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Abstract: Future biosensing applications will require high performance, including real-time 

monitoring of physiological events, incorporation of biosensors into feedback-based 

devices, detection of toxins, and advanced diagnostics. Such functionality will necessitate 

biosensors with increased sensitivity, specificity, and throughput, as well as the ability to 

simultaneously detect multiple analytes. While these demands have yet to be fully realized, 

recent advances in biofabrication may allow sensors to achieve the high spatial sensitivity 

required, and bring us closer to achieving devices with these capabilities. To this end,  

we review recent advances in biofabrication techniques that may enable cutting-edge 

biosensors. In particular, we focus on bioprinting techniques (e.g., microcontact printing, 

inkjet printing, and laser direct-write) that may prove pivotal to biosensor fabrication and 

scaling. Recent biosensors have employed these fabrication techniques with success, and 

further development may enable higher performance, including multiplexing multiple 

analytes or cell types within a single biosensor. We also review recent advances in 3D 

bioprinting, and explore their potential to create biosensors with live cells encapsulated in 

3D microenvironments. Such advances in biofabrication will expand biosensor utility and 

availability, with impact realized in many interdisciplinary fields, as well as in the clinic. 
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1. Introduction 

For diagnostic, environmental, and clinical applications of biosensors, it is necessary to be able to 

detect, quantify, and report a multitude of different analytes rapidly and simultaneously. Often, detection 

of a single analyte, such as a disease marker or protein, is not sufficient for diagnosis or disease 

screening. This has become especially relevant in recent years as patient-specific treatments are being 

developed based on patient-to-patient biomarker differences [1,2]. As the capabilities of biosensors 

continue to improve, these new biosensors must have the ability to multiplex large amounts of data, 

with high dynamic range and a low signal-to-noise ratio, ideally in a single sensor. Furthermore, as 

researchers develop a wide range of detection methods, the scaling and multiplexing of biosensing 

detectors and transducers becomes a biofabrication challenge. Current biosensors need to detect proteins, 

DNA, cells, and toxins, among other analytes. Generally, the detection of multiple analytes is preferred 

for performing diagnostics, monitoring, toxicity screening, and numerous other biosensing applications.  

These requirements demand sophisticated biosensor fabrication. Biosensors require multiple 

transduction elements in order to process multiple analytes separately, so high-throughput fabrication 

of transducers and/or detectors is of great benefit to the biosensor field. For example, recent biosensors 

have used high throughput protein patterning for bacteria detection [3], toxin detection [4], and 

measurement of protein interaction [5]. Additional types of high-throughput biosensor devices require 

sophisticated fabrication technology, such as micromechanical cantilever arrays to detect chemicals [6]. 

Alternatively, many recent biosensor-based studies aim only to detect single compounds, but strive to 

do so with very high sensitivity [7–10].  

In order to detect multiple analytes or investigate biological outcomes with high throughput, it is 

necessary to harness biofabrication technologies for biosensors applications. Biofabrication technologies 

have been advancing in recent years, particularly cell-based biofabrication technologies that enable 

cellular encapsulation and growth in 3D microenvironments [11–18]. While there have been  

many recent biofabrication advances, particularly involving novel materials or combinations of  

materials [13,19,20], we will focus on those advances in printing and deposition technologies that may 

be most applicable to biosensors.  

It has been noted that miniaturizing sensors that depend on surface capture of molecules results in 

lower performance, due to transport of target molecules to the sensor [21]. However, patterning, as 

opposed to flow-based delivery, allows direct delivery of molecules, cells, or a sample to be analyzed 

to a desired location. This direct delivery substantially improves binding kinetics over random 

interactions. Pattern-based high-throughput biosensing typically involves depositing a protein, 

antibody, or other molecule of interest to a substrate, and measuring binding of another molecule or 

cell [5,22–24]. Patterning is typically achieved using soft lithography-based techniques, which use 

elastomeric stamps with small relief features fabricated from silicon wafer masters [25,26].  

For lithography-based patterning applications, a photomask is used to enable selective polymerization 

of photoresist, on silicon, to create a master. In the example of microcontact printing, this master can 

then be used as a negative to fabricate multiple elastomeric stamps or molds, typically out of 

polydimethylsiloxane (PDMS). Self-assembled monolayers (SAMs) of various polymers can be 

patterned onto surfaces using a stamp, although chemical interaction between the patterned polymer 

and the substrate limits the polymers and substrates that can be used. Soft lithography techniques are 
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contact-based, and involve high pressure on a stamp to transfer material from a donor substrate. 

Alternatively, patterning can be achieved using non-contact deposition methods, including inkjet 

printing and laser direct writing (LDW). Non-contact methods allow the direct patterning of material, 

or even cells, where the specific binding chemistry is not as critical.  

Non-contact deposition methods, such as LDW, hold distinct advantages over other techniques for 

biosensor applications. Typical contact-based patterning involves a chemical or physical interaction 

with the substrate, and usually requires restricting growth to a specific domain. The unrestricted 

growth of cells is a necessary criterion for routine cell function. With uncharacteristic cell function, 

cell analyte production may be affected, thereby propagating an error in the biosensing system.  

To circumvent substrate modification that may influence cell function, non-contact based methods  

are employed. LDW and inkjet printing are both non-contact bioprinting methods capable of  

high-throughput non-contact deposition. These two systems differ in their performance, with distinct 

trade-offs in throughput and accuracy/precision. LDW is a more accurate and precise deposition 

technique, while inkjet printing offers greater throughput. 

For high-throughput applications, patterning methods typically immobilize proteins via adsorption 

to a surface. However, many biosensors are live-cell devices that sense biological functions and cell 

behavior in response to stimuli. Simply measuring the response of a cell to a static factor may not be 

sufficient for some applications, and information about dynamic response and longer-term changes in 

cell behavior may be desired. While there are some biosensors that can monitor certain molecular 

levels, such as real-time glucose monitoring in vivo [27], real-time measurement systems generally do 

not extend beyond one analyte because of the specific detection methods [28]. Some technologies that 

examine real-time changes in cell behavior include Förster resonance energy transfer (FRET), 

bioluminescent resonance energy transfer (BRET), or other fluorescent-based detection systems that 

respond to a binding event [29]. However, these techniques are also typically limited to a few analytes 

because of fluorescence emission overlap. Overall, the throughput achievable in real-time biosensing is 

somewhat limited. 

Biosensing may benefit from the application of patterning technologies to produce live cell devices, 

because patterning allows the placement of specific analytes or cells in defined spatial locations. 

Patterning separate analytes, or even transducers, in parallel, defined locations can be used to test 

specific stimuli simultaneously. This simultaneous testing not only increases throughput, but does so in 

a manner that synergistically increases the information one can glean from analytes and cellular 

responses. Herein, we examine various patterning technologies, including those that can pattern 

proteins and viable cells. Recent biofabrication advances in patterning, particularly with live cells and 

in 3D, may help to advance the biosensors field. It is becoming clear that high throughput and rapid 

screening of multiple markers may be necessary for point-of-care diagnostics. However, examining 

dynamic cellular response via live-cell assays is also an important feature that needs to be addressed by 

new biosensors, and this may be feasible using high-throughput methods. 

2. Transduction and Detection Methods for Biosensing 

Biosensors, even those fabricated with sophisticated bioprinting techniques, consist of three 

elements: the biological signal (analyte), the transducer(s), and the detector/readout. The biological 
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signal is what one is trying to detect, while transducers permute this signal into one that can be 

detected and measured for analysis. The biological signal occurs naturally, so most of the engineering 

involves the transducer and detector. Furthermore, detectors primarily can report changes in light, 

voltage, pH, and/or absorbance, so more engineering freedom lies in the transduction elements than in 

the detector. In order to detect analytes at small scales, sophisticated transducers must be designed that 

can identify, quantify, and potentially localize a material, antibody, chemical, or other biologic. To detect 

a small amount of signal, an event (e.g., chemical binding, a micromechanical response, or a change in 

cell behavior) must be transduced and amplified such that it can be quantified, displayed, and 

compared to desired values. Transducers, therefore, must be a robust part of the biosensor, because 

they are the only element that actively transforms a local event to a measurable signal. Depending on 

the application, a variety of transducers can be employed, and many common transducers are shown in 

Figure 1. While this review will focus on patterning and bioprinting approaches useful in biosensing, a 

transducer must be carefully chosen, depending on the biosensing application. Therefore, we present 

transducers that may be selected when designing a biosensor. Each offers unique benefits and 

challenges, with some transducers better suited for applications in multiplexing, real-time biosensing, 

or fabrication. 

Figure 1. Select biosensor transducer schematics and examples of use. Immunofluorescence 

schematic [30] and example involving sensing in microgrooves [24]; microcantilevers 

schematic [6] and example of a fabricated microcantilever array [6]; SPR schematic [22] 

and example involving detection of concentration of a molecule over time [31]; FRET 

schematic [32] and example [33] of signal in perturbed and normal cells; impedance 

schematic [34] and example of signal in control and cells with a toxin [35] (Adapted by 

permission from Macmillan Publishers Ltd.: J. Invest. Dermatol. [30], ©2013; reused with 

permission from Elsevier [6,22,24,31,32,34]; with permission ©2008 by the National 

Academy of Sciences [33]; with permission from Inderscience Ltd. [35], ©Inderscience 

2011, respectively).  

Technique Schematic Example 
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Figure 1. Cont.  
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One common transduction method is specific ligand binding [36]. When a ligand of interest binds 

to a cell [31,37], antibody, protein, or chemically-modified surface [38], the binding event can be 

detected by various methods. Methods for detecting fluorescent protein-protein binding include 

enzyme-linked immunosorbent assays (ELISAs) [5], which can be performed in high-throughput 

fashion. However, these data represent a static biological configuration, (i.e., cells are typically lysed), 

so any temporal information of the response is lost. Other static biosensors include the patterning of 

protein, or a chemically active transducer onto a substrate to detect an analyte [24,39,40]. The optical 

absorbance of a system is often used to measure protein concentration, and when fluorescent labeling 

methods are used, multiple analytes can be detected simultaneously. Ligand binding events can also be 

detected on a macro scale via secondary transducers, such as a change in absorbance, surface 

plasmons, voltage, or other properties. These methods enable dynamic biosensing because they allow 

cell survival during measurement, or even in vivo measurement, and any changes in the system are 

reflected in real-time. Amperometric sensors, for example, have been used to report real-time glucose 

concentrations [41] and to detect micro RNA [42].  



Biosensors 2014, 4 116 

 

 

Recently, more sophisticated and sensitive transducers have been employed for real-time 

biosensing. Surface plasmon resonance (SPR)-based transducers, which measure the resonance angle 

of reflected light from a gold-coated surface in response to a specific binding event to immobilized 

receptors, have been used to detect cell/ligand binding and release [37] or specific molecules [22]. SPR 

takes advantage of charge density oscillations at the interface of two materials with opposite dielectric 

constants [43], and by careful choice of the optical system and the transducing medium to the analyte, 

this technique can potentially be very sensitive. Related techniques, such as localized SPR, where 

nanostructures or nanoparticles are introduced to the system, may provide even greater sensitivity [44].  

Detection systems like SPR permit cell survival over a long-term experiment, which allows 

measurement of a cellular response to transient inputs [22]. Similarly, resonant waveguide biosensors, 

which incorporate a diffraction grating [45,46] have been used to measure longer-term cellular 

responses, such as receptor sensitization and cellular response to stimuli [47]. SPR has been used to 

multiplex the detection of multiple molecules [48], but because there is only one output channel, 

simultaneous detection and quantification of multiple analytes is difficult. Miniaturizing a multiplexed 

plasmonic sensor has been accomplished using computational imaging at resonant wavelengths to 

detect resonance shifts [49].  

Specific binding may also change surface stress and actuate a device like a microcantilever [6,50–53] 

for detection. A mechanical displacement of the cantilever due to a specific binding event can be 

detected by a piezoelectric sensor, or laser deflection on a photodetector. Cantilevers arranged in 

parallel systems have been used to detect multiple analytes by placing a distinct antibody or chemical 

on each cantilever. This high throughput use of cantilevers has been billed as an “artificial nose” [6]. 

Microfluidics have also been used to scale ligand binding approaches [54,55]. Microfluidics can be 

used to flow proteins, specific antibodies, or analytes to specific locations. After molecules flow over 

and bind to the substrate, they can be used to capture analytes and bind fluorescent antibodies. Both 

microcantilevers and microfluidics allow the location of binding to be controlled. Location control 

enables multiplexing many components onto a biosensor, because each component is separate, and can 

be detected independently. 

However, binding is not always necessary for transduction and detection, and ligand binding may 

be used in tandem with other transduction methods. In biological systems, a small change in the 

microenvironment can cause a measurable change in pH or absorbance, signal cells to produce a factor 

that can be detected, or change the complex impedance of a membrane. pH changes and absorbance 

changes are not always biologically relevant, particularly in real-time systems. Healthy cells require a 

defined pH, and measuring absorbance is most useful after introducing fluorescent labels to the 

system. Sensitive approaches for real-time biosensing that do not require a binding event often require 

a sophisticated transduction system. Other detection methods for system-wide changes in cell behavior 

include impedance-based transduction, such as Electric Cell-substrate Impedance Sensing (ECIS), in 

which a membrane impedance is measured, and impedance changes due to cell behavior can be 

detected, such as those experienced in response to the presence of a toxin [34,35,56–58]. ECIS has 

been miniaturized to a biochip [4], thus ECIS may be scalable if many such chips can be fabricated. 

SPR signals have also been used to transduce a cellular response to a stimulus [31]. System-wide 

changes, like ECIS and SPR, may be useful for the detection of single analytes, but when multiplexing 

detectors or when multiple analytes are necessary, more precise fabrication methods may be required 
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for increasingly complex sensors. However, sensors that can detect changes in impedance or SPR 

across a membrane allow the detection of reversible responses on cells, and a return to system 

equilibrium after a stimulus is removed. It is desirable to detect changes in cellular behavior over time, 

as cells may recover from a stimulus or have a delayed response. While these methods allow cell 

survival and can be used for real-time biosensing, the main disadvantages of transduction methods that 

do not require ligand binding are the limited throughput and lack of specificity to what is being detected. 

Current biosensor applications can utilize cells in a variety of ways to produce cell-based 

biosensors. In these technologies, cells can function in various roles for the detection system. Previously, 

we describe how ligand binding can be applied directly to cells with the use of enzyme-linked 

fluorescence. In this application, the transducing element is the fluorescent antibody bound to a 

specific protein. However, there are several other applications of cell-based biosensors that utilize live 

cells as the transducing element. Cells possess natural mechanisms to transduce specific physiological 

analytes or environmental changes, thereby offering a unique advantage for use as transducing 

elements. There are many current examples of cell-based transducers in biosensing. One such example 

is the use of artificial neural networks on an electrode, where the neurons convert an environmental 

change to electrochemical signal [59]. Here, neuroblastoma cells were sensitive to specific compounds 

in pesticides, but similar biosensors could be designed with cells sensitive to different compounds.  

In another example, environmental changes cause differences in cell metabolic activity that can be 

measured by changes in the extracellular pH [60]. Here, the rate at which cells excrete acidic products 

of metabolism was measured in the presence of different materials. Moreover, a cell can transduce the 

signal from an analyte or environmental factor interacting with cellular receptors to a specific protein 

or soluble factor via secondary cellular messengers and a physiological response. This soluble factor or 

protein can then be directly detected using methods such as fluorescently tagged antibodies, or by 

binding to a secondary cell that will produce a response to the environmental change detected by the 

primary cell. This type of signaling occurs in blood sugar homeostasis, where pancreatic beta cells in 

the presence of high glucose concentration secrete insulin that will signal secondary cells to convert 

glucose to glycogen.  

Especially at small scales, it is important that biosensing capabilities have high sensitivity and 

specificity, as well as rapid response times. For biochemical detection by specific binding, these 

requirements are met easily, but the challenge in developing the capability lies in choosing and 

building the specific binding factor of interest. However, when biosensing involves changes to cell 

behavior, or a long-term change in the system, responses may occur at much longer time scales.  

An ideal biosensor is thus one that is specific, can record reversible responses, operates in real-time, 

and can allow high-throughput detection of multiple analytes. While the biosensor transducers 

mentioned above may meet some of these requirements (Table 1), new fabrication techniques may 

enable the next generation of transducers to meet many more. In particular, bioprinting approaches can 

be used to deposit specific proteins or cells in desired locations, which allows for high throughput and 

multiple analytes. The versatility of biofabrication and bioprinting will enable robust biosensors to  

be developed.  
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Table 1. Selected transduction methods and rated performance measurements for biosensing. 

Transduction method Transduction mechanism Simultaneous 

multiple analyte 

detection 

+++ 

Real-time 

capability 

 

+++ 

Fabrication 

speed and 

customizability 

+++ 

Immunofluorescence Fluorescent molecule specific 

binding 

++ + +++ 

Micro-cantilevers Actuation during binding event +++ + + 

Surface plasmon resonance Adsorption or binding changes 

local index of refraction and 

resonance of surface plasmon 

waves 

- +++ +++ 

Resonance energy transfer Specific binding or interaction 

enables emission from and 

detection of target 

++ +++ + 

Impedance Impedance of cell membrane 

measured 

- +++ ++ 

3. Methods for Bioprinting and Applications to Biosensing 

Bioprinting involves the transfer of material and/or cells to a substrate. It offers many capabilities 

that can be utilized in biosensing applications, including rapid deposition and patterning of proteins or 

other biomolecules. There are many bioprinting technologies that can be adapted for use in fabricating 

biosensors. Some printing techniques, such as electrodeposition, may enable the transfer of thin films 

of metal nanoparticles [61] or nanowires [62] to a substrate, via an electric field. Printing thin films of 

metals can be utilized to create circuits that may be an integral part of a biosensor, as well as for some 

immunoassays or microarrays [63,64]. Electrodeposition has even been applied for printing thin films 

of biological material such as proteins, enzymes, nucleic acids, polysaccharides and bacterial  

cells [65–67]. While thin films have been used for biosensing applications, we will focus on 

bioprinting techniques that can be used to deposit a large range of biologics and mammalian cells in 

precise spatial locations. Directly printing biologics and cells enables use of the transducers described 

in Section 2. Some examples of these bioprinting techniques are shown in Table 2. Moreover, spatial 

precision can enable multiplexing and high-throughput analysis, to rapidly screen and detect multiple 

signals. For instance, rapidly patterning multiple proteins at different concentrations can enable 

detection of threshold levels to elicit a cellular response, or to promote cellular adhesion for parallel 

experiments. This review does not include details on techniques used to create a thin film without spatial 

control, such as electrodeposition. However, electrodeposition can be combined with stamping or 

masking [68,69] (which we review in this paper), or with a microarray or pattern of electrodes [70,71], 

to create a thin film with spatial control. 
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Table 2. Selected patterning biofabrication methods, performance, and some materials that 

have been patterned. 

Patterning 

Technique 

Technique 

mechanism 

Resolution  

+++ 

Throughput 

+++ 

Printable materials library  

+++ 

Microcontact printing Contact-based method, 

typically microstamp. 

+++ ++  ++ 

Ink-jet printing Droplet ejection from 

nozzle invovling 

thermal piezoelectric 

or pressure 

+ +++ ++ 

Matrix-assisted pulsed 

laser evaporation 

direct-write 

Non-contact deposition 

via pulsed laser 

directly onto gel with 

cell suspension 

+++ + +++ 

Laser-induced forward 

transfer 

Non-contact deposition 

via pulsed laser on 

sacrificial layer 

+++ ++ +++ 

In order to multiplex either the detection of different analytes or the effect on different types of 

cells, components of the system must be spatially separated. With many transduction techniques, 

different analytes can interfere with each other. Moreover, if various concentrations of a single analyte 

need to be tested, multiplexing by spatial separation of experimental conditions is required. Printing 

cells at various colony sizes, or proteins at different concentrations, may have an effect on cellular 

behavior, and can influence how cells respond to exogenous signals. Numerous printing approaches 

are available, and they can generally be divided into two major categories: contact-based and  

non-contact-based printing. Contact-based approaches require direct contact between a receiving 

substrate and the surface from which a material is donated, often with high pressure, to cause transfer 

to the receiving substrate. Non-contact-based printing, on the other hand, involves the transfer of 

material or cells to a receiving substrate via an ejection event. Upon ejection, the transferred material is 

neither touching the donor nor receiving substrate. Both printing approaches have merits and 

shortcomings, depending on the desired application. A variety of printing approaches is illustrated  

in Figure 2. 
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Figure 2. Schematics and examples of selected biofabrication patterning techniques, including 

microcontact printing [72], inkjet printing [73], MAPLE-DW [74], and LIFT [75,76]  

(Used with permission from John Wiley and Sons [72]; ©2013 IOP Publishing, reproduced  

with permission, all rights reserved [73]; used with permission from Elsevier [63,74–76], 

respectively). 
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3.1. Contact-Based Bioprinting 

Contact-based printing methods involve a mask or material that touches the substrate to constrain 

the cells or biological material to a specific area. Many contact-based printing techniques are based on 

soft photolithography. Precise micropatterning of proteins can be accomplished by using a 

photolithographic mask and photoresist, combined with chemical treatments to directly create protein 

micropatterns from a silicon master [77], or to fabricate stencils [78] or microstamps [72] from 

polydimethylsiloxane (PDMS). The micropatterns are created when the master or stamp is coated with 

the desired material, and stamped with high pressure onto the substrate. In addition to their use in 

contact deposition from a master or mold, removable masks have also been fabricated to shield regions 

of the substrate [79,80]. When this sort of mask is used, the stencil is applied to the substrate, washed 

with protein or cells, and then removed. Cells or proteins are only deposited on the unshielded regions. 

After the mask is removed, a high-fidelity pattern is obtained. Using these lithography-based 

techniques, proteins can be precisely patterned on flat, or even curved [81] surfaces, which is useful for 

controlling cell adhesion or other responses. Microcontact printing, in particular, can be used to deposit 

multiple layers of proteins, or to fabricate hollow microfluidic channels, by creating a stamp with 

three-dimensional features [82]. Microfluidic channels, in turn, can also be customized to allow valves 

and pumps [83–85], both of which are useful in biosensing applications because of the potential to 

control input of an analyte. Such microfluidic systems enabled by lithography-based technologies 

allow delivery or removal of fluids to specific areas, and creation of gradients [86] of soluble factors 

that can signal cell behavior. Three-dimensional fluid delivery [87] grants the ability to fabricate highly 

complex patterns and to deliver proteins, drugs, or cells to discrete regions of a microenvironment. 

These sensing devices [88] combine the high-throughput aspects of microfluidics with cell imaging to 

acquire large quantities of data in real-time. 

Contact-based printing is particularly useful for transferring a specific protein to a surface with 

micron-level resolution. Protein patterning can be accomplished by direct transfer from a master or 

reusable stamp, using a removable mask to prevent cells from attaching to undesired regions of the 

substrate, or indirectly, by fabricating microfluidic channels. Channels fabricated by contact-based 

printing can have similar patterning resolution as direct patterning, but they also allow non-contact 

deposition with the ability to flow fluid to controlled locations. Directly printing proteins has  

been used to control cell shape [72,89–91], migration cues [92], and to analyze stem cell  

differentiation [93,94]. Microfluidic chambers have been utilized in genetic analysis and sequence 

identification [88,95] single-cell lysis [96], detection of circulating tumor cells [97,98], cellular 

differentiation [99], and delivery for in vitro drug testing [100]. Although they offer high spatial 

precision, lithography-based patterning techniques require the fabrication of a new stamp if a different 

pattern is desired, and generally cannot directly pattern cells to a surface or transducer because of high 

pressures or temperatures involved in the process. Repeated micropatterning on the same surface may 

also be difficult because the stamp and substrate must be precisely aligned [90]. While the 

aforementioned techniques have applied protein patterning to a hard substrate, recent micropatterning 

has also crosslinked hydrogels through a photomask [101], enabling 3D cell culture.  

In addition to these lithography-based methods, contact-based printing methods also include 

atomic force microscopy (AFM)-based deposition (reviewed [102]) such as dip-pen nanolithography 
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(DPN) [103]. DPN uses an AFM tip to deposit an “ink” onto a solid surface with an affinity for  

the ink, analogous to microcontact printing. Multiple materials have been demonstrated for this  

technique [104], but the ink and substrate must still have an affinity for one another. AFM-based 

methods offer sub-micron level resolution, and even nanometer-level printing resolution. As cells can 

sense scale at the nano level [91,105,106], this sort of patterning may prove useful, particularly with 

sensors involving cells. Overall, contact printing and microfluidics can be applied to a variety of  

cell-based and protein-based biosensors at multiple scales. 

3.2. Non-Contact Printing 

Non-contact printing techniques involve transfer of a material to a substrate, with only the 

transferred material coming into actual contact with the substrate. Therefore, the high pressures 

associated with a stamp, or removal of a mask from the surface, are not required, making this approach 

more appropriate for softer materials. Non-contact printing offers a greater versatility in the substrates 

onto which materials can be printed, such as soft hydrogels, and the non-contacting nature allows 

layer-by-layer deposition to be utilized. There are various non-contacting methods to deposit biological 

materials, including viable cells, to substrates in controlled patterns. Non-contact printing is less reliant 

on surface chemistries than contact-based approaches, allowing deposition of a wider range of 

materials, to a wider variety of receiving substrates. However, along with this gained versatility, there 

can be a loss in printing resolution compared to contact-based approaches. For biosensing applications, 

biomaterials and bio-inks are critical when transducing a biological signal. Non-contact printing 

methods offer a wide range of material options, which, in turn, provide greater biosensor customizability. 

While additive fabrication techniques may be compatible with a wide range of materials, only a subset 

can be used for biosensing, because the material may have to be biocompatible, have a specific 

affinity, or fall within a specific viscosity range. From a fabrication standpoint, viscosity is particularly 

important in nozzle-based printing approaches because of potential clogging issues [42]. From a 

biological perspective, cells can also sense and respond to materials of different viscosities and 

stiffnesses [107,108]. Other characteristics of materials that may influence biosensing include the 

hydrophobicity/hydrophilicity of the substrate, as well as the pore size in the case of 3D geometries. 

These properties can affect ligand and cellular binding, as well as cellular behavior.  

A specific non-contact printing approach may be selected based on the biosensing application and 

desired material properties within the system. A common technique for printing relatively non-viscous 

materials is inkjet printing, which usually involves thermal [109], piezoelectric [110], or pneumatic [111] 

ejection of a droplet from a nozzle or printhead [112]. Inkjet printing has been adapted to print both 

proteins and live cells [109,110,113,114]. Conventional inkjet printers have been adapted for biomaterials 

and cells [115], and layer-by-layer printing allows for the fabrication of complex structures. While 

high throughput is possible, and pattern customization, including multiple cell or biomolecule types, is 

relatively easy, inkjet methods have lower resolution than lithography-based and laser-based patterning 

methods [114,116–118]. The high-throughput aspects of inkjet technology are appealing to biosensor 

applications, but defining locations for precise ligand binding or specific molecular interfaces may  

be difficult. 
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Various laser-based approaches have also been used for non-contact material patterning. Lasers are 

often used to directly crosslink photo-active materials into desired patterns using a photomask [119,120] 

or two-photon polymerization [121], but, herein, we will focus on methods used for direct deposition 

of a material. In addition to the ability to transfer soft materials, laser-based deposition methods allow 

for a wide range of materials to be used, far beyond those that can be laser crosslinked. This makes  

laser-based deposition particularly attractive for biosensing applications. LDW is a forward transfer 

technique used for printing viable cells, proteins, soluble factors, microbeads, and DNA [122–124].  

A typical LDW setup consists of two coplanar plates, a “print ribbon” and a receiving substrate. The 

ribbon contains material to be deposited to the substrate, with an underlying coating consisting of two 

parts: a sacrificial layer and a transfer layer. The laser is focused on the sacrificial layer, and when the 

laser is pulsed, the sacrificial layer desorbs and ejects material from the print ribbon onto the receiving 

substrate, which can be moved to fabricate a programmed array or structure of biomaterial or cells. 

Often, the receiving substrate is coated with a hydrogel to cushion the ejected material. There are 

currently several different variations of LDW specifically modified for bioprinting, yet, the underlying 

principles of material deposition remain unaltered. 

Matrix-assisted pulsed-laser evaporation direct-write (MAPLE-DW) is a commonly used form of 

LDW [125,126]. The unique aspect in the technique of this variation of LDW is that a single matrix is 

used as the sacrificial layer and the transfer layer. Typically, the ribbon coating is a polymer or 

hydrogel, such as Matrigel [127] or gelatin [122], that suspends the desired transfer material [122,126]. 

MAPLE-DW has previously been shown capable of fabricating simple biosensors, such as a dopamine 

electrochemical sensor [128].  

Laser induced forward transfer (LIFT) is another commonly used form of LDW [129]. LIFT 

utilizes a ribbon with a distinct sacrificial and transfer layer. The sacrificial layer in a LIFT setup is 

typically a thin metal film that can be volatilized by the laser used. Below the metal film is a layer with 

the transfer material, typically some sort of polymer or hydrogel. Like MAPLE-DW, LIFT researchers 

have experimented with fabrication of biosensors. As a demonstration of LIFT’s biosensor fabrication 

ability, a DNA microarray was created with specific DNA strands, which could be detected by 

fluorescence microscopy when hybridized with complementary fluorescent strands [130]. Conventional 

equipment can be used to detect printed material and/or interacting analytes, and the pattern resolution 

afforded by LIFT allows customization and rapid fabrication of a biosensor. While LIFT and  

MAPLE-DW follow the same mechanistic principles, LIFT may offer additional shielding of the 

transfer material because of the specific sacrificial layer.  

LDW has many distinctive differences from other biological printing and patterning techniques. 

First, LDW has demonstrated its capability or potential to print with a wide range of polymeric 

material, which is essential for biological materials, especially viable cells. Some of the materials 

currently used include alginate, gelatin, Matrigel, collagen, fibrinogen, chitosan, and hyaluronic  

acid [12,125,131]. This wide range of possible hydrogels or hydrogel blends gives users the ability to 

pick specific materials for their desired outcomes. For example, when minimal interaction between 

cells and the biomaterial is desired, gelatin may be chosen because its crosslinking is thermally 

reversible, freeing cells to migrate unhindered. Further, the ribbon can be quickly changed during 

LDW, allowing the user to change transfer material, as is necessary for creating a co-culture cell 

system. Additionally, LDW allows deposition to any planar receiving substrate material. For patterning 
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involving cells, there is traditionally a thin film used for cushioning the impact of the ejected material. 

A variety of different hydrogels have been used as a cushioning layer or as a post-printing scaffold. 

New methods have even used transplantable surfaces such as cardiac patches that are transferred to  

in vivo environments after printing [76]. Other traditional patterning and printing methods can be 

limited by factors including material viscosity and high shear rates, thereby greatly restricting their 

candidate material choices. 

Throughput, accuracy, precision, and customizability are important features to consider in 

technologies used for fabricating biosensors. LDW has demonstrated the ability to create patterns of 

customizable spacing with 5 um resolution [122]. The large degree of spatial control of the deposited 

material enables the fabrication of intricate and highly sensitive biosensors. Additionally, LDW is a 

fully automated system with CAD/CAM controls. This control allows for not only fully automated 

rapid fabrication of complex designs, but for additional customizability of patterns that can vary 

between receiving substrates. However, LDW’s high degree of spatial control over deposited material 

can make large-scale fabrication impractical because of the time required to generate a large,  

high-resolution pattern. In some cases, it may be more appropriate to use an alternate patterning 

approach, or a combination of approaches. 

4. In Situ Crosslinking for 3D Bioprinting 

Two-dimensional cell culture has been the platform for many important scientific discoveries, 

ranging from studies involving stem cell differentiation to cancer drug screening. However, there are 

limitations on the translatability of 2D cellular system models, because there are major differences 

between the way cells behave and function in 2D and 3D environments [132], particularly because of 

cell adhesion and adhesion-based signaling [133]. When examining malignant breast cancer cells,  

it has been demonstrated that the 3D adhesion pathways are coupled, yet they are independent in a 2D 

model [134]. In the scenario of drug screening, the response of 2D and 3D surrogate cultured cells may 

profoundly differ due to this type of functional difference. For example, when incorporated into a 

biosensor, cells cultured in 2D likely will have different functional responses to varying conditions 

because of the difference in cell-matrix interactions from 2D to 3D culture. To more closely model the 

in vivo cell environment, many researchers have transitioned to 3D cell culture platforms using various 

materials to represent the cell environment. 

Many different materials are currently being used to create 3D environments for cell studies. With 

the goal of mimicking the natural tissue environment for the cell type cultured, various material factors 

must be considered, such as elastic modulus, hydrophobicity, matrix interaction points (e.g., cell 

binding domains), material degradation rates, and porosity [132]. To control these properties,  

naturally occurring polymers found in the body are often used to engineer 3D cell scaffolds. Some 

naturally occurring polymers currently used in 3D cell culture include collagen, hyaluronic acid, and 

fibrinogen/fibrin. Additional polymers, not naturally occurring in the human body, such as alginate and 

chitosan, are being utilized for their unique and desirable characteristics.  

Small-delivery vehicles, namely microbeads and microcapsules, are being investigated for 

applications within biosensor technology. Microbeads are micron-scaled spheroids, made from 

crosslinkable polymers that are used in hydrogel fabrication. Currently, these 3D microenvironments 
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are being explored for purposes involving sequestration of small molecules, proteins, drugs, or 

encapsulation of cells [135–137]. As microbeads are made from hydrogel material, they are 

approximately 98% water by mass, allowing for rapid diffusion into and out of the bead. Additionally, 

by adjusting properties and/or processing of the hydrogel polymer, many features of the microbead can 

be customized, such as pore size, elastic modulus, degradation rate, and permeability. These features 

allow for unique biosensor fabrication utilizing microbeads with encapsulated molecules or cells.  

As the biological element in the microbead is consumed or released, the transducer will indicate a 

biological response.  

In order for a biosensor to function properly, it may require the immobilization of a biological 

element on a transducer. However, living cells are not easily immobilized, and may migrate away from 

the transducer on a homogenous substrate. Similar issues arise when trying to localize cells into a 

particular area while they are proliferating and experiencing 2D phenomena. Cell encapsulation is one 

possible solution to this problem. Microbeads and microcapsules are popular micro-encapsulation 

technologies, at a scale appropriate for use in a biosensor. Similar to microbeads, microcapsules are 

micron-scale spheroids, however, rather than a 3D matrix, a spherical outer shell constrains the 

geometry, within which encapsulated cells may migrate. Further, these technologies offer the ability to 

tailor the size of the environment and total number of encapsulated cells. Traditional microbead and 

microcapsule fabrication technologies are unable to precisely place the fabricated structures in specific 

locations, which would be necessary to transduce multiple signals. However, a new method allowing 

for the one-step fabrication and patterning of cell-containing microbeads could solve this problem [124]. 

For the fabrication of 3D constructs, there are several different routes researchers are pursuing; 

examples of such constructs are shown in Figure 3. One approach utilizes injection molding to 

fabricate large constructs [138]. In this procedure, cells are suspended in a crosslinkable hydrogel, or 

hydrogel blend, before injection into a mold and subsequent cross-linking of the hydrogel [138,139]. 

This technique allows for the fabrication of large or small constructs, with the overall geometric 

control being limited only by the quality/detail of the mold. New image-guided technology utilizing 

MRI and micro-CT allow for the fabrication of highly detailed personalized molds [138]. In theory, 

injection molding is compatible with any crosslinkable polymer solution; even hydrogels slow to set 

are usable because the material is constrained by the mold’s geometry. Common hydrogels, and blends 

thereof, used for injection molding include collagen, gelatin, alginate, hyaluronic acid, PLGA and 

agarose [138,140,141]. While injection molding has been shown to be a cost-effective tool for rapidly 

fabricating 3D tissue constructs to a specific overall geometry, it offers little to no spatial control of 

cells or other suspended contents, nor the ability to create internal architecture. In order to better 

control spatial composition, layer-by-layer techniques have been utilized to fabricate 3D constructs. 

Such 3D constructs are created using crosslinkable hydrogels and conventional patterning techniques, 

performed in a layer-by-layer fashion. To perform layer-by-layer printing, inkjet and LDW users have 

developed different fabrication methods. Inkjet users have achieved layer-by-layer fabrication with 

continuous extrusion of hydrogel precursor strand into a crosslinking agent [142]. A different 

technique prints droplets of hydrogel precursor onto a receiving substrate, then crosslinks the layer using 

a nebulizer [111,143]. The crosslinked layer is then used as the new printing surface. In the case of 

LDW, researchers are approaching layer-by-layer fabrication by coating their substrates in a hydrogel 

precursor and/or partially crosslinking the hydrogel layer [131,144], patterning, then cross-linking the 
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cell suspension, then adding an additional hydrogel layer. Similar to inkjet printing, the printed 

hydrogel layer serves as the new printing surface, thereby allowing thick, multiple-layered, structures 

to be achieved. Furthermore, the distance between cell layers can be controlled by using a blade coater 

to adjust the height of hydrogel precursor [12].  

Figure 3. Examples of 3D patterned structures with future biosensing application.  

(a) inkjet printed vascular graft [145], (b) continuous flow printed structure [146], (c) laser 

patterned cell arrays in hydrogels [144], (d) skin graft fabricated with alternating cell  

layers [144], (e) laser patterned cell containing microbeads [124], (f) structure of 3D 

microbead based on an z-stack image of a rhodamine-containing microbead [124], and  

(g) z-stack image of 3D distribution of cells within an microbead [124] (Used with 

permission from Elsevier [145]; used with permission from John Wiley and Sons [146]; 

©2013 IOP Publishing, reproduced with permission, all rights reserved [124], respectively). 

 

A new generation of biosensing devices could be realized by applying the various 3D biofabrication 

technologies to incorporate biosensors. If cell-based biosensors are utilized, 3D microenvironments 

can prove more physiologically relevant than 2D substrates. Multiplexing components of the 

biosensor, such as testing an analyte against multiple cell types in 3D configurations, or multiple 

analytes against one cell type, may yield more relevant results if cells are in a 3D microenvironment. 

This sort of multiplexing yields much more information than independently testing a single analyte 

with a single cell type in a single biomaterial. Only by 3D patterning is robust, in vitro, 3D,  

high-throughput, cell-based biosensing possible. There may be additional benefits to fabricating 3D 

biosensors. Analytes traveling through a bulk structure made of natural polymeric material will 

experience more physiologically-relevant diffusive properties than those in 2D, which can influence 

temporal aspects and the responsiveness of the biosensor. In situations where a biosensor is made to 
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mimic natural tissue, this may prove to be an important feature to replicate. These structures have the 

additional potential to even be implanted for real-time sensing in vivo. Further, with layer-by-layer 

printing technology, various cell types inside the bulk material can be spatially arranged to produce a 

signal cascade, where one cell type acts as a transducer and gives feedback to a secondary cell type to 

perform a desired action. When faster analyte detection is desired, channels can be constructed to 

facilitate movement of the analyte to the transducer [95]. This capability could prove quite useful in a 

combined biosensor/therapeutic application. For example, a 3D cell-based sensor could be fabricated 

for diabetics, in which sugar levels could be detected rapidly by the insulin-producing beta-cells 

embedded in an implanted construct. These cells could trigger an insulin response to adjust blood 

sugar levels accordingly. With 3D fabrication technologies, it becomes possible to combine biosensors 

with a therapeutic treatment.  

5. Conclusions and Future Direction of the Field 

As the demands and application of biosensing advance, the incorporation of biofabrication 

technologies into biosensor elements will be paramount. In order to multiplex a variety of signals and 

evaluate cellular responses in 2D and 3D, sophisticated transducers must be able to separate and 

quantify analytes of interest. There have been numerous recent advances to transducer technology in 

recent years. By combining these advances with the latest enabling biofabrication approaches, 

particularly contact-based and non-contact-based patterning, even further advances in biosensing 

technology can be achieved. This combination of sensing and fabrication advances can lead to the next 

generation of biosensors, with a greater degree of sensitivity, throughput, and dynamic range within a 

single sensor. Approaches such as microcontact printing, inkjet printing, or LDW enable specific 

analytes to be placed in distinct locations, thereby allowing the responses on a single cell type to be 

analyzed quickly. Similar approaches can be used with multiple cell types. Advances in non-contact 

printing can profoundly impact 3D cell-based biosensing, which may provide more physiologically 

relevant cellular responses. Layer-by-layer and microbead approaches will allow the fabrication of  

3D biosensors, with all the advantages of multiplexing. As biosensors move to 3D, there is even the 

potential to incorporate biosensors into implantable therapeutics. The synergy of advances in 

biosensing and biofabrication, much more than the advances of these approaches individually, has the 

potential to be very powerful for future sensing, research, diagnostic, and therapeutic applications. 
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