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Better understanding the variabilities in crop yield and production is critical to assessing

the vulnerability and resilience of food production systems. Both environmental (climatic

and edaphic) conditions and management factors affect the variabilities of crop yield.

In this study, we conducted a comprehensive data-driven analysis in the U.S. Corn

Belt to understand and model how rainfed corn yield is affected by climate variability

and extremes, soil properties (soil available water capacity, soil organic matter), and

management practices (planting date and fertilizer applications). Exploratory data

analyses revealed that corn yield responds non-linearly to temperature, while the negative

vapor pressure deficit (VPD) effect on corn yield is monotonic and more prominent.

Higher mean yield and inter-annual yield variability are found associated with high soil

available water capacity, while lower inter-annual yield variability is associated with high

soil organic matter (SOM). We also identified region-dependent relationships between

planting date and yield and a strong correlation between planting date and the April

weather condition (temperature and rainfall). Next, we built machine learning models

using the random forest and LASSO algorithms, respectively, to predict corn yield with

all climatic, soil properties, and management factors. The random forest model achieved

a high prediction accuracy for annual yield at county level as early as in July (R2 =

0.781) and outperformed LASSO. The gained insights from this study lead to improved

understanding of how corn yield responds to climate variability and projected change in

the U.S. Corn Belt and globally.

Keywords: corn yield, US Corn Belt, vapor pressure deficit, soil properties, machine learning, random forest,
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INTRODUCTION

Understanding how different factors (e.g., climate, soil,
managements) affect crop yield has critical values to scientific

research and practical applications. Identifying and quantifying
the relationships between crop yield and various factors allows
for better ways to close the yield gap, increase yield potentials

(Lobell et al., 2009; van Ittersum et al., 2013), and improve the

predictive capability of crop yield for both short-run commodity
market and long-term climate change adaptation (Schlenker and
Roberts, 2009; Cai et al., 2017; Peng et al., 2018; Li et al., 2019;
Kang et al., 2020). The U.S. Corn Belt produces about ∼30%
of the total global corn production and plays the most critical
role in the global corn export. Thus, understanding drivers and
improving prediction capability of corn yield variability for
the U.S. Corn Belt is critical to forecast the food supply and
price fluctuations.

How environment and managements affect corn yield is a
classic question that has been studied extensively by agronomists,
plant biologists, economists, and recently earth system scientists
(Cassman, 1999; Al-Kaisi and Yin, 2003; Kucharik, 2003;
Schlenker and Roberts, 2009; Subedi and Ma, 2009; Lobell et al.,
2014; Kang et al., 2020). However, there are still a few gaps.
Increasingly, more studies have shown that aggregating climate
variables into a growing-season condition to predict crop yield
is not adequate (Li et al., 2019), as crop has a temporally-
varying response to the same climate variable that depends on
which phenology stage the crop is in (Butler and Huybers, 2015;
Daryanto et al., 2016; Mladenova et al., 2017). Meanwhile, crop
yield response to climate may also vary spatially because of the
varying planting date and corn maturity length across the large
Corn Belt (Zhu et al., 2018). Therefore, regional analyses of crop
yield need to explicitly account for the spatial and temporal
variabilities in yield response to climate.

Second, though high temperature has been empirically
identified as the primary climate variable that affects corn
yield in the U.S. (Schlenker and Roberts, 2009; Zhu et al.,
2018), the underlying mechanisms still remain less quantified.
Specifically, whether temperature affects yield directly through
crop growth/phenology or indirectly through the effects of
high atmospheric water demands (measured by high vapor
pressure deficit, or VPD) that throttles crop stomata, is still
debatable. Temperature affects plant physiological processes of
photosynthesis and carbon allocation to different components
(Kim et al., 2007; Rattalino Edreira and Otegui, 2012; Prasad
et al., 2017); high temperature (i.e., “heat stress”) that happens
during the reproductive stage of corn leads to reduction in seed
number, and high temperature during the grain-filling stage leads
to lower seed weight (Rattalino Edreira et al., 2011, 2014; Prasad
et al., 2017). High VPD, as an indicator of atmospheric dryness,
increases water loss from plants or soil to the atmosphere. Plants
respond to high VPD by closing their stomata to avoid faster
water loss with a consequence of lowering photosynthesis rate
(Grossiord et al., 2020; Kimm et al., 2020). High VPD may also
cause faster depletion of soil moisture storage, which may result
in more later-season soil moisture deficit (Zhou et al., 2019).
Because VPD and temperature are highly correlated, attributing

the effects of VPD and temperature on corn yield is thus a
critical challenge.

Third, soil properties such as soil available water capacity
(AWC) and soil organic matter (SOM) have been identified as
two major soil properties that can affect yield (Kravchenko and
Bullock, 2000). High AWC allows for a higher water storage in
the soil column and therefore more available water for plant to
use to alleviate drought stress. High SOM is often associated
with high AWC and provides nutrients-rich soil conditions
which are conducive for crop growth. When fertilizer is over-
applied, the relationship between SOM and corn yield may be
confounded. However, heavy rainfall events and the subsequent
nutrient leaching may cause nitrogen deficit in the later growing
season (Li et al., 2019), and in these cases high SOM can serve as
a buffer to reduce yield loss.

Fourth, management practices of farmers, such as those
related to farm financial planning and logistics, also affect corn
yield (Carter et al., 2018). The important decisions that have
direct effects on corn yield include planting date and density,
amount and timing of fertilizer application, and seed types.
Planting date depends on the field working condition that is
strongly associated with weather variability (Urban et al., 2015,
2018). Seed maturity group and planting date together determine
the length of the crop growing period. Various studies have
shown a positive correlation between a longer growing cycle and
increased yield (Lauer et al., 1999; Sacks and Kucharik, 2011;
Lobell et al., 2014). Earlier planting can increase yield through
lengthening the vegetative period and higher leaf area (Nielsen
et al., 2002). Several field experiments have investigated the
planting date impacts on corn yield in the Corn Belt, however
their findings are region-dependent (Lauer et al., 1999; Nielsen
et al., 2002; Van Roekel and Coulter, 2011). In addition, fertilizer
amount/timing and cultivar types are all critical for corn growth
(Scharf et al., 2002). A comprehensive and quantitative analysis
of how these management practices affect yield at broader spatial
scales is still missing.

Meanwhile, the increasing availability and accessibility of
nationwide datasets of climate, crop survey and management
practices in the U.S. provides the opportunity to re-examine the
classic question of what affects crop yield at large spatial and
temporal scales. In particular, these datasets enable the use of
machine learning approaches to infer the relationships between
yield and various factors inductively, independent of assumptions
and local data typically involved in physical crop models.

In the current study, we synthesize various datasets including
climate, soil, management (fertilizer use and planting date) and
corn yield data at the county level in the U.S. Corn Belt from 2000
to 2012. Using a data-driven approach, we aim to (1) identify
the key drivers of the spatio-temporal variability of rainfed corn
yield, and (2) develop machine learning models to predict yield
using these drivers and quantify the in-season predictability of
rainfed corn yield. To achieve the first objective, we will perform
exploratory data analysis to examine the relationships between
climate, soil, and management factors and the spatio-temporal
variability of rainfed corn yield. The gained insights are then
used to develop machine learning models for yield prediction
(the second objective) and interpret the learned models. More
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specifically, we will develop machine learning forecast models to
predict annual corn yield and assess the prediction accuracy with
varying leading time. As such, the current study will demonstrate
the contribution of the data-driven approach and machine-
learning to improve the understanding and prediction capability
of corn yield response to various factors.

MATERIALS AND METHODS

Data Used and Spatial Division Based on
Averaged Climate
This study includes data of climate, soil, management (fertilizer
use and planting date), and corn yield data at the county level
in the U.S. Corn Belt for 2000–2012 (Table 1). Our analysis is
based on 2000–2012 county-level annual crop yield data from
the National Agricultural Statistics Service (NASS) of the U.S.
Department of Agriculture (USDA). In this study, we focus on
counties in the U.S. Corn Belt that (1) have zero irrigation acreage
(i.e., rainfed), (2) corn planting area exceeds 20% of the total
area in that county, and (3) corn planting area exceeds that of
soybeans at least by 5% of the county area. Excluding counties
with incomplete data record, in total we perform analysis on
166 counties from nine states (Minnesota, South Dakota, Iowa,
Nebraska, Wisconsin, Illinois, Indiana, Ohio, and Kentucky).
Figure 1 shows the multi-year average of rainfed corn yield and
its inter-annual coefficient of variation (C.V.) from 2000 to 2012.
Counties in central Illinois exhibit high C.V. due to substantial
loss from 2012 drought. Yield average and C.V. from 2000 to
2011, which are more representative for normal conditions, are
shown in Supplementary Figure 1.

We use the climate record from PRISM (Parameter-elevation
Relationships on Independent Slopes Model) (Daly et al.,
2008), which interpolates the daily observations from over
13,000 stations across the conterminous U.S. into grids at
4-km resolution based on digital elevation and empirical
model. Specifically, daily precipitation, mean temperature, and
maximum VPD from PRISM data are used to derive metrics
for climate condition and climate extreme events, which are

described in detail in section Feature Selection and Correlation
Analyses Between Climate Variables and Yield. Soil variables
consist of AWC and SOM based on the gridded Soil Survey
Geographic (gSSURGO) dataset, which has a spatial resolution of
30m (NRCS, 2016). The dataset is a compilation of data collected
through field survey and sampling campaigns conducted by the
USDA NRCS. Expressed as a volume fraction, AWC describes
the amount of water soil can store that is available to plants. It is
commonly estimated as the difference between the water contents
at 1/10 or 1/3 bar (field capacity) and 15 bars (permanent
wilting point) tension and adjusted for salinity, and fragments.
SOM is the fraction of the soil that consists of plant or animal
tissue; organic matter contributes to soil fertility. The climate
variables are aggregated to county level by taking the average
spatially. The soil variables are averaged to county level by using
the 2016 National Land Cover Database (NLCD) as a mask
of cropland (Wickham et al., 2014). In addition, the analysis
considers two management variables: planting date and nitrogen
fertilizer application amount. Planting date is averaged over each
county from the randomly resampled 100 corn fields that are
based on the Risk Management Agency (RMA) dataset of USDA
(Lobell et al., 2014). We used county-wise nitrogen fertilizer
application estimates from the NUGIS dataset [International
Plant Nutrition Institute (IPNI), 2011], which is based on the
nitrogen fertilizer sale information aggregated to the county level,
assuming locally sold fertilizer is used locally [International Plant
Nutrition Institute (IPNI), 2011].

To better understand the varying patterns of corn yield
response across different climate conditions, we divide the 166
counties into four groups according to their long-term average of
precipitation and mean temperature from March to September.
Climate conditions in March and April are included because
pre-growing season soil moisture also affects crop yield (Li
et al., 2019). Four types of climate are defined: HighP.HighT,
HighP.LowT, LowP.HighT, and LowP.LowT (Figure 2A). The
dividing criteria are shown in Figure 2B and are selected as
the median of the countywise monthly precipitation (P) and
temperature (T), respectively, averaged over March to September
from 1980 to 2012. It is worth noting that high or low P (or

TABLE 1 | Data used in this study.

Group Variable Notation Unit

Agronomy Corn yield y bushel/acre

Climate Monthly total precipitation P mm

Number of dry days Nd –

Monthly averaged daily mean temperature T ◦C

Heatwave Nh –

Monthly averaged daily maximum vapor pressure deficit VPD hPa

Soil properties Available water capacity AWC –

Soil organic matter SOM % weight

Management Planting date (day of year) DoP –

Fertilizer (N) application N kg/acre

Corn yield is the response variable, and all other variables are predictors (explanatory variables).
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FIGURE 1 | The multi-year average yield and inter-annual coefficient of variation (C.V.), evaluated during 2000–2012. (A) Average yield. (B) Coefficient of variation.

T) are defined in relative sense, as our study area (the core
rainfed part of the U.S. Corn Belt) in general has sufficient rainfall
and agreeable temperature for crop growth. Overall, counties
having latitude above 42N are grouped into the low T climates,
while precipitation pattern is less obvious. The HighP.LowT
group is primarily comprised of counties in southern Minnesota
and northeastern Iowa, while LowP.LowT counties are scattered
in Minnesota, western Iowa, southern Wisconsin and northern
Illinois. The HighP.HighT group includes counties scattered
in Iowa, Illinois and Indiana. Lastly, LowP.HighT counties

are mainly located in western Iowa and central Illinois.
Performing analyses for each group enables investigating
how the crop yield response varies spatially and across the
climate gradient.

Feature Selection and Correlation Analyses
Between Climate Variables and Yield
Selecting which climate variables, including which one and
at what time, to use as inputs is an important step for
estimating/predicting crop yield. Besides the commonly-used
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FIGURE 2 | Dividing the counties in this study into four groups based on the growing season average temperature and monthly precipitation (from March to

September) based on climatology during 1980–2012 (A). The dashed lines in (B) indicate dividing criteria.

climate variables P, T, and VPD, we also use the PRISM data to
calculate the following climate extreme metrics for each month,
based on the WMO CLIMDEX climate extremes indices (Karl
and Easterling, 1999; Donat et al., 2013). They are: (1) dry-spell
(maximum number of consecutive days without precipitation),
(2) the number of days without precipitation, (3) wet-spell
(maximum number of consecutive days for which precipitation
exceeds daily climatology by over 3mm), (4) accumulated
precipitation exceeding monthly climatology, (5) maximum
consecutive 5-day precipitation, (6) precipitation intensity index
(i.e., average precipitation amount on rainy days), (7) heatwave
(maximum consecutive number of days for which the daily
maximum temperature exceeds themonthly climatology by 5◦C),
(8) the number of days for which the dailymaximum temperature
exceeds 30◦C, (9) average value of daily temperature range, (10)
cold-wave (maximum consecutive number of days for which the
daily minimum temperature is below the monthly climatology
by over 4◦C), and (11) extreme heat days (i.e., accumulated
degree∗day exceeding 30◦C).

We then perform correlation analysis (results not shown
due to space limit) to determine which climate metrics we will
include in later modeling analysis. Specifically, we examine the
degree of correlation among the variables corresponding to each
month, as well as correlation between yield and the variables of
each month during the growing season. Co-linearity is detected
among many of the variables. For example, the monthly averaged
Tmax, Tmin, and Tmean are strongly correlated with each other
at any month. Correlation analyses suggest Tmax has overall
the highest correlation with yield. Similarly, among the WMO
CLIMDEX climate extreme indices the number of dry days
(denoted as Nd) and heatwave (denoted as Nh) yield overall the
highest correlation with yield. In order to reduce redundancy and
construct a parsimonious dataset for the downstream analysis, we
include monthly total precipitation (P), monthly averaged daily
Tmean (T), monthly averaged daily maximum VPD, Nd, and Nh

(Table 1) for the correlation analyses and data-driven modeling
results presented in section Results. Inclusion of the variables that
were not selected does not significantly improve the prediction
accuracy of yield. We first detrend the annual crop yield, total P
and mean T via linear regression. Next, for each year we multiply
daily P (T) with the ratio of detrended annual P (T) to annual
P(T) before detrending. The resulting detrended daily P and T are
then used to calculate the monthly P, T, Nd,and Nh. All variables
are scaled to [0, 1].

Besides the climate indices, we also consider two soil property
variables [soil available water content (AWC) and soil organic
matter (SOM)], and two management practice variables [county-
averaged planting date (DoP) and nitrogen fertilizer application
(N)] (Table 1).

Using Machine Learning Models to Predict
Rainfed Corn Yield
Correlation analyses, as a useful way of data exploratory
analysis, provide a comprehensive view on the empirical
relationships between corn yield and individual predictors.
We then use two widely used parametric and nonparametric
machine learning algorithms, random forest and Least Absolute
Shrinkage and Selection Operator (LASSO), respectively, to
predict rainfed corn yield using the predictors (input variables)
in Table 1.

Random Forest
Random Forests (Breiman, 2001) are a non-parametric, non-
linear ensemble machine learning algorithm. A random forest
model (RF) is comprised of N decision trees and outputs the
mean prediction of individual trees. Each tree is trained using
a bootstrap sample of the dataset {xi, yi}, i = 1, . . . , n, where
xi = {xi1, ..., xij, ..., xip}

T is a vector comprised of p input
variables and yi is the corresponding output (i.e., corn yield).
The tree recursively partitions the input space into rectangular
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regions through a sequence of binary splits. A binary split
at Xj = t partitions the input space into two regions and
fit a constant value to each region (c1, c2, respectively). The
best splitting variable Xj, split point s, and c1, c2 are found
by minimizing the error sum of squares. At each split during
the construction of a single tree, the RF algorithm identifies
the best splitting variable from a randomly selected subset
of input variables. After training, RF makes prediction for
a new data point by averaging the predictions from each
tree. The RF algorithm also calculates a variable importance
score based on the total decrease in node impurities from
splitting on the variable, averaged over all trees (Hastie et al.,
2001). For regression, the node impurity is measured by error
sum of squares.

While a decision tree is highly sensitive to noise in the
training data, RF has proven to have better generalization
performance because of bootstrap aggregating and using random
subset of inputs as candidates for splitting variable selection
(Breiman, 2001; Hastie et al., 2001). The candidate splitting
variable selection increases the chance that any single variable
gets included in a random forest especially for weak inputs.
RF has gained popularity in various fields such as meteorology
(Cloke and Pappenberger, 2008; He et al., 2016), soil science (Ließ
et al., 2012), hydrology (Naghibi et al., 2016; Xu et al., 2017), and
remote sensing (Xu et al., 2019).

LASSO
Least Absolute Shrinkage and Selection Operator (LASSO) is
a widely used linear regression-based method that adds a L1
penalty term to the ordinary least squares in order to keep the
regression coefficients small (Tibshirani, 1996). Because of the
L1penalty term, LASSO typically sets some of the regression
coefficients to zero. The number of zero coefficients depends
on a penalty parameter, which is usually selected through cross
validation. As such, the algorithm performs a feature selection
and has been reported robust for high dimensional regression
problems. Because of its good generalization performance,
sparsity and interpretability, LASSO has been used in various
applications (e.g., Everingham et al., 2009; Vandal et al., 2017;
Anda et al., 2018).

Quantifying In-season Predictability of Rainfed Corn

Yield
We train RF and LASSO models for each climate group and for
all counties involved in this study for the period 2000–2012, using
as inputs xi = [Pi,Nd,i,T,Nh,i, VPDi,DoPi,AWC, SOM, Ni].
The climate inputs consist of the monthly data from
April to August in i-th year, e.g., precipitation Pi =

[PApr,i, PMay,i, PJun,i, PJul,i, PAug,i]. The planting date and fertilizer
use vary year by year, while soil properties are assumed to
be constant in time. Once a RF model is constructed, the
algorithm calculates variable importance of climate data,
planting date and soil texture to corn yield. In this way,
we identify which factors, at which stage, have the highest
impacts on yield.

We will also use the RF and LASSO models to investigate
the predictability of rainfed corn yield. In particular, we aim to

quantify how the predictability of corn yield evolves over the
course of the growing season as more data become available.
Such analyses will shed light on how long in advance a reliable
prediction can be made. For every forecasting stage (month),
we use all the data from April to the targeted month as inputs
to build a model to predict the end-of-season corn yield. For
example, in order to assess the corn yield predictability by
the end of June, we build a RF or LASSO model using time-
invariant data (i.e., planting date, soil texture) and climate
data from April to June. Prediction at a later month will
include more climate data. Each time, we randomly split the
data points into a training set (67%) and a test set (33%),
which is used to assess the prediction performance. More
specifically, we calculate the coefficient of determination R2and
root-mean-square error (RMSE) by comparing the RF/LASSO
model predicted yield with reported county-wise crop yield
(USDA NASS data). The TreeBagger and Lasso library functions
in Matlab with default hyperparameters were used to build
the models. To reduce the effect of randomness in dataset
split and RF training process, every experiment is repeated
20 times, and the average R2 is reported in the section
Results. The prediction performance of RF and LASSO models
are compared.

RESULTS

Temporally Varying Correlation Patterns
Between Climate Variables and Corn Yield
Across the Corn Belt
The correlation coefficients (r) between corn yield and monthly
P, number of dry days, T, heatwave, and VPD, respectively,
are shown in Figures 3–7. Similar plots, but with data
2000–2011, can be found in Supplementary Figures 2–6.
Because of the substantial loss in the 2012 drought, low to
moderate differences are noticeable between Figures 3–7 and
Supplementary Figures 2–7. In order to consider the whole
spectrum of variability including drought conditions, our
discussion here is focused on the whole dataset of 2000–2012.

We found a clear positive correlation between corn yield
and July precipitation, especially in the LowP.HighT climate
type (Figure 3). This is as expected, because water stress in
the critical month of July is expected to negatively affect corn
yield (Çakir, 2004; Li et al., 2019). The positive correlation is
more evident in the LowP.HighT group (Figure 3A) than other
groups, as precipitation is the limiting factor in this climate.
Correlation in the LowP.LowT climate type is overall weaker than
the LowP.HighT group. For HighP.LowT group, strong positive
correlation can also be observed for August precipitation. This
is because the growing stage is usually delayed in cold regions.
Meanwhile, Figure 4 shows the correlation between yield and
monthly number of dry days. While July is the critical month in
terms of monthly total precipitation (Figure 3), number of dry
days in June has the most significant negative correlation with
yield for the drier climates. A high value of Nd in June results
in water stress in the vegetative stage and thus causes reduction
in yield.
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FIGURE 3 | Box plots of correlation coefficient (r) between corn yield and monthly total precipitation, P, evaluated for four groups (A–D) and all analyzed counties (E)

in 2000–2012. The red + signs indicate outliers.

FIGURE 4 | Box plots of correlation coefficient (r) between corn yield and number of dry days, Nd, evaluated for four climate groups (A–D) and all analyzed counties

(E) in 2000–2012. The red + signs indicate outliers.

Frontiers in Artificial Intelligence | www.frontiersin.org 7 May 2021 | Volume 4 | Article 647999

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


Xu et al. Predicting Rainfed Corn Yield

FIGURE 5 | Box plots of correlation coefficient (r) between corn yield and monthly mean temperature, T, evaluated for four groups (A–D) and all analyzed counties (E)

in 2000–2012. The red + signs indicate outliers.

FIGURE 6 | Box plots of correlation coefficient (r) between maize yield and heatwave, Nh, evaluated for four groups (A–D) and all analyzed counties (E) in 2000–2012.

The red + signs indicate outliers.
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FIGURE 7 | Box plots of correlation coefficient (r) between corn yield and VPD, evaluated for four groups (A–D) and all analyzed counties (E) in 2000–2012. The red

+ signs indicate outliers.

We also found an evident negative correlation between corn
yield and mean temperature particularly in July. This negative

correlation is the strongest for the hot and arid climate and

slightly weaker for the HighP.HighT group, because higher
precipitation alleviates water stress and in general cools the
plant through more evapotranspiration. However, water supply
cannot fully offset high water demand due to high temperature
in June and July. The negative correlation is less evident for
the HighP.LowT group. Under this climate condition, water
supply may be sufficient to offset water demand. Figure 5

also shows that April temperature is negatively correlated
with yield for hotter climates, but not for colder climates.
As explained in more detail in section Effect of Planting
Date, this spatial distinction is likely caused by planting date.
For states that have warmer climates, we find that higher
April temperature is related to early planting date, which
affects yield.

Figure 6 shows that negative correlation between yield and
heatwave is evident in June, July and August for most counties.
The most negative correlations between heatwave and yield show
in July for most climates except the HighP.LowT group. This
climate group covers the northern part of the study area and
has a delayed growing season. It is also worth noting that the
impacts of heatwave show some difference with the impacts
of temperature (Figure 5), which may lend support to earlier
modeling work that shows adding heat-stress specific features
in modeling (both process-based and statistical models) can in
general better capture crop yield variability (Gabaldón-Leal et al.,
2016; Jin et al., 2016).

The correlations between VPD and yield (Figure 7) bears
similarity to the correlation pattern between temperature and
yield (Figure 5). This similarity is largely due to the high
correlation between VPD and temperature, which also confirms
the challenges of attributing the impacts of VPD and temperature
on crop yield. The absolute values of the correlation coefficients
in Figure 7 are generally higher than those in Figure 5, indicating
the VPD impacts on crop yield may be stronger than the
temperature impacts. The next section provides a more detailed
analysis on this observation.

Disentangling the Confounding Effects of
Temperature and VPD on Yield
July T and VPD are correlated with each other (ρ = 0.77,
Supplementary Figure 10) and both highly correlated with crop
yield (Figures 5, 7). Here we attempt to disentangle the specific
contributions of T and VPD on corn yield using a parsimonious
approach. We plot all the county-year observations of July
T and VPD as a scatterplot in Figure 8A, colored by the
value of corn yield. We then examine how yield changes
with VPD when T is fixed by focusing on a narrow range
of T. We repeat the same analysis to examine the trend of
corn yield change with T when VPD is fixed within a small
range. Figures 8E–G shows that when T is fixed, corn yield
reduces sharply with increased VPD; in contrast, when VPD is
fixed, the declining trend of corn yield as T increases is less
evident (Figures 8B–D).

To further investigate how VPD and temperature affect crop
yield, using least squares regression we fit a quadratic polynomial
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FIGURE 8 | (A) Color-encoded yield relation with July mean temperature and maximum VPD. (B–D) Scatter plot of yield vs. July mean temperature when maximum

VPD is fixed within a range of ±0.5. (E–G) Scatter plot of yield vs. July maximum VPD when mean temperature is fixed within a range of ±0.25. Also shown are linear

regression with 95% confidence interval reported with the p-value of the linear regression slope. Linear regression is not plotted when the linear trend is not significant.

function to the data shown in Figure 8A, with R2 of 0.54 and
RMSE of 14.8 bushel per acre:

Yield = −256+ 44.6T− 9.1VPD− 1.3T2 + 0.8T·VPD− 0.30VPD2.

(1)

The fitted surface is shown in Figure 9A, and half width of
90% prediction interval is shown in Supplementary Figure 7. To
quantitatively assess the change of corn yield with VPD at fixed
T, we calculate the derivative of yield to VPD in Equation (1);
similarly, the derivative of yield to T from Equation (1) indicates
the yield sensitivity with T for any fixed VPD. The resulting
yield sensitivity to T and VPD are plotted in Figures 9B,C,
respectively. To fairly compare the sensitivity, we normalized
both VPD and T observations to have zero mean and unit
standard deviation. We further plot all the sensitivity values in
Figures 9B,C as the empirical probability density in Figure 9D.

Figure 9 shows that yield change to the normalized VPD at
a fixed T (Figure 9C) is much larger than yield change to the
normalized T at a fixed VPD (Figure 9B), suggesting that VPD
is the dominant factor in changing corn yield. Furthermore,
Figure 9D shows that yield change to VPD is always negative,
and in general this change is usually much larger than to T. More
interestingly, Figure 9D shows that yield change to T can be both
positive and negative, which mirrors the field-level empirical
studies of a concave response of photosynthesis to temperature.

Next, we use the random forest algorithm to investigate
nonlinear yield response to July T and VPD that are not captured
by the linear regression (Equation 1). To this end, a random
forest model is trained using the county level yield and input

variables listed in Table 1. We use the trained model to generate
partial dependence plots for July T, VPD, and both T and VPD,
respectively, as shown in Figure 10. Partial dependence plots
show the dependence between the output variable (yield) and
one or more of the input variables by marginalizing over the
values of all other input variables. They can be interpreted as
the expected output as a function of only the selected input
variable(s). Figure 10 confirms the findings from Figure 9 and
shows a non-monotonic response of yield to increasing July T,
which is manifested by a small increase of yield when T< 24◦

followed by a sharp decrease. This suggests that 24◦ may be a
temperature threshold within the study area.

Effect of Soil Properties on Corn Yield
Figures 11A,C show that the mean yield increases with the
higher soil AWC and SOM. This result is largely expected, as soil
that has higher AWC can hold more water during the growth
season, and higher SOM indicates favorable soil conditions
for crop growth. Figure 11D shows a statistically significant
decreasing trend of yield variability as SOM increases, suggesting
that higher SOM could buffer yield variability.

Effects of Management on Corn Yield
Effect of Planting Date
Here we examine the effect of planting date on rainfed corn yield.
Figure 12A shows the average planting date at the county level,
which exhibits a weak north-south gradient with early planting
in the south of the study domain and late planting in the north.
Figure 12C shows that the correlation between planting date and
crop yield varies spatially, with the south part showing a positive
correlation (i.e., late planting corresponds to high yield) and the
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FIGURE 9 | (A) The contour plots of fitted surface given by Equation (1); the gray bars show histogram of July mean temperature and maximum VPD. Uncertainty of

the regression is reported in Supplementary Figure 7. (B) The derivative of fitted yield to TJul, calculated from Equation (1). (C) The derivative of fitted yield to VPDJul.

In (B,C), both T and VPD are normalized to have the zero mean and unit standard deviation, so that they can be inter-compared. (D) The probability distributions of

the derivatives of yield to the normalized TJul and VPDJul.

FIGURE 10 | Partial dependence plots based on the trained random forest model using climatic, soil property, and management factors for (A) July average daily

mean temperature, (B) July average daily maximum VPD, and (C) both T and VPD in July.
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FIGURE 11 | The 13-year yield average and coefficient of variation plotted vs. soil available water content and soil organic matter for each county from 2000 to 2012.

Also shown are linear regression with 95% confidence interval, the p-value of the linear regression slope, and correlation coefficient (r) calculated from data. Linear

regression is not plotted when the linear trend is not significant.

north part showing a negative correlation (i.e., early planting
corresponds to high yield). A similar plot for 2000–2011 is shown
in Figure 13 in order to account for potential skewness resulting
from the 2012 drought. Figure 13 shows similar spatial patterns
as in Figure 12C for northern regions. For counties in central
Illinois south of 40◦ and eastern Indiana, excluding 2012 data
leads to negative correlation between planting date and yield.

We further explore the inter-annual relationship between
planting date and April climate Figure 12. In all the counties,
planting is later when April is cooler (Figure 12D) and wetter
(Figure 12E). This is consistent with previous studies and
anecdotal understanding that cold temperature and heavy rainfall
in April postpones planting in the U.S. Corn Belt (Urban et al.,
2015). However, the correlations between planting date and
April temperature and precipitation, respectively, are hard to
quantify, as temperature and precipitation at April are mostly
negatively correlated in our study domain, except a small number
of counties in the northwest (Figure 12F). These results may
explain why April temperature has some correlation with corn
yield (Figure 5). For the LowP.LowT group (north of 42N)
lower April temperature delays planting (a negative correlation as
shown in Figure 11B), however the late planting leads to a yield
loss (a negative correlation shown in Figure 12C), thus actually a
warmer April temperature leads to yield increase (Figure 5C). To
the contrary, for most counties in the hot climate groups (south
of 42N latitude), April temperature has a negative correlation
with crop yield (Figures 5A,B), as lower April temperature in the
south of the study domain delays planting (Figure 12D), and late

planting leads to higher crop yield (Figure 12C). However, when
2012 data is excluded, earlier planting is found correlated with
higher yield for counties south of 40N and in eastern Indiana
(Figure 13).

Effect of Fertilizer Uses
Correlation analysis reveals that rainfed corn yield is not
significantly correlated with nitrogen fertilizer use from the
NUGIS source. For all the analyzed counties, the correlation
coefficient between yield and nitrogen fertilizer rate is −0.21 (p
< 0.01). This negative correlation is counter-intuitive, and may
be due to the data uncertainty in the NUGIS data as well as the
over-application of fertilizer; the lattermay lead to the decoupling
between the amount of fertilizer and crop yield. In addition,
adding nitrogen fertilizer to the inputs does not increase the
predictive accuracy of the data-drivenmodels (see more details in
sectionMachine LearningModels and In-season Predictability of
Corn Yield). Given the indeterminate results and considering the
uncertainty associated with NUGIS nitrogen fertilizer dataset, we
decided not to include nitrogen fertilizer in the inputs of the final
random forest data-driven models.

Machine Learning Models and In-season
Predictability of Corn Yield
The above analyses focus on the relationships between individual
variables and corn yield. We then use the two machine learning
algorithms (RF and LASSO) to combine all the potential
predictors to predict end-of-season corn yield. We treat each
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FIGURE 12 | Spatial plot of county-level multi-year mean value (A) and coefficient of variation (C.V.) (B) of planting date and correlation coefficient (r) among planting

date, April mean temperature, April total precipitation, and yield (C–F). Range of correlation coefficient that is not significant (p > 0.1) is marked on colorbars.

county×year yield observation as an independent sample, and do
not differentiate variabilities between space and time. Based on
the trained RF model, we also calculate the variance importance
of all the input variables and identify accordingly the most
important predictors of yield. Figure 14 shows the top 10 most
important variables when the inputs of the RF models include
climate variables and planting date (Figures 14A–E), and when
the inputs also include soil properties (Figures 14F–J).

We find that July VPD ranks as the most important predictor
of corn yield for all the climate groups (Figure 14), which
is consistent with our earlier finding (Figures 7–9) and prior
literature (Lobell et al., 2014). Climate variables having high
importance scores are mostly from VPD, T, Nh, and P, and
from July, with some from June or August. As for May
climate variables, only VPDMay and TMay rank among the
top 10. Planting date has been identified as important in the
colder climate groups. When soil properties are included in the
analysis (Figures 14F–J), AWC is chosen for three climate groups
(Figures 14F–H) and also by the general model (Figure 14J). For
the HighP.LowT climate group, AWC is not among the 10 most

FIGURE 13 | Spatial plot of county-level correlation coefficient (r) between

planting date and yield from 2000 to 2011. Range of correlation coefficient that

is not significant (p > 0.1) is marked on colorbar.

important predictors mainly because the spatial variability of
AWC is low in this group (Supplementary Figure 8). Figure 15
shows the partial dependence plots for the 10 most important

Frontiers in Artificial Intelligence | www.frontiersin.org 13 May 2021 | Volume 4 | Article 647999

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


Xu et al. Predicting Rainfed Corn Yield

input variables generated by the RF model trained using data
of all counties. The sensitivity of yield with respect to these
inputs based on the RF model is largely consistent with our
findings from correlation analyses (section Temporally Varying
Correlation Patterns Between Climate Variables and Corn Yield
Across the Corn Belt).

Furthermore, we investigate the predictability of annual yield
given the explanatory variables (i.e., planting date, soil texture,
and climate data) using the RF and LASSO models. Figure 16
shows the model prediction performance on the testing data and
how the prediction performance (measured by R2 and RMSE)
changes with the target month (i.e., the month when prediction
is made). For example, the R2 and RMSE in June correspond
to the RF or LASSO model trained using time-invariant data
(i.e., planting date, soil texture) and climate data from April
to June. It thus should be expected that the yield predictability
increases as the growing season progresses and more months of
data become available.

We find that the RF model outperforms LASSO in all
cases, where RF has higher R2 (0.66∼0.80 vs. 0.50∼0.70) and
lower RMSE (8.9∼12.5 vs. 11.4∼15.4 bushels/acre) than LASSO
for the four climate groups (Figure 16). Based on the R2

metric, Figure 16 shows that the highest prediction accuracy is
achieved in the LowP.HighT group (R2 = 0.80), while the lowest
accuracy is achieved in the HighP.LowT group (R2 = 0.67).
In general, the addition of soil properties to the inputs slightly
increases the predictive accuracy (R2 increased by 0.005∼0.045
and RMSE reduces by 0∼1.4 buchels/acre), compared to the
prediction using only climate data and planting date. The
HighP.HighT group has the most noticeable increase in R2,
consistent with Figure 14G showing the relative importance
of AWC.

DISCUSSIONS

Corn Yield Response to Climate Variables
Vary in Growing Season and Across the
Corn Belt
Our results confirm a time-varying response of corn yield
to climate variables. This time-varying response of corn yield
is primarily because crop at different phenological stages
have varying vulnerability to environmental stresses (Prasad
et al., 2017; Peng et al., 2018). In other words, same degree
of environmental stress (e.g., lack of rainfall, or heatwave)
occurring at different times can lead to different consequences
for corn yield. For four out of the five climate metrics (i.e.,
precipitation, temperature, heatwave, and VPD) that are the
primary predictors (section Feature Selection and Correlation
Analyses Between Climate Variables and Yield), correlation with
corn yield in general increases with time since planting, peaks
in July, and decreases in August (Figures 3, 5–7). This finding
is consistent with the general understanding that July (flowering
time) is the most critical period to affect corn yield in the
U.S. Corn Belt, as the flower stage mostly happens in July
for the study area. Flower stage of corn largely determines
the grain number and thus the potentials of final yield and

is sensitive to various environmental stresses (Çakir, 2004;
Rattalino Edreira and Otegui, 2012). We also found that the
number of dry days (Nd) follows the similar trend but has
the highest correlation in June (Figure 4), which may indicate
that dry-spells have its largest damage to corn at the late
vegetative stage (Çakir, 2004). Whereas, for precipitation and
temperature, the magnitudes of correlation between the climate
metrics and yield significantly drops after July to similar levels
as in June (Figures 3, 5), heatwave and VPD show only a slight
decrease in the correlation magnitude in August compared with
in July, and still remain higher than June (Figures 6, 7). These
patterns are consistent with findings in previous studies that heat
stress, as expressed by the above two climate metrics, affects
the later reproductive stage associated with the grain-filling
(Rattalino Edreira et al., 2011, 2014). The above analysis can
be compromised if there are strong auto-correlations between
different months for the same climate metrics. However, auto-
correlations beyond one-month lag are weak for all climate
metrics used (Supplementary Figure 11).

In addition, our results reveal that the above temporally
varying responses vary in space. For the four out of the
five climate metrics (precipitation, temperature, heatwave, and
VPD), the correlation with yield in July is the strongest in
the LowP.HighT group (Figures 3A, 5A, 6A, 7A). This is
largely because the Low P and High T conditions combined
amplify the stress conditions. In particular, a dry condition
(i.e., lower precipitation) limits the soil moisture supply, which
leads to plant water stress; meanwhile, higher temperature
further increases VPD and reduces the stomata conductance
(Farquhar and Sharkey, 1982), leading to a further reduction
of photosynthesis and over-depletion of soil moisture (Lobell
et al., 2013). This finding thus confirms the deteriorating
effects of combined drought and heat stress on ecosystem
functioning (Law, 2014) and crop yield (Jin et al., 2016;
Zampieri et al., 2017). Meanwhile, the HighP.LowT group
usually delays the peak of correlation from July to August.
This is largely because colder (northern) regions tend to
have later planting dates, which in many cases means a later
flower stage. Therefore, the delayed peak correlation pattern is
mostly attributed to the delay of the most sensitive stage for
corn growth.

Disentangling Effects of VPD and
Temperature on Corn Yield
As discussed in the introduction, the effects of temperature and
VPD on corn yield have been under debate. The high correlation
between these two climate variables makes it challenging to
disentangle their individual contributions. In the current work,
we provide a new and parsimonious way to decompose their
contributions (section Disentangling the Confounding Effects
of Temperature and VPD on Yield). In this analysis we only
related yield to July VPD and July temperature because our
results in sections Temporally Varying Correlation Patterns
Between Climate Variables and Corn Yield Across the Corn
Belt and Machine Learning Models and In-season Predictability
of Corn Yield justify that July is in general the most critical
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FIGURE 14 | The 10 most important climate variables selected by the RF algorithm for each climate type (A–D, F–I) and all analyzed counties (E,J). The horizontal

axes indicate the variable importance. The top and bottom panels show results when (1) climate data and planting date are considered, and (2) climate data, planting

date, and soil texture are considered, respectively.

month for determining corn yield for the U.S. Corn Belt.

Our results show that both VPD and T play critical roles on

corn yield, but the yield loss is mostly due to the high VPD

(Figures 8, 9).
We found that the VPD effect on corn yield is predominantly

negative, which is consistent with the understanding of the plant
physiological processes (Lobell et al., 2014). In particular, VPD’s
effect is primarily through reducing the stomatal opening in a
higher VPD environment (Farquhar and Sharkey, 1982; Katul

et al., 2012). In the study area, this is likely the dominant pathway
to reduce stomatal conductance. The complementary pathway,
i.e., closing the stomata due to soil moisture deficit, occurs
less frequently in the study area (Lobell et al., 2014), because
otherwise irrigation would have been extensively adopted by
farmers similarly as in much of Nebraska. The importance of
VPD has also been confirmed by the machine learning-based
modeling results that VPD in July is identified as the most
important predictor rather than T or other climate variables.
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FIGURE 15 | The partial dependence plots of yield with respect to the 10 most important predictors identified by RF when all counties are used. (A–J) is the plot

corresponding to 10 features which can be read directly from axis.

While increasing VPD almost always negatively affects yield,
the direct T effects is non-monotonic. As T increases, yield
first increases and then decreases. The T value at the turning
point indicates the optimal temperature for plant productivity.
Equation (1) and Figure 8 suggests an optimal temperature in the
range of 21–28◦C, consistent with prior studies (Sage andKubien,
2007; Hatfield and Prueger, 2015).

Effects of Soil Properties and
Managements on Corn Yield
Our study shows a strong correlation between higher AWC
(and higher SOM) and enhanced corn yield, which confirms the
findings from previous studies that soil properties (e.g., AWC,
SOM) may improve corn yield in general (Kravchenko and
Bullock, 2000). Besides, we found that higher SOM corresponds
to lower yield inter-annual variability, indicating higher SOM

may provide the buffering ability for yield variability and thus
increase field-level yield resilience. However, in the RF model
AWC receives high importance score whereas SOM is not among
important variables. This is consistent with the fact that AWC
has a higher positive correlation with yield (ρ = 0.53) than SOM
(ρ = 0.30).

Agricultural management data (i.e., planting date and
fertilizer rate) are usually difficult to find in the public domain
especially for analyses at the regional scale. Two valuable
datasets of planting date [Lobell et al., 2014] and fertilizer rate
(International Plant Nutrition Institute (IPNI), 2011) enabled
us to analyze the effects of management practices on yield in
this study. As described in section Effects of Management on
Corn Yield, planting date has a statistically significant correlation
with yield, while nitrogen fertilizer rate does not. A likely
reason is the potential uncertainty in the fertilizer sales data
and its assumption that locally sold fertilizer is used locally. In
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FIGURE 16 | The coefficient of determination (R2) (top) and root-mean-square error (RMSE) (bottom) of the RF and LASSO models using as inputs climate and

planting date data (blue) and climate, planting date and soil texture data (red). R2 is calculated for four groups (A–D,F–I) and all analyzed counties (E,J) based on a

testing dataset that is not used for training the RF models.

addition, as farmers in the U.S. Corn Belt tend to apply more
nitrogen than needed by crops (Vitousek et al., 2009), yield
may be not sensitive to N rate variability in the study area.

On the other hand, planting date is significantly correlated with
both T and P, though with opposite signs. Specifically, planting
date is negatively correlated with T, meaning higher T may
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lead to earlier planting. Meanwhile, planting date is positively
correlated with P, suggesting that more P (wetter condition) may
postpone planting. The above empirical findings are consistent
with anecdotal knowledge from farmers and in literature (Waha
et al., 2012; Urban et al., 2015) that farmers’ planting decision is
contingent on T and P.

Furthermore, we found that planting date has a spatially
varying relationship with yield, with the northern part of the
study area showing that late planting is related to lower yield,
while most of the southern part showing that late planting
is related to higher yield. The primary reason is that the
planting date varies with local climate conditions, and together
they determine the length of growing season and the degree
of heat stress during the peak growing season. We further
found that planting date has been identified among the top 10
predictors by the RF model, suggesting that the inclusion of such
information is conducive for yield modeling (section Machine
Learning Approach and Its Prediction Performance). Despite
the importance of planting date, spatially explicit planting date
information is not available in the public domain, and USDA
only provides region-aggregated crop progress report at the
Agricultural District level (∼aggregating 8–15 counties) and
at state level. Satellite remote sensing may provide a solution
to obtain spatially explicit planting date information (Urban
et al., 2018). With the emergence of more high-resolution
satellite data (Houborg and McCabe, 2018), it is likely that
field-level planting date estimation will be available in the
near term.

Machine Learning Approach and Its
Prediction Performance
According to the RF model, the three climate variables,
namely, VPD, T, and P, during the peak growing season
(July, Jun, Aug) are the most important predictors. The
two climate extreme metrics, number of dry days (Nd) and
heatwave (Nh) in July also receives high importance scores,
suggesting the critical role of heat stress in determining end-
of-season corn yield; this effect may not be captured found
that planting date and AWC have been identified by RF
among the top 10 predictors for corn yield, confirming the
importance of management practices and soil properties
in determining corn yield. The most important inputs
identified each climate group or all counties are used to
train the models. This again highlights the spatial patterns of
yield responses.

It is worth noting that our current modeling framework
treats each county×year as an independent sample and
models spatio-temporal variabilities together rather than
differentiating them. This approach is different from the
“panel models” in econometrics (Lobell and Burke, 2010),
which, if applied in our context, would have a fixed effect
for each county (indicating time-invariant feature that
may be caused by county-specific soil properties and/or
management practices) and all the counties share the same
response function of corn yield with climate variables.
While providing a way to disaggregate yield response to

temporally varying and invariant factors, due to its linear
regression nature panel regression may fall short for accurate
modeling and prediction of spatiotemporal variability of
yield resulting from the coupled controls of climate, soil, and
management factors.

As of in-season prediction of rainfed corn yield, the RFmodels
outperform LASSOmodels in all climate groups (Figure 16). The
main reason is that the linear LASSO model does not account for
the non-linearity of yield response to predictors or interaction
among predictors, while RF is a non-parametric approach
capable of learning complex, non-linear relations between yield
and predictors from data without the need to explicitly model
them. Although additional terms can be built into the LASSO
model to represent prescribed non-linearity and interaction,
this would result in a large number of input variables and,
more importantly, deviate from the motivation of this study of
objectively inferring relationships from data without prescribed
parameterization. In addition, due to the L1 regularization,
LASSO sets coefficients of 21∼40% (varying among climate
groups) predictors to zero, resulting in parsimonious models.
In particular, when two or more predictors are correlated
(i.e., collinearity), LASSO tends to set the coefficients but one
of these predictors to zero. We found that for all climate
groups, LASSO selected July VPD among the 10 most important
variables, but set July T coefficient to zero. This is not surprising,
because July T and VPD are correlated and yield responds
monotonically to VPD but non-linearly to T. As discussed
in section Disentangling Effects of VPD and Temperature
on Corn Yield, July VPD and T may affect yield through
different mechanisms. In this case, collinear predictors are not
necessarily redundant (Dormann et al., 2013). Thus, including
both predictors may be desirable for physical interpretability
and prediction performance. In contrast to LASSO, RF tends to
retain collinear predictors due to its random candidate subset
for splitting variables. As shown in Figure 14, July VPD and T
are both selected by RF among the most important variables in
all cases.

For both models, as we progress further into the growing
season with more available climate data ingested in, the model
performance increases. Averaged over all climate groups, the
RF model reaches a high accuracy of R2 = 0.792 by the end
of August to predict the concurrent year’s final corn yield,
and the same model has achieved R2 = 0.781 by the end of
July. These results indicate a promising capability of using the
machine learning-basedmodels to predict county-level corn yield
at regional to continental scales.

CONCLUSIONS

We performed a data-driven analysis on rainfed corn yield
in the U.S. Corn Belt at the county level for the study
period of 2000–2012 to objectively infer how yield responds
to climate, soil properties, and management practices at the
regional scale. Our results confirmed previous findings as well
as led to enhanced quantitative understanding of the controlling
factors on corn yield. Correlation analyses revealed predominant
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effects of climate average and extreme conditions on rainfed
corn yield. Our results confirmed that corn yield response to
climate variables change through crop development stages, and
further showed that the temporally varying responses vary in
space as controlled by regional climate. We then use regression
analysis to decompose the effects of temperature and VPD.
Increasing VPD leads to monotonically decreasing yield, while
temperature effects is non-monotonic. In addition to climate
variables, soil properties and management practices contribute
to the spatiotemporal variability of rainfed corn yield. More
specifically, our results showed that higher AWC enhances yield,
consistent with findings from previous studies (e.g., Kravchenko
and Bullock, 2000), while higher SOM corresponds to lower
yield inter-annual variability. Planting date has a statistically
significant correlation with yield, and that planting date is
affected with early season climate conditions. No significant
correlation is found between nitrogen fertilizer application rate
and yield. Lastly, we used two machine learning algorithms
(random forest and LASSO) tomodel rainfed corn yield using the
climate, soil, andmanagement practice variables as predictors. RF
model outperformed LASSO for in-season prediction skill and
achieved a high accuracy by the end of July. The promising results
suggest machine learning as an efficient and skillful approach for
regional scale prediction of crop yields.
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