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Abstract

Context: Over the last decade, design patterns have been used extensively to generate reusable solutions to frequently
encountered problems in software engineering and object oriented programming. A design pattern is a repeatable
software design solution that provides a template for solving various instances of a general problem.

Objective: This paper describes a new method for pattern mining, isolating design patterns and relationship between them;
and a related tool, DLA-DNA for all implemented pattern and all projects used for evaluation. DLA-DNA achieves acceptable
precision and recall instead of other evaluated tools based on distributed learning automata (DLA) and deoxyribonucleic
acid (DNA) sequences alignment.

Method: The proposed method mines structural design patterns in the object oriented source code and extracts the strong
and weak relationships between them, enabling analyzers and programmers to determine the dependency rate of each
object, component, and other section of the code for parameter passing and modular programming. The proposed model
can detect design patterns better that available other tools those are Pinot, PTIDEJ and DPJF; and the strengths of their
relationships.

Results: The result demonstrate that whenever the source code is build standard and non-standard, based on the design
patterns, then the result of the proposed method is near to DPJF and better that Pinot and PTIDEJ. The proposed model is
tested on the several source codes and is compared with other related models and available tools those the results show
the precision and recall of the proposed method, averagely 20% and 9.6% are more than Pinot, 27% and 31% are more than
PTIDEJ and 3.3% and 2% are more than DPJF respectively.

Conclusion: The primary idea of the proposed method is organized in two following steps: the first step, elemental design
patterns are identified, while at the second step, is composed to recognize actual design patterns.
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Introduction

In software engineering, a design pattern is a general and

reusable solution to a frequently occurring software design

problem. A design pattern is not an algorithm that can be

converted directly into code but rather a template for solving

various instances of a general problem. Design patterns are an

important tool in software engineering documentation, allowing

software developers to reuse previous strategies for resolving

recurrent issues. Moreover, it’s very important during the re-

documentation process, in particular when the documentation is

very poor, incomplete or not up to-date [5].

In object-oriented programming, design patterns can increase

the reusability of the software libraries and accelerate the

development process by providing tested and, proven development

paradigms. In addition, mining design pattern instances from

system source code or design can greatly help to understand the

systems and change them in the future [6].

Design patterns that provide general solutions to various

instances of a problem are often repetitive, time-consuming and

costly. Each pattern addresses a problem that may occur

repeatedly without resolution searching. Design patterns vary in

their weights and levels of abstraction [12]. Table 1 provides a

classification of design patterns based on their purpose and scope

[2].

The purpose and scope determine the patterns in the various

classes of objects. The relationships between the classes and their

subclasses are specified using instance level relationships (e.g.

aggregation, composition …) and class level relationships (e.g.

inheritance). The relationships between the objects are dynamic

and can be changed at run time [14]. The purpose of each pattern

can be creational, structural, or behavioral, as described below.

N Creational design patterns: these patterns are related to the

methods used to create the objects.
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N Structural design patterns: these patterns define the ways in

which objects and classes can be combined into larger

structures.

N Behavioral design patterns: these patterns describe the

relationships between the objects.

In computer programming, several patterns may be combined

or offered as alternatives. For example, the composite, iterator,

and visitor constructs are often used in combination, while the

prototype pattern is often an alternative to the abstract factory [2].

Some of the advantages of design patterns are as follows:

N Reusable software and design: the software design patterns are

more reusable, flexible, and extensible when design patterns

are employed.

N Documentation: the use of design patterns in software

documentation allows developers to recognize the structure

and design of the application programming interface (API)

instantly.

N Communication and teaching: design patterns provide a

common language for software designers and analysts and

improve the communication between them.

Each design pattern can be divided into several sections based

on its template [13]. The template provides a common structure

for the pattern information so that the pattern can be understood,

used and compared more effectively. Each design pattern consists

of a name and classification, intent (also known as the motivation),

range of applicability, structure, and list of participants, list of

collaborations, list of consequences, implementation, sample code,

list of known uses, and list of related patterns.

By using relationships between design patterns can automati-

cally find patterns of different granularity as a pattern that uses

many other patterns has a higher granularity then the other [26].

The relationships between patterns allow combining several

patterns and helps in understanding the similarities among the

relationships [25]. One application of mining relationships

between the patterns is related to the principle of modularity that

is a specialization of the principle of separation of concerns.

Following the principle of modularity implies separating software

into components according to functionality and responsibility. In

this paper, deoxyribonucleic acid (DNA) sequences are used to

mine the patterns, and DLAs are employed to identify the

relationships between the patterns. The remainder of the paper is

organized as follows.

The first section provides a review of related work on design

patterns, and the second section introduces DNA sequences and

DLAs. The proposed model is presented in the third section, and

the fourth section describes the results of several experimental tests

of the model. The paper is concluded in the fifth section.

Related Work

The Alexander design pattern was introduced into software

development in the 1970s [1], and developers soon understood

that this pattern could be successfully incorporated into software

architecture. Faced with the problem of designing a high-quality

building architecture, Alexander introduced the idea of pattern

reusability for the first time. He discovered that exemplary

buildings have similar design characteristics, known as patterns.

Several studies on design patterns emerged in the 1990s,

including a book on the subject [2]. This book introduced the idea

of using patterns in software design and presented a standard

template for pattern documentation. Boetcher [7] categorized

design patterns into creation-, structure, and behavior-oriented

patterns based on ideas borrowed from learning theory. Antoniol

[8] presented a technique for the detection of structural patterns in

design pattern retrieval tools designed for program comprehension

and maintenance. Nikolas [9] introduced a design pattern

detection method based on similarity scoring. This method detects

the similarity between two vertexes rather than between two

graphs. To solve this problem, Jing Dong [10] introduced a

method known as template matching, which calculates the

similarity between sub-graphs. Other researchers introduced

Table 1. Classification of the design patterns.

Purpose

Creational Structural Behavioral

Scope Class Factory method Adapter Interpreter

template method

Objects Abstract factory Bridge Chain of responsibility

Builder Composite Command

Prototype Decorator Iterator

Singleton Facade Mediator

Flyweight Memento

Proxy Observer

State

Strategy

Visitor

doi:10.1371/journal.pone.0106313.t001

Figure 1. Alignment between sequences A and B.
doi:10.1371/journal.pone.0106313.g001
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design pattern detection methods based on machine learning (see

[3,4,21,22] for further information); however, most of these

methods are complex in their implementation and computation-

ally expensive [16].

There are several tools to discover design pattern from source

codes but there is no point of discovering design patterns from

scratch. Current existing tools on pattern mining usually transform

the source code into some intermediate representations to reduce

the search complexity [6]. Keller [27] uses the SPOOL tool that

retrieves design patterns from C++ that recovered Template

method, factory method and bridge. Pat system recovered

Adapter, bridge, proxy, composite, decorator that it precision is

from 14% to 50% which used by Karamer [28]. Another tool that

used by Dong [29] was DP-Miner that are based on the use of

matrix and weight and recovered Adapter/command, bridge,

composite, strategy/state. The precision values reported only for

the pattern in JHotdraw range from 91% to 100%. Olsson [30]

Reclassified GoF patterns [2] based on the PINOT tool that the

case study was on ANT, AWT, JHotDraw, and Swing. Balanyi

[32] XML–based language, the Design Pattern Markup Language

(DPML), which provides an easy way for the users to modify

pattern descriptions to suit their needs, or even to define their own

patterns or just classes in certain relations they wish to find but its

precision was less than 60%. Lucia present an approach to recover

structural design patterns from OO source code, which is based on

the use of visual language grammars and parsing techniques and

used the DPRE tool for JHotdraw 5.1, JHotdraw 6.0b1,

QuickUML, Apache Ant, Swing, and Eclipse JDT (components

UI 3.3.2 and CORE 3.3.3) case study. The precision values

reported for all patterns from 41% to 87% [31]. Binun [33]

present an approach and a tool, named DPJF for implemented

pattern detectors. The basis of this method are to routine

application of design pattern detection in program comprehension

and let DPJF pioneer novel uses of design pattern detection for

software quality assessment and improvement. Gueheneuc [34]

introduced a tool for design pattern recovery problem and adapt a

bit-vector algorithm inspired to bio-informatics. Patterns and

software systems to be analyzed are expressed in terms of string

representations, which are formed by classes and relationships

between them (association, aggregation, composition, instantia-

tion, inheritance and dummy).

De Lucia [35] Eclipse plug-in implementing a reverse

engineering tool supporting the detection of design patterns and

their implementation variants. The plug-in exploits a technique

able to recover design pattern instances by combining static

analysis, based on visual language parsing, with dynamic analysis,

based on source code instrumentation.

Currently, it is difficult to determine the pattern role and the

variant of interaction groups of a design pattern in an UML

diagram as the design pattern information is not represented in the

interaction diagram. Loo [36,37] proposed the UML sequence

diagram via UML profile to allow designers to define and visualize

the pattern roles and the different types of interaction groups for a

design pattern.

The relationships between design patterns allow combining

design patterns, in order to modularity principles. Unfortunately, it

is difficult to identify these relations if they are not explicit in each

pattern. In this case, into consideration the growing number of

patterns, the manual analysis of design patterns relationships is a

daunting activity [38]. Parnas [23] wrote one of the easiest papers

discussing the considerations involved in modularization. A more

recent work, [24], describes a responsibility-driven methodology

for modularization in an object-oriented context [39]. One of the

important issues about relationships between design patterns is

parameter, function; variable passing that is related to how to

apply each design pattern to each others. This principle can be

applied to deciding what code goes in a function, when to define a

class, or what files to put classes and functions. Several patterns

may be combined or offered as alternatives. For example,

sometimes creational pattern overlap. There are cases when either

prototype or abstract factory would be appropriate. At other times

they complement each other: abstract factory might store a set of

prototypes from which to clone and return product objects [2].

Abstract factory, builder and prototype can use singleton in their

implementations [2]. Abstract Factory classes are often imple-

mented with Factory Methods (creation through inheritance).

Figure 2. Stochastic learning automaton.
doi:10.1371/journal.pone.0106313.g002

Figure 3. The environment.
doi:10.1371/journal.pone.0106313.g003

Figure 4. Distributed learning automata.
doi:10.1371/journal.pone.0106313.g004
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Background on DNA Sequences
Sequence alignment is a method of obtaining the similarity

between two sets of data, which can be divided into two sub-

methods: double alignment and multiple alignments. Sequence

alignment is widely used in bioinformatics for genome sequence

difference identification. Any sequence of DNA, ribonucleic acid

(RNA), or proteins can be aligned using a variety of bioinformatics

algorithms. Sequence mining is one type of data mining, aimed at

statistically identifying the pattern in a set of input data. The

pattern values are generally assumed to be discrete. In other

words, DNA sequence mining is a method of finding the common

subsequence in a set of sequences (often two sequences). These

ideas are illustrated in the following numerical example [19].

Consider the two sequences in Figure 1. The goal is to compare

the two sequences and find the similarities between them. The

largest common subsequence S is defined as the largest sequence

such that the letters of S appear at the same locations in both A
and B sequences; the letters need not be consecutive in A and B.

If A = ACAAGACAGCGT and B = AGAACAAGGCGT, then

Figure 1 shows the alignment (i.e., largest common subsequence)

between these two sequences.

The sequence alignment corresponds to the maximum match

between the two sequences, assuming that the two sequences are

similar.

Background on Distributed Learning Automata (DLA)
This section introduces the concepts of LAs and DLAs, which

are the main tools of the proposed method.

Learning Automata. An LA is composed of two parts:

I. A stochastic automaton with a specified set of limited actions

and a stochastic environment with which the automaton is

associated.

II. A learning algorithm through which the automaton learns a

set of optimal actions by trial and error.

Figure 5. Schematic diagram of the proposed model.
doi:10.1371/journal.pone.0106313.g005
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In practice, each action is transmitted to a stochastically

generated environment and assessed by that environment; the

reaction is then passed to a stochastic automaton [20]. The

stochastic automaton uses this reaction to select its action in the

next stage [18]. Figure 2 shows the relationship between the

stochastic automaton and its environment.

The Environment. A formulation of the environment can be

derived as follows.

Let E = {a, b, c}, where a = {a1,…, am} is a set of inputs,

b = {b1,…, bm}is a set of outputs and c = {c1, c2,…, cm} is a set of

penalty probabilities.

Figure 3 illustrates the environment and probability set. Based

on the output value (b), the formulation of the environment can be

divided into the following three cases:

N In the P-Model (probabilistic model), the value of bi is either

zero or one. The value bi(n) = 1 represents a penalty, and

bi(n) = 0 represents a reward.

Figure 6. Metric version of the builder design pattern.
doi:10.1371/journal.pone.0106313.g006

Figure 7. Builder design pattern.
doi:10.1371/journal.pone.0106313.g007
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N In the Q-Model, bi(n) is selected from a finite set of output with

more than two values in the interval [0,1].

N In the S-Model, bi(n) is a continuous random variable in the

range [0,1].

The values ci comprise a set of penalty probabilities and can be

used in each of the P-, Q-, and S-models. In a stationary

environment, the ci values remain unchanged, while in a non-

stationary environment, these values change over time. The set ci

is defined as follows:

ci~Prob b(n)~1Da(n)~aif g, i~1,2,:::,r ðEquation 1Þ

The element ci represents the probability of an undesirable

outcome given the input action ai. The number of possible actions

ai can vary, but it will be assumed that ci is defined for at least one

action. In this paper, the output value (bi) of the environment is

assumed to be either zero or one; in other words, the P-model

learning algorithm is adopted. In this paper, P-model learning

algorithm will be used in each node of the distributed learning

automata to find the relationship between all existing design

patterns in the source codes.

P-Model Learning Algorithm. In early models, all of the

action probabilities were assumed to be equal for all of the

automata. For r-action automata, the action probabilities are given

by pi(n) = 1/r, where the value of r is updated based on the reward

or penalty in each iteration. In this type of automaton, if action ai

is selected from among all possible actions, then the desirable

outcome occurs, the probability of action ai increases, and the

probabilities of the other actions decrease. However, when an

undesirable outcome occurs, the probabilities Pi(n) decrease and

the remaining probabilities increase [17]. The changes are made

such that the sum of Pi(n) remains equal to one. The following

formula defines the effects of desirable and undesirable outcomes.

Desirable outcome.

Pi(nz1)~Pi(n)za(1{Pi(n)) ðEquation 2aÞ
Pj(nz1)~(1{a)Pj(n) Vj,j=i ðEquation 2bÞ

Undesirable outcome.

Pi(nz1)~(1{b)Pi(n) ðEquation 3aÞ
Pj(nz1)~(b=r{1)z(1{b)Pj(n) Vj,j=i ðEquation 3bÞ

In Equations 2 and 3, a is a reward parameter, b is a penalty

parameter and r is the number of actions such that a, b [0,1].

Three distinct cases are considered regarding the values of a and b.

N LRP (Linear Reward Penalty): when a = b, the penalty and

reward are both important.

Figure 8. Design pattern and source codes after the detection process.
doi:10.1371/journal.pone.0106313.g008

Figure 9. Alignment of sequences A and B.
doi:10.1371/journal.pone.0106313.g009

Design Pattern Mining Using DLA and DNA

PLOS ONE | www.plosone.org 6 September 2014 | Volume 9 | Issue 9 | e106313



N LReP (Linear Reward Epsilon Penalty): when b is substantially

less than a (a..b), the reward is more important than the

penalty; however, the penalty must still be provided.

N LRI (Linear Reward Inaction): when b equals zero (b = 0), the

penalty is not considered.

Distributed Learning Automata. A DLA is a network of

LAs that cooperate with one another in solving problems. In

colleague LAs, only one LA is active at any given time. The

number of LAs in one DLA is equal to the number of actions that

can be performed by any of the other LAs connected to it. The

selection of an action by the LAs in this network leads to the

isomorphic activation of other LAs connected to this network LA.

Figure 4 illustrates the concept of a DLA.

The DLA network is modeled by a graph in which each vertex

is an LA. The arrows between LAi and LAj in this graph indicate

that the selection of action ai
j by LAi leads to the activation of LAj.

The number of actions selected by LAk is determined by

Pk~ Pk
1,Pk

2,:::,Pk
r

� �
. In this set, the value Pk

m represents the

probability of action ak
m, where the selection of action ak

m by LAk

leads to the activation of LAm-k. The values of Pk
m (for all m)

determine the number of actions that can be performed by the

automaton LAk [15].

In this paper, the P-model learning algorithm is used for each

LA in the DLA. In this research distributed learning automata is

employed to determine the relationships between the patterns in

the found design pattern from source codes. The relationships

between patterns help in understanding the similarities among the

relationships between design patterns.

The Proposed Method

In this paper, DNA sequences are used to detect the patterns,

and then, DLAs are employed to determine the dependency rate

of these patterns in a specified source code. Figure 5 shows a

schematic diagram of the proposed model. According to Figure 5,

three categories of source codes are required for the design pattern

detection in the proposed model. Three category initial source

codes (good, bad, and mixed) are therefore generated using known

design patterns. The good source code (A) employs standard

design patterns using standard relationships between all objects

and classes. The bad source code (C) is the opposite extreme, while

the mixed source code employs both standard and non-standard

design patterns and relationships.

The standard design patterns and all of the source codes are

converted to metric codes using standard symbols, this is done as

follows.

A. The type of the functions, variables and reserve comments

will remain fixing.

Figure 10. Best matching patterns between the builder design pattern and a sample source code.
doi:10.1371/journal.pone.0106313.g010

Figure 11. Alignment between the ‘‘builder design pattern code’’ and a ‘‘sample source code’’.
doi:10.1371/journal.pone.0106313.g011
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Figure 12. DLA-DNA tool environment for designing pattern detection based on the proposed model.
doi:10.1371/journal.pone.0106313.g012

Figure 13. Relationship strengths in source code A.
doi:10.1371/journal.pone.0106313.g013

Design Pattern Mining Using DLA and DNA

PLOS ONE | www.plosone.org 8 September 2014 | Volume 9 | Issue 9 | e106313



B. Class name and function name concert to class# and

function#.

C. Function input parameters and variable names will be

considered as representative#.

D. Entire internal operations of each function become one

sentence and convert to the constant#.

Figure 6 shows the metric version of the builder design pattern

according to previous rules that has been done regarding to the

builder design pattern (Figure 7). Following this process, the

standard design patterns and all of the source codes are ready for

use in the proposed model. Broadly speaking, the proposed model

consists of three steps, as described below. Figures 8 shows more

example of the source code converting to metric source codes too,

regarding to the previous rules.

First Step: Design Pattern Detection in the Source Codes
Each design pattern has specific properties and characteristics

and employs objects and classes with particular variable names

and parameters but programmers may change the objects, classes,

and names. In this paper, design patterns are therefore charac-

terized based on their structures. Each pattern is converted to

metric form so that the pattern design structures in the source

codes can be efficiently extracted based on the code variables,

parameters, and methods. After the conversion to metric code, the

source code is searched for each pattern using the DNA sequence

alignment method, which is implemented using dynamic pro-

gramming [11]. The DNA sequence method is used to identify the

largest match between each pattern and a specified section of the

source code. If the builder pattern is a design pattern in a source

code, then this pattern can be detected using DNA sequence

alignment, as described in the second step.

Figure 8 shows that the builder design pattern has been

detected in source code A, indicating that source code A has

been written following the builder design pattern. The match

between the builder design pattern and source code can be seen

from the numbered asterisks in Figures 6 and 7.

Second Step: Finding the Best Match between the
Design Patterns and Source Codes Using DNA Sequences

The output of the first step is a set of node (code group). In the

first step, each design pattern was compared with each source code

section, yielding sequence alignments of various degrees as output.

In the second step, the entire set of sequence alignments is

reviewed to find the best match between the design pattern codes

and source codes using DNA sequence alignment. If a given

section of the source code overlaps significantly with a specified

design pattern compared to other patterns, then that source code

section is labeled with the matching design pattern. The following

algorithm is used to perform the second step.

A. The source code sequence alignment is penalized if space

matching occurs. The size of the penalty is one unit. Space

matching refers to the scenario in which one sequence

element in the design pattern is matched with a space in the

source code or vice versa. In Figure 9, sequence A exhibits

space matching with sequence B in nucleotide G, and

sequence B also exhibits space matching with sequence A in

nucleotide C.

B. The source code sequence alignment is penalized by three

units if non-matching occurs. Non-matching refers to the case

in which one element in the first sequence does not match the

corresponding element in the second sequence. For example,

in Figure 9, sequence A exhibits non-matching with sequence

B in nucleotide pairs C, G and G, C.

C. After calculating the penalty for each section of the source

code, the section with the lowest penalty is selected as a match

to the design pattern under consideration. This procedure is

performed for all design patterns and source codes. In

Figure 9, the size of the penalty for sequences A and B is

equal to eight (3+3+1+1).

Figure 10 shows the sections of the matching pattern between

the builder design pattern and a sample source code as bellow.

As well as, Figure 11 shows the alignment between the ‘‘builder

design pattern code’’ and a ‘‘sample source code’’ based on

Figures 9 and 10.

Design patterns will be detected at the end of the second step as

has been shown in the Figure 12. In this case, all sections of a

source code will be checked and have been detected standard

design patterns. In this paper, DLA-DNA tool is developed

according to the proposed method based on the recent three steps.

The tool outputs by showing that even better results can be

achieved by DNA sequence alignment and distributed learning

Figure 14. Relationship strengths in source code B.
doi:10.1371/journal.pone.0106313.g014 Figure 15. Relationship strengths in source code C.

doi:10.1371/journal.pone.0106313.g015
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automata (next step) techniques. The resulting tool is called DLA-

DNA (DNA sequence alignment and distributed learning autom-

ata).

Third Step: Extraction of the Weak and Strong
Relationship between the Design Patterns

Following the pattern detection, DLAs are employed to

determine the relationships between the patterns. These patterns

are investigated based on the send and receive operations,

parameters, function calls, classes, and methods. If two patterns

have a strong relationship, then this relationship will receive a

reward, and the other relationships will obtain penalties. The size

of the reward is based on the pair wise similarity between the

codes. If the relationship between the two patterns is weak, then

both relationships and other relationships will receive a penalty,

and the penalties will be assigned to the various relationships based

on the pair wise non-similarity of the codes (space matching or

non-matching). This procedure is performed on all of the patterns.

Figure 13 shows the relationship strengths of the patterns detected

in source code A, base on the DLA-DNA tool. The numbers on

each connecting line indicate the strengths of the relationships

between the pattern pairs in the sample source code.

The relationship between each design patterns in there category

of codes will be done as follow. The LReP case of the P-model

learning algorithm is used in the DLA, and Pi is initialized to 1/n,

where n is the number of patterns detected in a source code. For

each code pair (see Figure 11), there are three cases. If the two

codes are similar, then a reward of a = b610 is received. If the two

codes are dissimilar because of space matching, then a penalty of

b1 = 0.01 is received. If the two codes are dissimilar because of

non-matching between two code line numbers, then a penalty of

b2 = 0.02 is received. Before calculating the pattern relationships,

the net penalty is b = b1+b2, where a and b are the reward and

penalty sizes, respectively. For instance, in Figure 11, there are

three space matching instances, yielding b1 = 360.01 = 0.03 (for

line numbers 08, 09, and 18), and two non-matching instances,

yielding b2 = 260.02 = 0.04 (line numbers 07R07 and 15R17).

The net penalty is therefore given by b = 0.03+0.04 = 0.07, and the

reward is given by a = 0.07610 = 0.7.

Figures 13, 14 and 15 show the results of the proposed model

for source codes A, B, and C (the way of creation the source codes

A, B and C has been expressed in the second paragraph of the

experimental result).

Figures 13 to 15 are cut off from DLA-DNA tool environment

for more appearance. In Figure 13, the relationship between the

detector and visitor patterns is 0.596, and these two patterns have

a strong relationship because they have the highest action

probability. However, relationship between the template and

factory patterns is only 0.097, indicating that the relationship

between these patterns is weak, and the code may require

modification by an analyzer or programmer. The action

probability is different in each source code and depends on the

design pattern detection. Figure 15 shows high action probabilities

between the various code sections, but in this case, the high values

do not indicate strong relationships because the code sections do

not follow design patterns, and these high probabilities are

therefore ignored. Meaningful strong and weak relationships can

only occur between design patterns after their detection. The

proposed model can be applied to any source code to detect the

standard design patterns in the code and the strengths of the

relationships between them. This helps to programmers and

analyzers to find out and understanding more about relationship

between patterns and its dependence, parameter passing, gener-

alization and so on.

Experimental Results

In order to assess the precision and recall of the proposed

model, the method of 10 fold cross-validation is applied. Five

categories of the source codes were used to evaluate the proposed

model. These source codes are JHotDraw 6.0b1, Apache Ant

1.6.2, Swing 1.4, ArgoUML [41], and Eclipse 3.6 [42] that the

original source codes are in Java. JHotDraw 6.0b1 explain the

good use of design patterns and contain many well-known patterns

[2], Apache Ant 1.6.2 is a tool for software building process

automatically [40], Swing 1.4 is a Sun Microsystems enterprise

Table 2. Shows some information about five categories of the source codes.

JHotDraw 6.0b1 Apache Ant 1.6.2 Swing 1.4 ArgoUML Eclipse 3.6

LOC 19238 79566 125706 154577 5514

Number of packages 171 499 801 200 41

Number of classes 7117 24074 46760 3776 702

Number of delegations and inheritances 7117 24074 46760 20680 2346

doi:10.1371/journal.pone.0106313.t002

Table 3. Shows some information about three categories of the source codes.

Source code A Source code B Source code C

LOC 161397 8792 112450

Number of packages 104 8 89

Number of classes 4172 12 155

Number of delegations and inheritances 18627 3 3196

doi:10.1371/journal.pone.0106313.t003
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developer in Java and a set of adjustable graphical components,

ArgoUML is a large application and an open source CASE tool.

This tool has big size and is a challenge for several tools. Eclipse

3.6 contains very unusual design pattern implementation variants.

Table 2 shows some information about these tools from aspect of

the number of line of code (LOC), number of packages, number of

classes and number of delegations and inheritances.

In this paper, three category of source code will be used for

assessing that is created from a combination of the above source

code as bellow.

First category of source code (category A) consists of several

standard design patterns with strong relationships of those

patterns, the second one (category B) includes both standard and

non-standard design patterns of them, and the third source code

(category C) consists of several non-standard design patterns.

Category A source code is prepared by using the respective five

source codes without any modifications, category C is prepared by

removing all patterns in the five source codes, and category B code

is prepared by combining part of category A source code with part

of category C source code. In this experiment, the correctness of

the semantic and syntax of the source code are not of our scope

and will use the DLA-DNA tool to assess the precision and recall

of the proposed model compared with other available tools.

Table 3 shows some information about these tools from aspect of

the number of line of code (LOC), number of packages, number of

classes and number of delegations and inheritances.

In the first step, all of the design patterns are detected using

DNA sequence alignment and fed to the DLA to identify the weak

and strong relationships between them (use the DLA-DNA tool).

The DLA-DNA tool (proposed method) in comparison to three

other tools (Pinot [30], PTIDEJ [34] and DPJF [33]). The results

of the precision and recall are as Table 4 and Table 5 respectively.

The Similarity of the proposed method and the others is the

understand the relationship between patterns; and all of them try

to present the notion of elemental design patterns to be employed

as base concepts in order to automatically detect more complex

design patterns. The primary idea of the proposed method is

organized in two following steps: the first step, elemental design

patterns are identified, while at the second step, is composed to

recognize actual design patterns. But, the difference between the

proposed and the others is to describe relationships between

objects, methods, and fields for the design patterns to be

recognized.

Table 4 and Table 5 show the precision and recall comparison

on proposed model and some available tools. Regarding to the

data selection, three source code those are build based on the

standard five source codes. Precision and recall percentages for

proposed method and others, is obtained from averaging

recovered instances of design patterns (Adapter, Bridge, Compos-

ite, Facade, Proxy and Decorator) on source codes A, B and C

respectively. Regarding to the Table 4 and Table 5, the precision

of the proposed method is better than other related method,

especially in the source code B. According to the object oriented

programming styles that is much more relevant to characteristics

of programmers, they usually does not use the standard design

pattern in their programs and usually combine standard design

patterns with un-standard programs features. Thus, the proposed

method is much better than other from aspect of this feature. The

result demonstrate that whenever the source code is build standard

and non-standard, based on the design patterns, then the result of

the proposed method is near to DPJF and better that Pinot and

PTIDEJ. These methods are a latest and newest model on the

design pattern detection. Also these methods exploit the code

analysis tool source navigator in order to implement the extractor

module of the recovery process. Source navigator is able to recover

almost all the necessary information and organize it in a structure

suitable for our purposes and supports several programming

languages, such as C++, Java, and Python [13]; and provides APIs

allowing programmers to construct a specific parser.

Conclusion

The proposed model consists of two main steps. The first step is

detection and identification of standard design patterns in the

source codes. The second step is determination of the relationships

between the detected standard design patterns. The weak and

strong relationships between the patterns were extracted using

DLA. The proposed model can detect design patterns better that

available other tools those are Pinot, PTIDEJ and DPJF; and the

strengths of their relationships; this information can be used by

analyzers and programmers to evaluate the quality of their

programs based on design patterns. The proposed model was run

on three categories of source codes, and the results demonstrate

the more accuracy of the model in detecting design patterns and

determining the strengths of the relationships between them. This

method is feasible for any source code because it detects patterns

based on structural similarity.

Discussion

Understanding the relationship between patterns is extensible to

improve on several fields such as process mining, website

browsing, biochemistry, computational biology, medicine and

biological science when it is important to find the relationship

between genes, proteins and many other molecules in living

organisms [43]. In the future work, author would extend the

application of the proposed method on improving the works of

Zhou et al. those are related to computational biology [44,45,46].
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