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Abstract: As biomolecular approaches for hearing restoration in profound sensorineural hearing loss
evolve, they will be applied in conjunction with or instead of cochlear implants. An understanding
of the current state-of-the-art of this technology, including its advantages, disadvantages, and its
potential for delivering and interacting with biomolecular hearing restoration approaches, is helpful
for designing modern hearing-restoration strategies. Cochlear implants (CI) have evolved over the
last four decades to restore hearing more effectively, in more people, with diverse indications. This
evolution has been driven by advances in technology, surgery, and healthcare delivery. Here, we
offer a practical treatise on the state of cochlear implantation directed towards developing the next
generation of inner ear therapeutics. We aim to capture and distill conversations ongoing in CI
research, development, and clinical management. In this review, we discuss successes and physio-
logical constraints of hearing with an implant, common surgical approaches and electrode arrays,
new indications and outcome measures for implantation, and barriers to CI utilization. Additionally,
we compare cochlear implantation with biomolecular and pharmacological approaches, consider
strategies to combine these approaches, and identify unmet medical needs with cochlear implants.
The strengths and weaknesses of modern implantation highlighted here can mark opportunities
for continued progress or improvement in the design and delivery of the next generation of inner
ear therapeutics.

Keywords: hearing loss; cochlear implantation

1. Introduction

Cochlear implants (CIs) are prostheses that electrically stimulate the cochlear nerve
to restore not only sound perception, but speech understanding in people with profound
sensorineural hearing loss. CIs use a battery-powered sound processor worn at ear level
to transmit electrical signals to an electrode array that has been surgically implanted in
the inner ear. The first generation of implants was approved by the FDA in 1984. These
devices used a single electrode that allowed recipients to perceive the presence or absence
of sound, while variably restoring some speech understanding [1–3]. The FDA approved
the first multi-channel implants for adults and children in 1987 and 1990, respectively.

Patients who undergo implantation today do so under a growing number of indica-
tions and use devices with a tonotopic array of as many as 24 electrodes. These modern
CIs promote language acquisition, literacy, and academic performance in pre-lingually
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deaf children [4–6], while restoring meaningful speech recognition and generating better
quality-of-life outcomes for adults who are unable to use traditional amplification [7–9].

While CI devices are a successful treatment option for many hearing-impaired individ-
uals, several challenges related to their delivery, use, and access remain. Overcoming these
challenges has fueled the investigation and development of biomolecular and pharmaco-
logic therapeutic approaches using gene augmentation, gene-editing, antisense, and other
small molecules [10–23]. Both approaches—CI devices and biomolecular/pharmacological
drugs—target the inner ear to improve peripheral function and restore hearing. The CI
circumvents defective or absent auditory hair cells to electronically stimulate a subset of
spiral ganglion neurons or the nerve fibers of auditory neurons. In contrast, gene and
antisense therapies are designed to target defective auditory hair cells directly to restore
their function. Recent advances in the design of viral vectors used to deliver gene thera-
pies and the expanding list of chemical modifications made to antisense oligonucleotides
have significantly improved the cellular uptake of these drugs, thus demonstrating their
potential to reach and treat nearly all inner and outer hair cells for more effective hearing
outcomes [23–39].

As these new therapies continue their development and optimization towards transla-
tion into hearing impaired patients, we review the current clinical management with CIs.
Here, we describe hearing with an implant and detail common surgical approaches and
electrode arrays, new indications and outcome measures for implantation, and barriers
to CI utilization. Finally, we discuss unmet medical needs for individuals being treated
with CIs, and the opportunities for improvement with biomolecular and pharmacological
approaches.

2. Hearing with an Implant

CIs are designed to restore speech perception for people with sensorineural hearing
loss. They do not, however, replicate our hearing apparatus. Instead, CIs meet their
purpose by layering an array of discrete electrodes covering the frequency range of human
speech into the tonotopic infrastructure upon which we also rely to localize sound and hear
music. Unsurprisingly, the extent to which CIs can process complex stimuli such as these
is limited.

CIs cover a narrower range of frequencies than the cochlea (200–8500 Hz vs. 20–20,000 Hz),
and they do so less accurately. Individual electrodes stimulate broad swaths of territory
along the basilar membrane, often falling short of the apical turn [40,41]. As a result, CIs
effectively collapse unique signals in a phenomenon called current spread [42]. Due to
anatomical variations, such as pathological changes to the hair cells and spiral ganglion cells
causing the patient’s hearing loss, and the limits of any given manufacturer’s device [42],
electrodes are commonly misaligned with the cochlea’s natural frequency gradient [43].
This place–pitch mismatch underlies characteristic pitch perception deficits among CI
users [42,44,45].

CIs also struggle to encode the temporal cues we use to perceive pitch in music, local-
ize sounds, and hear speech in background noise. CIs cannot phase lock as our cochlea
does [42]. Moreover, the basilar membrane can process both the gross waveform of a
stimulus, as well as the more rapidly oscillating fine structure upon which it is carried.
Historically, CIs have extracted that gross waveform, or the temporal envelope information
from stimuli, and presented it in non-simultaneous pulses [46]. This process, called contin-
uous interleaved sampling (CIS), can transmit enough information for a user to understand
speech [47,48]. In accomplishing that task while preventing electrodes from distorting the
activity of others, implants with enveloped-based strategies such as CIS discard a signal’s
temporal fine structure processing (FSP) information altogether [42,49].

Along with deciphering speech from background noise, it is with this FSP information
that we detect the lower-frequency, bass components of music [50]. A CI user relying
exclusively on envelope information is unable to distinguish between samples of music
with varying levels of bass. As much as 400 Hz of bass can be removed from musical stimuli
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before CI users recognize a difference [51]. This performance data pairs with the subjective
finding that CI users do not often enjoy listening to music after implantation [52–54]. When
they do, CI users tend to prefer less complex music with a clear beat and simple lyrics.
Users also prefer music to which they were familiar prior to the onset of their deafness.

Novel brain-imaging and sound-processing techniques have allowed us to identify
cochlear stimulation and auditory training strategies that may improve music appreciation
among this population [55–59]. Some manufacturers have even created and marketed de-
vices that theoretically leverage FSP strategies to allow users to enjoy music and hear better
in background noise. While these devices afford clinicians and patients the opportunity to
exercise more choice in their hearing care, blinded paired comparisons of implants using
both strategies do not consistently show FSP strategies to be superior to CIS in conserving
music sound quality or speech recognition [60].

In addition to FSP, there are a variety of other strategies designed to improve the sound
quality a CI user can experience when listening to music by stimulating more territory
along the basilar membrane. Measuring the extent to which a stimulus must be altered to
generate perceived differences in sound quality among CI users [51], research has shown
that stimulation toward the apex via longer electrode arrays and bipolar stimulation that
creates “phantom” channels beyond the physical boundaries of an array improves music
sound quality perception [61,62].

3. Current Surgical Approaches to Implantation into the Cochlea

Modern cochlear implantation is a relatively routine and safe procedure. Nonetheless,
operations can generate trauma, inflammation, fibrosis, obstructive hydrops, or synaptic
changes in the inner ear that can manifest as residual hearing loss and vertigo [63–67].

For patients who have some residual hearing, threshold shifts are almost inevitable
after implantation [68]. Today, modern technology and surgical techniques permit ‘softer’
approaches to implantation that can both treat a patient’s hearing loss and better preserve
their residual hearing by protecting the structural integrity of the inner ear [67,69,70].
Early success with hybrid devices placed via the round window (RW) approach have
encouraged clinicians and scientists to continue pursuing new and minimally invasive
operative techniques [40,68]. Robot-assisted operations informed by advanced imaging
that implant steerable [71–73], drug eluting devices may become the standard in cochlear
implantation [74]. Currently, there are just three active operating systems that deploy
robotics to access the middle ear [75]. The surgical approach and hardware in an implant
remain tangible, significant contributors to patient outcomes [67].

Electrode arrays are most commonly implanted via the transmastoid facial recess
approach with RW or cochleostomy insertion [76]. Some centers avoid the facial recess by
employing a ‘suprameatal’ technique [77]. The ‘soft’ surgical approaches to implantation
pioneered at the end of the 20th century were oriented around neural preservation via the
use of perioperative systemic and topical steroids, meticulous avoidance of bone dust and
surgical debris entering the cochlea, and slow, gentle insertion of more delicate electrode
arrays. Early hearing preservation ‘soft’ surgical techniques relied on cochleostomies [67,70].
Today, RW insertion is more common, and most surgeons use ‘soft’ surgery techniques in
all cochlear implantation surgeries, regardless of the length of the electrode being placed or
a patient’s residual hearing status [78]. To date, cochleostomies are still a comparatively
unstandardized set of procedures that rely on loosely defined anatomical landmarks [78].
Just 10% of neurotologists prefer cochleostomy to round window or extended round
window approaches for electrode placement [79]. Even fewer choose cochleostomy when a
patient has residual hearing to preserve.

The RW itself presents a reliable landmark for a surgeon placing an electrode ar-
ray [78], and RW insertions are associated with lower rates of electrode misplacement
than cochleostomies [80]. This anatomical reliability is paramount given the considerable
variability in ideal insertion vectors among different patients [81]. Computed tomography
(CT) data indicate that RW insertions can place electrodes closer to the modiolus, and



Biomolecules 2022, 12, 649 4 of 18

thus the spiral ganglion cells in the cochlea’s basal turn [76]. It is hypothesized that closer
placement could mitigate current spread and generate better speech comprehension for the
patient. Still, when electrodes are placed successfully, neither approach consistently results
in better postoperative outcomes [80,82,83].

RW approaches are perhaps especially suited to placing shorter electrode arrays,
such as those used for patients with substantial residual low frequency hearing. They are
doubly favorable here, as histopathologic evidence indicates cochleostomies can seed an
ossification process causing endolymphatic hydrops that characteristically costs a patient
the low frequency hearing the operation aims to preserve, while treating their hearing
loss [63]. These findings are consistent with others that demonstrate that the RW approach
may be less traumatic [84], but trials comparing the approaches remain underway [85].

The design of a CI’s electrode array also impacts hearing preservation after implan-
tation. The two major categories of array are straight lateral wall (LW) and curved peri-
modiolar (PM) [40]. PM arrays are curved to closely hug the modiolus along the medial
wall of the cochlea; however, this perimodiolar position may mitigate interference between
electrodes by directly stimulating spiral ganglion cells [40,67]. LW arrays lie some distance
farther from the modiolus and must stimulate the nerve fibers of the auditory neurons,
as opposed to the neurons themselves. Accepting potentially more crosstalk between
electrodes but limiting trauma with the delicate structures of the inner ear, LW arrays are
preferred for hearing preservation in hybrid implant candidates.

Pure hybrid implants have electrodes that are roughly a third the length of typical
arrays. There are also longer, short-LW arrays that offer slightly more coverage in the
cochlea, while appearing to preserve hearing in the lower frequencies [86], though not at
the rates of the truly short electrodes. Currently, many surgeons prefer to implant patients
with longer electrodes even if they meet criteria for a hybrid implant [79]. Longer electrodes
are thinner than ever before, and with modern surgical techniques, they can allow for the
preservation of a patient’s residual hearing while covering more of the cochlea. Patients
with even substantial residual low frequency hearing at the time of implantation can lose
it as their underlying hearing loss progresses, or because of surgical sequelae such as
that of cochlear fibrosis or endolymphatic hydrops [63]. If a patient who was originally
implanted with a short electrode loses their residual hearing, they may need to undergo
re-implantation with a longer electrode. Revisions and re-implantations are notoriously
challenging.

The growing use of cone beam CT imaging has allowed for intraoperative and post-
operative evaluation of electrode placement. CT scans can show electrode dislocation, tip
fold-over, and mispositioning. This allows for real time visualization of the electrode and
revision of the insertion at the time of initial surgery [87]. When combined with expected
electrical distribution of charge from an electrode, postoperative cone beam CT facilitates
the deactivation of interfering electrodes, which can improve speech recognition [88–90].

4. Growing List of Indications for CIs
4.1. Single-Sided Deafness

Bone-conduction hearing aids (BCHA) and contralateral routing of signals (CROS)
hearing aids have long been employed for patients with profound unilateral hearing losses
(UHL) who pursue care [91]. These devices deliver signals from the side of the user’s
hearing loss to the hearing ear, without restoring the binaural signals that contribute to
sound localization or hearing speech in complex listening conditions.

CIs present a means of restoring these binaural cues in patients with UHL, and in 2019,
the Food and Drug Administration (FDA) expanded CI indications to include “patients
5 years and older with single sided deafness (SSD) and asymmetric hearing loss (AHL) who
have profound sensorineural hearing loss in the ear to be implanted and normal hearing or
mild to moderate sensorineural hearing loss in the other ear” [92].

The approval followed the proliferation of evidence that adults with acquired UHL can
access binaural hearing benefits in localization and masked speech perception, sometimes
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within months of implantation [93–95]. In their approval, the FDA recommended against
implanting patients with UHL who have had a profound loss for more than a decade.
While duration of deafness negatively predicts speech perception performance in patients
who undergo implantation for bilateral losses [96], data suggest this trend may be less
predictive in adults who undergo implantation for SSD [97].

4.2. Tinnitus

Some of the data that contributed to the approval of CIs for SSD came from studies of
implantation as a treatment for tinnitus [98–100]. Most patients with sensorineural hearing
loss experience tinnitus, with varying levels of associated handicap [101–103]. The novelty
in the first study of implantation in patients with UHL and tinnitus was that patients
presented to the clinic for tinnitus, and not their hearing loss [104]. While tinnitus is still not
itself an indication for cochlear implantation, the condition can be profoundly debilitating.

Studies in the SSD setting were initiated by the observation that tinnitus suppression
was a common side effect of treatment among people who underwent implantation for
bilateral hearing losses [103]. These trials were not powered to evaluate tinnitus suppression
as a primary outcome. Tinnitus suppression was an incidental, albeit positive finding for
varying numbers of patients [105]. Moreover, the positive effect appears to persist in some
patients with UHL who underwent implantation driven by tinnitus [102,106–108].

SSD trials of implantation for tinnitus have their own limitations. Patients can be
neither randomized nor blinded. The most ubiquitous outcome measures for tinnitus [109],
while not specifically designed to move with treatment, can be pooled. In their system-
atic review, Peter et al. reported that more than 80% of patients with SSD and tinnitus
experienced complete suppression or a decreased burden after implantation [102]. Unfortu-
nately, 5% of patients’ tinnitus worsened after treatment. The mechanism for either of these
responses to implantation remains as unclear as that for the pathophysiology of tinnitus
itself [110]. Still, these results have created interest in analogous implantable treatments for
people who have incapacitating tinnitus but do not qualify for CIs [111].

Patients who already use a CI and experience tinnitus rely on a combination of patient
education, sound retraining therapy, and cognitive behavioral therapy, which are common
strategies for other patients reporting tinnitus [112]. While hearing aid users can take
advantage of sound therapy tools programmed into their devices, CI users must use
external sources.

4.3. Hybrid Implants

Bilateral profound hearing loss in the high frequencies prevents people from under-
standing speech, especially in noisy conditions, even if their low frequency hearing remains
intact. Until recently, patients with profound high frequency losses and significant residual
low frequency hearing were left to contend with the most socially isolating outcomes of
their loss, without a solution [113]. Importantly, the etiologies of ski-sloping high fre-
quency losses commonly disable the inner and outer hair cells, precluding meaningful
improvement in speech comprehension via traditional amplification [114].

In 2014, the FDA approved a hybrid device with the function of a hearing aid and
a cochlear implant with a shorter electrode array that stimulates just the high frequency,
basal turn of the cochlea [115]. These devices lessen the risk to the user’s residual hearing,
as they do not encroach on the part of the cochlea responsible for the lower frequencies.
Impressively, they also do not prevent acoustic waves from traveling the length of the
cochlea [114].

By the time of their approval, these devices were not themselves new [114,116]. How-
ever, the approval of hybrid CIs marked a major development in the criteria for CI can-
didacy at large [117]. Patients with steeply sloping high frequency losses and intact
low-frequency hearing could become eligible for implantation outside of the standard
full-sentence recognition testing in their best aided condition. Candidacy for these devices



Biomolecules 2022, 12, 649 6 of 18

was established with aided, single-word recognition, a task much more sensitive to the
practical implications of a high frequency loss [118,119].

Experience with these devices has demonstrated that people can integrate acoustic
and electrical signals, and hybrid implants effectively restore the consonant recognition
necessary for users to unlock their residual lower frequency hearing [120–123]. Patients
outperform their preoperative baselines in monosyllabic word recognition [113,120]. More
directly due to the synergy between their electrical hearing and their residual acoustic
hearing, hybrid CI users tolerate a lower signal-to-noise ratio than traditional CI users
when listening to speech presented in background noise [113]. The preservation of lower-
frequency hearing also helps hybrid CI users outperform traditional CI users in music-
recognition tasks, both with and without lyrics [122].

Prolonged hearing preservation is possible among hybrid CI users; there is evidence
of significant preservation 15 years after implantation [124]. Nonetheless, we do not yet
understand the factors that contribute to varying levels of preservation among different peo-
ple [67]. Gender and device type do not appear to contribute to differing outcomes, while
age at implantation can [125]. There are mixed reports for whether and how preoperative
hearing predicts postoperative preservation [86,125].

Despite the efficacy of hybrid implants and the potential for patients to integrate
acoustic and electric signals in the same ear, a host of case series, cohort studies, and
retrospective reviews have reported patients who initially use hybrid devices frequently
move to rely solely on electrical stimulation [126–129]. Some of these patients rely on
electrical stimulation because they have lost their residual hearing over time, but others
actively chose not to continue using electro-acoustic stimulation. Discomfort and poor
sound quality are reported to drive some of these patients’ decisions, while aesthetic
concerns and physical comfort drive others. Additionally, given the option, some patients
prefer not to wear devices that extend into the ear canal.

4.4. Cochlear Nerve Pathology

Auditory brainstem implants (ABI) are analogous to CIs, save that their electrodes are
on a flat mesh rather than a wire array, and they stimulate the cochlear nucleus in the lateral
recess of the fourth ventricle in the brainstem. These devices were pioneered for patients
with Neurofibromatosis type 2 (NF2), where they are used after bilateral acoustic neuromas
or treatments thereof cause profound hearing loss [130]. Unfortunately, these prostheses
resemble the very first generation of single electrode CIs. ABIs can reliably restore sound
awareness that can contribute to environmental safety and lip reading, but they are limited
in their ability to restore speech comprehension [131,132].

In managing NF2, physicians take every measure to preserve the cochlear nerve to
the extent that the patient could still benefit from a CI, rather than an ABI. Surgeons have
simultaneously resected acoustic neuromas while placing CIs for 30 years [133]. Until 2012,
however, there were fewer than three dozen such reports in the literature [131]. As evidence
has accumulated, we have only become more confident that there is a subgroup of patients
with acoustic neuromas whose benefit from CI use is commensurate with patients who
undergo implantation under other indications [131,134,135].

Unlike NF2, which causes tumor-related cochlear nerve loss, cochlear nerve aplasia
is a potentially treatable cause of deafness in children. Colletti et al. have consistently
reported excellent results and even open set discrimination in children who use ABIs for
cochlear nerve aplasia [136].

4.5. Older Adults

Hearing loss is a significant, but modifiable risk factor for cognitive decline [137].
Hearing loss also presents a major barrier to healthcare access and utilization [138], while
putting older adults at increased risk of falling and mental health issues, such as depression
and anxiety [139,140].
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Naturally, CIs are being used and studied in older adults with hearing loss with
increased frequency. Trials of older adults with and without cognitive impairment under-
going implantation report that the devices are safe to use and improve patients’ speech
understanding and quality of life [141,142]. While the effect of cochlear implantation on
cognition in older adults remains under investigation, trials have demonstrated improved
executive function in a subset of users [8]. Although some data suggests patients older than
80 years of age do not benefit from implantation the same way younger adults do [143],
this finding may be mediated, in part, by differences in the frequency with which patients
use their implants [144].

Critical to the ongoing use of these devices in older populations is the finding that
age and overall health do not appear to appreciably change a patient’s risk for CI-related
complications [145]. Nonetheless, a patient’s unique comorbidities and risk profile must
factor into their CI candidacy assessment. For patients who are less suited to undergo
general anesthesia, for instance, local anesthesia protocols are safe and effective when
deployed by experienced clinicians in tertiary care centers [146]. Patient motivation is
also an important consideration in candidacy for older adults. After implantation, people
who are predisposed to perform poorly with an implant are commonly recommended
for auditory training that supplements their exposure to complex sounds [55]. Several
of the manufactures offer their own programs. This practice mirrors the relatively more
intense auditory training and speech language therapy that is standard for pre-lingually
deaf children who use CIs.

5. Outcome Measures

The success of a CI is typically evaluated based on a user’s ability to recognize speech
in quiet and noisy conditions. However, these performance indicators do not reflect users’
self-perceived communication abilities or the CI’s impact on their quality of life [147].
Previously, hearing-specific and CI-specific patient reported outcome measures showed
significant improvements in quality of life, driven by implantation [148]. The mismatch
between patient-reported outcome measures and performance evaluations has guided the
recent development of the CIQOL-35 and CIQOL-10 Global, both of which are practical
tools that measure quality of life, specifically among CI users, in clinical and research
settings [149,150].

The arrival of these instruments is well-timed. They are the most psychometrically
sound instruments we have for CI users and can therefore help clinicians interrogate
the real-world value of ongoing iterative changes in implantation techniques and tech-
nology [149,151]. Given the countless inner ear therapeutics on the horizon for several
subgroups of people who are eligible for cochlear implantation, these instruments may also
guide the patient-reported outcome measures that will necessarily drive the regulatory
approval of a potential pharmacological alternative for a given disease state [152].

Genetics and Outcomes

Investigations into patients who do not receive the expected benefit from cochlear
implantation have expanded our understanding of how genetic factors influence auditory
outcomes. Notably, CI recipients with genetic derangements of spiral ganglion function
perform lower on speech perception tests than patients whose mutations disrupt the organ
of Corti [153]. Miyagawa et al. demonstrated that the majority of prelingually implanted
children with nonsyndromic hearing loss and specific deafness gene mutations demon-
strate good CI outcomes and rapidly develop auditory skills, while those with syndromic
hearing loss or inner ear and/or cochlear nerve malformations exhibit moderate–poor CI
outcomes [154]. Additionally, identifying genetic etiologies has implications for hearing
preservation with CI. Yoshimura et al. identified three causative gene mutations only
expressed in hair cell stereocilia that permitted improved hearing preservation outcomes,
compared with other genetic disruptors of cochlear function [155]. A recent large-cohort
study of 459 CI recipients identified causative genetic mutations in 48% of children and
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22% of adults, establishing a foundation for future studies correlating genetic cause with
CI performance [156].

6. Barriers to Care
6.1. Navigating Implantation

In a 2018 survey of 81 neurotologists, 78% reported that they had performed an off-
label implantation in the previous 2 years [157]. Respondents at higher volume, academic
centers perform implantations under these off-label indications most frequently, but they
are not alone. These cases generate data and experience that is eventually reflected in
expanding FDA labeling on new and pre-existing devices, but CI indications remain years
behind practice.

The FDA approved a device for children starting at 9 months of age for the first time
in 2020 [158,159]. This most ambitious approval does not adhere to the latest 1-2-3 standard
set by the Joint Committee on Infant Hearing (JCIH), wherein children with congenital
hearing losses are identified at their newborn hearing screening, evaluated in their second
month, and outfitted with an appropriate intervention in their third. Children who will
ultimately undergo implantation are often fitted with a hearing aid in their third month.
The 9-month figure from the FDA accounts for time during which a child who is identified
with hearing loss could attempt to use hearing aids, failure with which is a prerequisite
for implantation [157]. This failure criterion is a vestige of adult CI candidacy standards.
Evidence from several studies shows that surgery should not be delayed to account for a
lengthy amplification trial in children, especially when bilaterally absent auditory brainstem
responses have been confirmed with behavioral audiometric testing [160–162]. Even and
perhaps especially for children on this ‘fast-track,’ skull and mastoid size, auditory and
neurological maturation, and risks of anesthesia exposure must inform the timing of
cochlear implantation. Regulatory and practical factors force clinicians and families to
navigate their own, off-label timeline to safely guarantee children the earliest opportunity
to develop aural communication.

6.2. Cost

While regulatory approvals and off-label uses for CIs proliferate, an insidious set of
socioeconomic barriers also prevents patients in need of accessing implantation. In the
United States (US), it is estimated that less than 10% of adult and 50% of pediatric candidates
utilize CIs [163–165]. Moreover, adults who ultimately become users can experience wait
times of more than a decade [98,163,166]. Importantly, duration of deafness is one of
the strongest predictors of poor performance after implantation [97,167]. CI candidates
who identify as nonwhite, who are already more likely to have poorer preoperative word
recognition scores than their peers, wait the longest for implantation [163,168,169]. This
disparity broadens when we account for the lower likelihood that nonwhite CI candidates
undergo implantation at all [169].

In the US, children and adults accessing their care via Medicaid who qualify for CI
candidacy do not experience the same outcomes as those who are covered by private pay-
ers [170,171]. This is to be expected; for adults, Medicaid coverage for cochlear implantation
is determined by individual states, and more than a third of them do not cover implantation
at all [172,173]. Medicaid beneficiaries also struggle with post-implant complications and
access to critical follow up care due to multiple fiscal and logistical barriers [170–172], as
families with fewer resources access fewer healthcare resources, even if they are ostensibly
subsidized [174].

The care pathway for patients with private insurance is different, but not necessarily
more straightforward. Private payers commonly disregard not only published scientific
evidence, but also clinical practice guidelines, and inconsistently acknowledge common
CI indications. It is not uncommon for a private payer to refuse to cover implantations for
children under a year of age and those with SSD [175].
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7. Technology in Development
7.1. Optical Cochlear Implants

Basic research on the feasibility of an Optical Cochlear Implant (oCI) using photonic
stimulation of the hair cells or spiral ganglion cells rather than electrical current as used in
the current Electrical Cochlear Implant (eCI) suggests a theoretical possibility of improving
the dynamic range of current eCI stimulation strategies (which could enhance understand-
ing in background sound and music appreciation) and more focused neural stimulation
than eCI (which could limit electrode “cross talk”). Recent reviews provide an excellent
summary of the major issues related to oCI [176,177].

Two basic strategies are under investigation: Infrared Neural Stimulation (INS), which
encodes sound by creating heat with an implanted laser to initiate neural stimulation;
and Optogenetic Stimulation, which expresses photosensitive ion channels to neurons.
Despite the potential, investigators have several significant obstacles to overcome. With
INS, the challenge of balancing the heat generation to create enough to stimulate without
damaging the cells is formidable. There is still controversy as to whether or not such INS
stimulation is producing direct neural stimulation from the localized thermal effect or if
there is an optoacoustic event stimulating surviving neurons from the stress-relaxation
waves following confined heating within the cochlea in animal experiments [176]. With
Optogenetic Stimulation, the blue–green stimulation of light-sensitive ion channels such as
Chronos-mediated stimulation risked phototoxic damage to cells and the newer strategies
emphasize red-shifted stimulation with ChrimsonR which avoids the ototoxicity and
offers improved firing rates in experimental designs. These optogenetic strategies rely
on viral gene transfer with Adeno-associated Viruses as the main candidate for future
application. Such optogenetic strategies open the possibility of Active oCI and Passive oCI
stimulation with either implantation of a micro-LED (light-emitting diode) arrays versus
passive waveguide-based implantation with emitter arrays spread through the area of
implantation [177]. However, there are still formidable challenges in designing such arrays
for safe implantation, such as understanding the neural effects of prolonged stimulation,
current requirements, and durability. While the concept of oCI merits further investigation,
clinical application of an oCI is not imminent.

7.2. Electrode Coating and Drug Elution

The placement of the CI electrode array within the scala tympani necessarily disrupts
the microenvironment of that delicate inner ear structure. A silicone carrier delivers the
electrodes from the receiver–stimulator to the cochlea. Recent developments have allowed
special grafting and coating of materials onto the silicone electrode carrier. Materials
which reduce friction and insertion trauma have already been implemented in animal
models with some success [178]. The preservation of acoustic hearing in the setting of
cochlear implantation will likely be facilitated by further developments and improvements
in electrode delivery.

Development of coating materials not only allows for atraumatic electrode insertion,
but may also enable the delivery of drugs and other biologically active compounds directly
to the inner ear. Animal studies evaluating the safety of steroid-eluting electrode arrays are
well underway. The ability to deliver steroids to the scala tympani provides an exciting
opportunity to further advance acoustic hearing preservation and reduce vertigo in the
setting of cochlear implantation [179]. Finally, research teams are investigating the use of
biologically active particles grafted to the electrode that would allow the on-growth of new
spiral ganglion cells within the inner ear [180].

7.3. Intraoperative Monitoring

Intraoperative facial nerve monitoring has long been the practice for CI surgeons
to preserve facial motor function during the delicate surgical procedure. Within the last
decade, there have been significant developments of additional intraoperative monitoring
procedures to evaluate the electrode insertion process and final placement prior to closure.
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Impedance measurements and neural response telemetry can be obtained after electrode
placement and prior to closure to partially evaluate device integrity and placement.

To further preserve acoustic hearing in patients undergoing CI, new intraoperative
monitoring techniques have been developed to evaluate cochlear trauma and direct the
surgeon to more gentle insertion. While a full discussion of these techniques is beyond the
scope of this manuscript, intraoperative electrocochleography measures electrical potentials
generated within the cochlea and can be used to evaluate preservation of function during
insertion. The results of large reviews on the efficacy of this type of monitoring in the
clinical setting are largely mixed [181]. More recently, the use of transimpedance matrices
allows for the detection of tip fold over and fine details of electrode positioning, such as
proximity to the lateral wall [182,183]. These intraoperative monitoring techniques are not
yet in wide clinical use but may prove to be a useful adjunct for plain-film X-ray prior to
wound closure.

8. Cultural Considerations

There is a heterogeneous community of people who understand deafness not as a
disability, but as a cultural characteristic to be embraced as part of an individual’s identity.
Voices from this community are a constant and impactful presence in conversations that
establish the goals of early childhood interventions for hearing loss, deaf education, and
the experience of deafness.

We are not attempting to write on behalf of the people in this community, nor to
summarize what is a lived-in spectrum of deeply held beliefs about cochlear implantation.
Similarly, we do not speculate as to their positions about forthcoming inner ear therapeutics.
Our purpose here is to call attention to a constituency who will be a part of the coming
conversations about interventions making their way into and beyond clinical trials.

9. Conclusions

Themes from the conversations that define the CI space can inform the development
and evaluation of an oncoming wave of inner ear therapeutics. CIs are the standard we
have in treating so many of the conditions for which there are inner ear therapeutics in
pre-clinical and clinical pipelines [183]. Understanding the physiological and practical
constraints of implantation can help us evaluate not only the efficacy of forthcoming
therapies, but also their distribution.

A small molecule, gene, or antisense therapy designed to preserve or restore hearing
could avert surgical implantation entirely, or postpone it. Alternatively, if these treat-
ments selectively restore hearing in some frequencies, they may create a novel use case
for combination therapy. Preclinical studies using gene and antisense therapies show
impressive rescue of low- and mid-frequency sensitivity, demonstrating that these drugs
can reach the cochlear apex [17,25–27,29–33,37–39], which is currently not accessible with
most implantation techniques. Additionally, CIs could be designed to be a drug-delivery
conduit for biomolecular or pharmacologic drugs using drug-eluting strategies or creating
ports for drug delivery within the cochlea. The optogenetic strategies used in oCIs under
investigation are a prototype of combining inner ear drugs with cochlear implantation and
highlight the importance of considering the future of treating the inner ear with a combined
biomolecular and biodevice approach.

This review features the ongoing improvements in CIs and the major shortcomings
in CI outcomes for listening in background sound, music appreciation, surgical and post-
surgical complications, and the age of implantation limiting the therapeutic window that
highlight the unmet medical needs for individuals with a hearing impairment. Gene
and antisense therapies aim to reach all defective hair cells along the basilar membrane
and, in doing so, may improve hearing in noisy environments and the appreciation for
music. Several delivery routes to the inner ear have been investigated, including topical-
tympanic membrane application (antisense), trans-tympanic injection (small molecule and
antisense), intracochlear injection via RW injection or cochleostomy (gene and antisense),
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and intralabyrinthine injection via the utricle or canalostomy [13,26]. The less-invasive
surgical injection of these drugs offers the opportunity for earlier treatment in infancy
when significant neurocognitive development depends on sensory input. Older adults
who are not a candidate for the more extensive surgery required for implantation may be a
candidate for an inner ear drug that uses a less invasive surgical delivery.

Recipients of new inner ear therapeutics may still benefit from the speech and auditory
training that have been honed over decades with CI users. As we have learned with
cochlear implantation, rehabilitation and hearing therapy is a significant component of
therapeutic success beyond just providing sensory input. Patients pursuing new therapies
will likely need to confront a set of economic and social barriers that overlaps those facing
CI candidates. These and other tensions encountered over decades of implantation and use
can direct opportunities to address unmet medical needs as we develop a new standard of
care for people with hearing loss.
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