OS [4]. mUC is an exam-
ple of the former.

Given this gap in knowledge, our finding of a moderate
correlation between HRPFS and HROS in MUC is a key to reli-
ance on this endpoint in clinical trials. With an R2 value of
0.60 among all trials, one can be confident that a significant
proportion of the variance in OS can be explained by PFS in
MUC. Importantly, an STE of 0.41 suggests that the observed
HRPFS below this value provides 95% confidence of an
expected HROS of <1.0. Put another way, a study reporting
PFS must achieve an HR of �0.41 to provide 95% confidence
of OS benefit. These findings measure favorably with vali-
dated surrogates in other malignancies. For colorectal can-
cer, Buyse et al. [22] found an R2 of 0.55 with an STE of
0.77 for HRPFS, which was sufficient to validate PFS in that
context. Belin et al [18] reported a methodological system-
atic review of strategies for PFS surrogacy assessment and
argued for an R2 of �0.6 as a threshold for validation. Earlier
work specific to bladder cancer has not addressed the STE
directly, but instead has evaluated PFS time points as pre-
dictors of OS. Using patient-level data from seven
chemotherapy trials, Galsky et al [23] reported improved
OS for those with PFS >6 and >9 mo (HR 2.49 [95% CI
1.55–3.89] and HR 2.84 [95% CI 1.81, 4.24], respectively).
This corroborates our finding of a moderate correlation
between PFS with OS. Our results may support the use of
PFS as a surrogate for OS in MUC, although a strong PFS ben-
efit (HR �0.41) is necessary to provide 95% confidence of
the predicted OS benefit.

Examining the difference in median PFS (DPFS) com-
pared with DOS yielded weaker support for surrogacy com-
pared with HRs. We find an R2 of 0.12 and an STE of 14.1
mo, a threshold that none of the examined trials achieved.
The discrepancy between surrogacy validation for HRPFS

and DPFS highlights an important methodological issue in
surrogacy validation of this type. Many SE validations in
the literature performed analyses using DPFS and did not
analyze HRPFS in the analysis [3,18,24]. Indeed, guidance
on SE validation from regulatory agencies is scant and quite
vague regarding statistical details. The Institute for Quality
and Efficiency in Health Care, for example, highlights the
importance of strong correlations and STE, but does not
comment on the specific parameter to consider in the
regressions, that is, HR or difference of medians [25]. Addi-
tionally, HRPFS is not universally reported in trials, even
when PFS is the primary endpoint. In this study, of the 53
comparisons reporting PFS, 22 (42%) did not report HR
and instead presented only median PFS of each arm. The
staggering difference in results between these two methods
of analyzing similar data highlights the need for standard-
ization of surrogacy validation prior to their use in drug
approval. In mUC, proportional hazard regression should
be performed and HRPFS should be reported for trials using
PFS as an SE.

The ORR performed poorly as a surrogate for OS in mUC.
Regardless of the method of analysis, R2 values were low
and the STE at 95% confidence was not reached. This was
reproduced within subsets of trials including trials without
crossover, immunotherapy (IO) and non-IO trials, or trials
with follow-up of >24 mo. Our findings suggest that ORR
alone should not be used as a surrogate for OS, especially
when justifying the approval of new therapies.

Several trial design tools influence the relationship
between SEs and OS, and thus warranted a separate analy-
sis. Trials with follow-up of longer than 24 mo demon-
strated an improved R2 of 0.76 and a more favorable STE
of 0.59 for HRPFS. This finding is intuitive as longer trials
allow for accrual of additional mortality events and likely
more completely capture differential OS, and thus may bet-
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ter reflect the PFS/OS relationship. Importantly, DPFS and
ORR improved as well among trials with longer follow-up,
but did not reach a threshold to make this SE a strong pre-
dictor of OS, and the STE was still not reached at 95% confi-
dence for ORR.

Similarly, trials evaluating therapeutics in the first-line
setting may have different performance of SEs from those
in the non–first-line setting. Since patients evaluated for
non–first-line therapeutics have failed prior therapy and
are further along in the natural history of their metastatic
disease, they will have shorter median survival and thus a
smaller interval between capture of SEs and OS. We find
that SEs tend to perform modestly better in the second-
line setting. Most notably, DPFS demonstrated a reasonable
STE of 4.67 mo in non–first-line trials, significantly better
than that in the first-line space (Table 2). ORR continued
to perform poorly regardless of the line of therapeutic being
evaluated.

Crossover between the control and treatment arms is
another factor that influences the SE/OS correlation. In lung
cancer, Hashim et al [24] reported very poor correlation
coefficients for ORR and PFS among 146 clinical trials exam-
ined (R = 0.18 and R = 0.25, respectively), but significantly
improved correlation coefficients among trials where cross-
over was not allowed (R = 0.53 for ORR and R = 0.78 for PFS).
This is also intuitive as control arms that cross over to
receive an experimental treatment after the primary SE is
captured may receive the benefits of the therapy reflected
in their OS measurement, thus biasing any OS difference
toward zero, while preserving a strong PFS difference. How-
ever, when trials with crossover were excluded from our
data, our findings did not change significantly. Still, this
highlights two important points. First, SE validation should
consider a subanalysis in crossover-restricted trials to avoid
underestimating SE/OS correlations. Second, the use of
crossover should be avoided in trials investigating the first
instance of the use of therapy in a particular disease, as this
not only contaminates a subsequent OS analysis, but also
potentially delays the access to more established second-
line therapies to expose control-arm patients to a still
unproven intervention. Conversely, trials investigating ther-
apy advancement in a particular disease (ie, second- to first-
line therapy) should ideally provide crossover to the control
arm upon progression in order to reflect standard-of-care
treatment [26].

SEs suffer from important limitations that might explain
their poor correlation with survival. Examples include
important statistical considerations such as the dispropor-
tionate impact of missing data on PFS compared with OS
[27,28]. Additionally, as PFS/ORR is determined with the
use of cross-sectional imaging, while OS is more obvious
to capture, the inherent limitations of imaging confer added
challenges on these endpoints. Target lesion identification,
measurement, and classification within the Response Evalu-
ation Criteria in Solid Tumors (RECIST) system, for example,
are frequent sources of error and can thus contribute to the
observed poor reproducibility and high rates of inconsis-
tency in assessments among various trial practitioners and
central reviewers [29–31]. Further, the intensity of surveil-
lance imaging and duration of follow-up time can influence
PFS/ORR. Despite continued efforts to address many of these
challenges [32,33], technical and conceptual problems
continue to plague SE reliance and highlight the urgent
need to ideally validate SEs prior to their isolated use in
clinical decision-making.

This study is limited by the number of trials that have
been performed in mUC, and that present both an SE and
OS, which is a relatively small sample size. Additionally,
our analysis correlates SEs with OS only, and does not con-
sider important potential relationships with health-related
or overall quality of life endpoints and patient-reported out-
comes. The criteria for PFS/ORR definitions, almost univer-
sally the RECIST system, have undergone several versions
of modifications and represent an additional source of
heterogeneity when comparing trials [32–34]. Finally, some
validation strategies utilize patient-level data to estimate
the relationships between surrogates and clinical endpoints
[35]. Although trial-level analyses are significantly more
frequent in the surrogacy literature [3,18], both strategies
have a role in answering these important questions [25].
5. Conclusions

mUC trials demonstrating a significant improvement in
HRPFS can be expected to represent in improvement in HROS.
However, there is a poor correlation of DPFS with DOS, and
DORR or ORRratio with HROS; thus, improvements in these
surrogates alone should be interpreted with caution and
should be de-emphasized in mUC trials. The large variabil-
ity in the results when comparing DPFS/DOS and HRPFS

and HROR highlights the need to standardize the validation
of surrogacy biomarkers in MUC.
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