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Neural networks configured with winner-take-all (WTA) competition and

N-methyl-D-aspartate receptor (NMDAR)-mediated synaptic dynamics are endowed

with various dynamic characteristics of attractors underlying many cognitive functions.

This paper presents a novel method for neuromorphic implementation of a two-variable

WTA circuit with NMDARs aimed at implementing decision-making, working memory

and hysteresis in visual perceptions. The method proposed is a dynamical system

approach of circuit synthesis based on a biophysically plausible WTA model.

Notably, slow and non-linear temporal dynamics of NMDAR-mediated synapses

was generated. Circuit simulations in Cadence reproduced ramping neural activities

observed in electrophysiological recordings in experiments of decision-making, the

sustained activities observed in the prefrontal cortex during working memory, and

classical hysteresis behavior during visual discrimination tasks. Furthermore, theoretical

analysis of the dynamical system approach illuminated the underlying mechanisms of

decision-making, memory capacity and hysteresis loops. The consistence between

the circuit simulations and theoretical analysis demonstrated that the WTA circuit

with NMDARs was able to capture the attractor dynamics underlying these cognitive

functions. Their physical implementations as elementary modules are promising for

assembly into integrated neuromorphic cognitive systems.

Keywords: neuromorphic engineering, winner-take-all, attractor dynamics, decision making, working memory,

hysteresis

INTRODUCTION

Winner-take-all (WTA) competition is an important computational principle in the brain, by which
neurons can compete for activation. Through configuration of its network parameters, the WTA
neural network can achieve various dynamic characteristics of attractors that underlie many brain
cognitive functions. For instance, decision-making, a central cognitive process involving selection
of an action or an option amongst a set of two or more alternatives, is correlated with neural
computation, as reflected by the ramp-up activities in monkeys’ lateral intraparietal cortexes (LIP)
(Shadlen and Newsome, 2001). If configured with hard WTA, which allows only the neuron or
the neural population with the highest activation to stay active, the WTA neural network can
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implement decision-making (Wang, 2002; Wong and Wang,
2006; You and Wang, 2013). Working memory, the ability to
internally maintain information, is manipulated by the sustained
activities of cells of the prefrontal cortex during a memory period
(Fuster and Alexander, 1971). The WTA neural network also has
the capacity to carry out working memory tasks if configured
with multi-stable dynamics including the spontaneous attractor
and memory attractors (Durstewitz et al., 2000; Wei et al., 2012).
Another interesting phenomenon, hysteresis, which shows that
the perception change is behind the reversion of the sensory
input, has been extensively observed for many visual, auditory
and somatosensory perceptual tasks (Williams et al., 1986;
Kleinschmidt et al., 2002; Jackson et al., 2009). Similarly, the
WTA neural network can produce hysteresis in perception if it
is configured with multi-stable dynamics, but the spontaneous
attractor is not essential (You et al., 2011). In addition, there are
many other cognitive behaviors mediated by WTA competition,
such as resource allocations of attention (Lee et al., 1999;
Knudsen, 2007).

Synaptic excitation in neural networks is mainly mediated by
AMPARs (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic
acid receptors) and NMDARs. AMPAR-mediated synaptic
currents exhibit sudden increases after a presynaptic spike
and exponential decay with a short constant, whereas the
NMDAR-mediated synaptic currents have a smooth rising
phase and an exponential decay with a long time constant, thus
leading to a saturation effect of synaptic currents (Wang, 1999).
Experimental and theoretical studies have demonstrated that
NMDARs play a significant role in WTA competition. NMDARs
contribute not only to the slow time integration of sensory
evidence in decision-making tasks (Wang, 2002; Wong and
Wang, 2006) but also to the sustained activities during the delay
observed in working memory tasks (Lisman et al., 1998).

Recently, several WTA neuromorphic circuits and hardware
have implemented the above-mentioned cognitive functions,
which benefits the design of elementary neuromorphic modules
of many cognitive functions and the development of new
generation of technologies that carry out brain-like artificial
intelligence (Nere et al., 2012; Sandamirskaya, 2014) while
maintaining remarkable energy efficiency (Indiveri andHoriuchi,
2011). For example, forced two-choice decision tasks have
been implemented in a custom mixed signal analog/digital
neuromorphic chip containing an array of 58 analog leaky
integrate-and-fire (LIF) neurons and programmable synapses
with realistic dynamics (Corradi et al., 2015). The discrete
recurrent network configured in this chip is composed of two
excitatory and one inhibitory population of silicon neurons
coupled with local excitation and global inhibition, thus leading
hard WTA competition. In addition, these tasks, based on the
continuous recurrent network with local nearest neighboring
excitatory connectivity and global inhibition, have been achieved
in the LIF stop-learning WTA chip with 124 excitatory and
4 inhibitory neurons (Neftci and Indiveri, 2010; You, 2014).
For working memory, an on-chip network composed of two
excitatory and one inhibitory population of LIF neurons has
been found to reproduce persistent activities observed in
electrophysiological experiments (Giulioni et al., 2011). With

its architecture different from that of the discrete decision on-
chip network, this network has only one excitatory population
distinguished by strong synaptic self-excitation, which leads
to bistable attractor dynamics underlying meta-stable states
of high-firing memory activity and low-firing spontaneous
activity. Similarly, the continuous recurrent on-chip network
has also been constructed as state-holding elements through
proper configuration (Chicca et al., 2014). For hysteresis in the
perception, no emulation in neuromorphic networks has been
reported.

However, the non-linear dynamics of the NMDAR-mediated
synaptic current is not considered in these neuromorphic
systems; instead, saturation characteristics of silicon neurons and
AMPAR-mediated synaptic currents (Bartolozzi and Indiveri,
2007) with a long time constant are considered. Although the
decision tasks and working memory tasks can be implemented
in these neuromorphic systems, the range of neural coding by
the firing activity will become larger if the non-linearity of
the NMDARs itself is considered. Moreover, the handling of
mismatch and noise in the silicon is significant in neuromorphic
systems. The non-linearity of the NMDARs increases the stability
of attractor dynamics, especially the slow dynamics of ramp-up
activities relative to the evidence integration in decision making
and the stable dynamics of self-sustained activities in working
memory.

In this work, we developed a WTA circuit with NMDARs
by applying the dynamical system approach of circuit synthesis
according to the two-variable version of a plausible biophysical
WTA model, which was originally used for decision-making
(Wong and Wang, 2006; Wong et al., 2007), and for working
memory and hysteresis (You et al., 2011). In particular, we
provided a step-by-step demonstration of how to build the
NMDAR gating variable circuit, which is described by the
first-order kinetic equation of a reversible chemical reaction.
This circuit captured the non-linear dynamical characteristics of
NMDAR gating variables. We simulated the neuromorphicWTA
circuit for three WTA-related cognitive functions (decision-
making, working memory and hysteresis in visual perception)
in Cadence while analysing the WTA model through dynamical
system approaches for corresponding cognitive functions. We
compared the results between circuit simulations and theoretical
analysis to investigate (1) whether the WTA circuit could
implement decision tasks and reproduce gradually ramping
neural activities observed in the electrophysiological recording
in monkey experiments (Shadlen and Newsome, 2001) as
the attractor dynamics of the WTA model predicts, (2) the
sustained activities and the limited memory capacity in the WTA
circuit during working memory and corresponding dynamics
in the WTA model, and (3) whether the WTA circuit could
achieve the hysteresis observed in the visual perception and
operate according to the theoretical analysis for the WTA
model.

Some of these results, such as circuit simulations for decision-
making and corresponding theoretical analysis, have been
presented in a preliminary form (You and Wang, 2016). In the
current work, we more comprehensively demonstrate that the
WTA circuit that we built has attractor dynamics underlying
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WTA-related cognitive functions, including decision-making,
working memory and hysteresis behavior.

MATERIALS AND METHODS

The neuromorphic WTA circuit designed herein was derived
from a two-variable version of a biophysically realistic cortical
model elucidating the cellular and circuit basis of decision
making (Wong and Wang, 2006). In the previously reported
reduced model, excitatory reverberation primarily mediated
by NMDA receptors leads to the slow time integration of
the motion evidence, and two dynamical variables S1 and S2
represent averaged gating variables of two populations selective
for rightward and leftwardmotion directions. Our neuromorphic
WTA circuit is composed of two neural populations with
different preferences in some neural presentations (Figure 1A),
such as two directions of the saccade in the decision task, and
two spatial locations in the working memory task. In addition to
external synaptic inputs Isti,i(i = 1, 2), two populations receive
recurrent synaptic inputs including the self-excitation input with
the synaptic weight W+ and the mutual-inhibition input with
the synaptic weight W−. Experimental and theoretical research
has found that the NMDA receptors at recurrent synapses are
important to slow time integration in decision-making and

persistent activities in workingmemory (Wong andWang, 2006).
Therefore, the recurrent excitation in our circuit is mediated by
NMDARs, but could also be mediated by AMPARs if configured
properly.

For the sake of simplicity, we show only the neuromorphic
implementation of half of this WTA circuit in Figure 1B because
of the symmetry of the circuit. At the circuit level, the circuit
consists of three components: a linear-threshold unit circuit
(LTU), an NMDA synapse circuit (NMDA) and a synaptic
interaction circuit (Synaptic current). The LTU circuit realizes
the activation function of a neural population (Ir,i, i = 1, 2)
with its total synaptic input (Isyn,i). The NMDA synapse circuit
produces the gating variable of the NMDARs (Si = IS,i/Iref )
according to the neural activity of each population (Ir,i). The
synaptic interaction circuit achieves the functionality of the total
synaptic input (Isyn,i) from self-excitation and mutual-inhibition
(IS,1 and IS,2), and external sensory inputs (Isti,i). Details of these
neuromorphic implementations are shown in the following parts
of this section.

Neuromorphic Circuit of NMDAR Gating
Variable
The dynamics of the NMDAR gating variable is characterized by
a fast rise followed by a slow decay. When the presynaptic inputs

FIGURE 1 | Architecture of the Two-variable WTA Circuit. (A) The two-variable WTA circuit consists of two neural populations endowed with self-excitation and

effective mutual inhibition. (B) The block representation of the left half of the WTA circuit in (A).
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at a recurrent synapse in a neural population are described by
a Poisson spike train at a rate of r per cell, the slow dynamics
of the average NMDAR gating variable S is characterized by the
non-linear differential equation as follows (Wong and Wang,
2006):

dS

dt
= −

S

τ
+ (1− S)γr (1)

where τ is the decay time constant, and γ is a gain coefficient.
To implement the circuit of the NMDAR gating variable,
the corresponding mathematical expression is approximately
transformed into the following current-mode description:

CUT
d

dt

IS

Iref
= −Iτ

IS

Iref
+ (1−

IS

Iref
)
Iγ

Iref
Ir (2)

where dimensionless variables S and γ are replaced by two ratios

of currents IS
Iref

and
Iγ
Iref

, respectively. Because of the current-mode

design, we use a current Ir to represent “the firing rate” r in this
work, and we call Ir the neural activity in the remainder of this
paper. The time constant τ =

CUT
Iτ

.
We used a dynamic voltage-current circuit (DVI) originally

proposed for the log-domain circuit (Yu and Cauwenberghs,
2010) to achieve the derivative on the left side of Equation (2)
(Figure 2A). Since

IS

Iref
=

IM2

IM1

= e
VS−V0
UT (3)

the dynamics of the voltage difference VS − V0 has the following
relationship with IS/Iref :

d

dt

IS

Iref
=

1

UT

IS

Iref

d

dt
(VS − V0) (4)

By combining Equation (4) and Equation (2), we obtain the
following voltage-mode differential equation to characterize the
dynamics of S:

C
d

dt
(VS − V0) = −Iτ +

Iγ

IS
Ir −

Iγ

Iref
Ir (5)

According to the dynamical systems approach of circuit synthesis
(Arthur and Boahen, 2011), three currents are required to drive
the capacitor in the dynamic voltage-current circuit (Figures 2A,
3A): two currents decrease the capacitor voltage and one
increases it. The first current term Iτ corresponds to the time
constant of the circuit. The smaller its value is, the longer the time
constant. The second term equals the product of the gain current
Iγ and the activity current Ir , divided by the gating variable
current IS. This current is generated by a multiplier (Figures 2,
3) on the basis of the translinear principle for subthreshold
transistors (Gilbert, 1975; Papadimitriou et al., 2013). It indicates
that the driving force toward VDD decreases with increasing IS.
The third term corresponds to the driving force toward ground,
and can also be generated by a multiplier (Figure 3A). Because
both the second and third terms have the product of Iγ and Ir ,
their multiplier circuits can share a common left branch of the
multiplier in Figure 2B.

We concentrated on the steady state and the time constant
for a given configuration as major dynamic characteristics of this
circuit. From Equation (2), we obtain the steady state S̄ and the
time constant τ as follows:

S̄ =

Iγ
Iref

Ir

Iτ +
Iγ
Iref

Ir
, τ =

CUT

Iτ
(6)

FIGURE 2 | Schematics of (A) dynamic voltage-current unit (DVI) and (B) multiplier (M).

Frontiers in Neuroscience | www.frontiersin.org 4 February 2017 | Volume 11 | Article 40

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


You and Wang Neuromorphic Implementation of a NMDAR-Mediated WTA Circuit

FIGURE 3 | The block representations of the NMDAR gating variable circuit (A), the synaptic current circuit (B) and the linear threshold unit circuit (C).

Circuit simulations in Cadence in our previous work (You and
Wang, 2016) have demonstrated that the NMDAR gating variable
circuit can implement the major dynamics of its biological
counterpart characterized by Equation (6): S̄ increases with
increasing Ir and Iγ but decreases with increasing Iτ ; the time
constant of the circuit τ decreases with increasing Iτ but is
independent of Iγ and Ir .

Neuromorphic Implementation for a
Reduced Two-Variable WTA Model
For the sake of neuromorphic implementations, the original
reduced two-variable decision model (Wong and Wang, 2006) is
re-expressed in the current-mode description as follows:

CUT
d

dt

IS,i

Iref
= −Iτ

IS,i

Iref
+ (1−

IS,i

Iref
)
Iγ

Iref
Ir,i (7)

where i (= 1, 2) labels two selective populations. For simplicity,
we adopted the linear-threshold unit (LTU) to model the neural
activities of two populations Ir,i, which are given by the equation
as follows:

Ir,i = [
Irgain

Ir
ref

Isyn,i − Irthr]
+ (8)

where the dimensionless variable
Irgain
Ir
ref

is the gain of the neural

population, and
Ir
ref

Irgain
Ir
thr

is the threshold current. Isyn,i denotes

the corresponding synaptic current. [x]+ is equivalent to the
function max(x, 0). According to Equation (8), we require only
a multiplier and several current mirrors to realize the LTU
circuit (Figure 3C). However, the neural activity Ir of this LTU
circuit in circuit simulations increases smoothly, not suddenly,
as described by Equation (8) when the synaptic current Isyn
approaches the threshold current. Therefore, we chose a new
activation model instead of Equation (8) in the following system
approach analysis:

Ir,i =

Irgain
Ir
ref

Isyn,i − Ir
thr

1− exp[−g(
Irgain
Ir
ref

Isyn,i − Ir
thr
)]

(9)

where the parameter g tunes the smoothness of the activation
curve around the threshold current. Equation (9) is more
biophysically realistic for the response of neural populations.

The total synaptic currents of two selective populations Isyn,i
are given by the following equations:

{

Isyn,1 = Iw+
IS,1
Iref

− Iw−
IS,2
Iref

+ I0 + Isti,1

Isyn,2 = Iw+
IS,2
Iref

− Iw−
IS,1
Iref

+ I0 + Isti,2
(10)
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where Isti,i represents the external sensory stimulus to the
population i, and I0 is the effective background input. Iw+

and Iw− are the effective self-excitation and mutual-inhibition
currents per unit (the gating variable) in the recurrent network,
respectively. The synaptic current block can also be realized
by two multipliers and several current mirrors (Figure 3B).
However, for this synaptic current circuit shown in Figure 3B,
Isyn is close to but still larger than 0 when Is1 < Is2, indicating that
our synaptic current circuit looks like a rectifier ([·]+). Although
this result is not consistent with the response determined by
Equation (10), it has little influence on the implementation of
attractor dynamics in the decision circuit, owing to the rectifying
effect of the LTU circuit.

We built the neuromorphic circuit of this two-variable WTA
model on the basis of Equation (7), (8), and (10). Figure 1B
shows the block representation of the WTA circuit.

Circuit Configurations of WTA-Related
Cognitive Functions
Configuring parameters of the simplified two-variable WTA
model described by Equations (7–10) allows implementation
of decision-making, working memory and hysteresis in visual
perception (Wong and Wang, 2006; You et al., 2011). In this
work, to test the responses of the neuromorphic WTA circuit
built in Cadence (Figure 1), we configured the circuit and design
simulation protocols for three cognitive tasks. Bias currents
configured in the circuit are as follows: Iτ = 5pA, Iγ = 10pA,
Iref = 100pA, Irgain = 100pA, Ir

thr
= 50pA, Ir

ref
= 100pA,

I0 = 15pA. The capacitance of the capacitors used in the circuit
of the NMDAR gating variable C = 20pF. The parameter g = 0.2
from simulations. We also used the above values as parameters in
the model for theoretical analysis. Furthermore, UT = 25mV in
the model. Bias currents Iw+ and Iw− are task specific.

Decision-Making

In discrimination tasks of coherent motion in random dots,
neurophysiologists have found that the neural activities in
monkeys’ lateral intraparietal cortexes (LIP) are related to neural
computation of decision-making (Shadlen and Newsome, 2001;
Shadlen and Kiani, 2013). This two-variable WTA model has
been proposed to explain the underlying mechanism of decisions
in LIP (Wang, 2002; Wong and Wang, 2006). Therefore, two
populations in the neuromorphic WTA circuit are set to prefer
two alternative directions of coherently moving dots. According
to this discrimination task (Figure 4A), the external sensory
stimuli (moving dots) to two populations are

{

Isti,1 = Isti(t)(1+ Coh)
Isti,2 = Isti(t)(1− Coh)

(11)

where the input strength of the stimuli Isti(t) is 0pA for t < 0
and 15pA for t ≥ 0. The coherence level Coh represents the
percentage of coherently moving dots toward one direction. After
the stimulus onset, the circuit is required to make its decision by
gradually ramping activity of either population.

Working Memory

Neurophysiological experiments on monkeys have reported that
persistent activities during delayed response tasks maintain
working memory information (Compte et al., 2003). Mnemonic
activity is thought to be sustained by synaptic reverberation
in a recurrent circuit, and its stability is achieved mainly by
NMDAR-mediated reverberation (Wang, 2001). Therefore, the
WTA model (Equation 7–10) endowed with NMDAR-mediated
reverberation has the ability of working memory. According to
the procedure of the delay response task (Figure 4B), one or
two gray circles are presented as the sensory stimuli to two
populations. Thus, during the cue presentation, either Isti,1 or Isti,2
is 70pA and the other is 0pA when the memory load is one, and
both of them are 50pA when the memory load is two. Isti,1 and
Isti,2 are also 0pA before the cue stimuli onset and after the cue
stimuli offset.

Hysteresis in Visual Perception

Hysteresis is a typical phenomenon that depends on previous
experiences in visual, auditory and somatosensory perceptions
(Williams et al., 1986; Kleinschmidt et al., 2002; Jackson et al.,
2009). Theoretical analysis has revealed that a neural model with
a similar structure to our neuromorphic circuit can implement
hysteresis in visual perception (You et al., 2011). Here, we chose
the discrimination task between the man’s face and the kneeling
girl as the prototype for our circuit simulation in Cadence
(Figure 4C). The first population in our circuit represented the
man’s face, and the other represented the kneeling girl. According
to this task, the sensory stimulus was presented only from 0s to
Ts, and the figure changed from the man’s face to the kneeling
girl. Therefore, we used the similar simulation protocol shown in
Equation (11), but with the constant Isti(t) and varying coherence
level Coh over time. Isti(t) is 15pA and Coh = 1− 2t/T. T = 20s.

RESULTS

Emulation of Decisions and Their Attractor
Dynamics in the Neuromorphic WTA
Circuit With NMDARs
We tested the responses of this decision circuit through
simulations given the stimulus with different coherence levels,
which were given after 0s (Figure 5A). Responses of both
populations stay at a low activity before the stimulus onset. After
the stimulus was presented, one of them exhibited a gradual
ramp-up activity, and the other exhibited a gradually decreasing
activity. According to the decision bound theory supported by
some observations in the monkey experiment (Kiani et al.,
2008), we set a fixed neural activity (corresponding to a fixed
Ir 50pA) as the decision threshold in our circuit simulations. A
decision is made once the activity of any population exceeds the
decision threshold, and corresponding time is measured as the
reaction time. The speed of the ramp-up activity increased with
increasing coherence of the stimulus, whereas the reaction time
decreased (Figure 5B); both these observations are consistent
with neural activities and behaviors observed with the monkey
experiments (Shadlen and Newsome, 2001). However, because
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FIGURE 4 | Cognitive tasks and corresponding circuit simulation protocols in Cadence. (A) Decision-making. In this task, the subject is required to fixate on

the center of the monitor, and two peripheral targets are presented (Top). After a delay, a fraction of dots move coherently toward one of the targets, while the

remaining dots move randomly. The subject is required to report the direction of the coherent motion by a saccade to one of the targets. The difficulty of this task is

determined by the fraction of coherently moving dots (the coherence level: Coh). In the circuit simulation in Cadence, the motion stimulus is presented during the

motion and saccade stages (Bottom). (B) Working memory. In this task, one or two gray circles as cues are presented during the cue stage, and the subject is

required to recall the locations of the cues during the delay stage. (C) Hysteresis in visual perception. In this task, the figures from left to right morph from a man’s face

to a kneeling girl, which is adapted from Haken (1983) and Chialvo and Apkarian (1993). The subject is required to report what was perceived. In both sequence trials

(left ↔ right), a typical hysteresis loop of the subject’s perception is shown. Because the features of the man’s face and the kneeling girl change smoothly and in a

reverse manner, the sensory stimulus in the Cadence simulation is given in the same way during the presentation of the figures (Bottom).

our decision circuit is a noise-free system, the reaction time
had a linear relationship with the logarithm of the coherence
level (Figure 5B), as has been observed in previous studies (You,
2014).

These simulation results are consistent with results from a
phase-plane analysis of the model described by Equation (7),
(8), and (10) (Figure 5C). In the (S1,S2) phase space (decision
space), two lines called nullclines are plotted first by setting the
dynamical equations dS1/dt = 0 and dS2/dt = 0 (Equation
7). The intersections of two nullclines are steady states of
the model. The direction field in the phase space shows how
the system state will evolve. In the absence of a stimulus,
the two nullclines intersected with each other only once, thus
producing a stable steady state, that is, they function as an
attractor (Figure 5c1), thus explaining why the two populations
in the decision circuit had low spontaneous activities before
the stimulus onset. When an unbiased stimulus was presented

(Coh. = 0%), two nullclines intersected with each other three
times and produced a saddle-type unstable and two stable steady
states (Figure 5c2). They formed two basins of attraction around
different two attractors, representing two alternatives in the
decision. The system state was located in the vicinity of the
unstable steady state before the stimulus onset and then evolved
toward one of two attractors after the stimulus onset. This saddle
node structure determined the time course of neural activities
underlying the two-alternative decision. When a biased stimulus
was applied, the phase space was no longer symmetrical. As an
example of the biased stimulus Coh. = 12.8% (Figure 5c3),
the unstable steady state was closer to the attractor representing
the second alternative, thus indicating that the attractor state
responsible for the first alternative has a larger basin of attraction
than the other. After the onset of a biased stimulus, the
initial state of the system already lies within the basin of
the attractor of the first alternative, and the system state will
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FIGURE 5 | Decision-making and its attractor dynamics in the neuromorphic WTA circuit. (A) Firing activities in the decision task. The stimuli are presented to

the circuit after 0s. Colors indicate different coherence levels of the stimuli. Iw+ = 100pA, and Iw− = 60pA. (B) The decision time decreases as the coherence level

increases. (C) Phase-plane plot for two neural populations in the decision task, without external input (c1), in the presence of unbiased stimuli (c2:Coh. = 0%) or

biased stimuli (c3:Coh. = 12.8%). Solid dots denote stable steady states, and circles denote unstable steady states. Iw+ = 100pA, and Iw− = 60pA. The negative

regions in these phase-plane plots do not make sense biologically but are beneficial for showing attractor dynamics in the neuromorphic WTA circuit clearly.

evolve toward its favored attractor, especially in our noise-free
circuit.

The Dynamics of the Circuit is Consistent
with the Bifurcation Analysis of the WTA
Model in the Decision Task
Figure 6A shows the bifurcation diagram of a neural population
with the unbiased external stimulus Isti as a parameter in the
WTA model for the decision task and presents the relationship
between the steady states of the system and the stimulus strength.
In this bifurcation diagram, the gradually increasing middle
curve represents symmetric steady states, and the upper and
lower curves represent asymmetric states. Blue solid curves and
red dashed curves denote stable and unstable steady states,
respectively. The neuromorphic WTA circuit shows spontaneous
activities at a low rate when the stimulus is small (Figure 6CI)
in the decision task, because there is only one stable steady
state for the weak stimulus (the region I in Figure 6A). As
the external stimulus increases further, the system has three
stable steady states (two asymmetric and one symmetric) and
two unstable steady states (asymmetric). In this case, the
system shows stronger spontaneous activities. For the stronger
external stimulus, however, the system will develop one unstable
symmetric steady state and two stable asymmetric steady states
in the phase space (regions II–IV in Figure 6A), thus leading
to WTA behavior (Figures 6CII–IV). The time constant of the
unstable manifold of this symmetric state is very large and
decreases with increasing stimulus strength for low strength in

this region, but increases again for high strength (Figure 6B).
The simulation results of the circuit were also consistent with the
prediction of its bifurcation analysis for the WTA model. The
divergence speed of neural activities for the stimulus strength
around regions II and IV is larger than that around region
III (Figures 6CII–IV). When the stimulus strength further
increases, and the symmetric steady state becomes stable again,
the system has another two asymmetric stable steady states
and two asymmetric unstable steady states (Figure 6A). If the
stimulus strength is too large, the system has the sole steady state
that is stable. The system cannot develop the ramping-up activity
and make a decision (Figure 6CV).

Emulation of Working Memory and Its
Attractor Dynamics in the Neuromorphic
WTA Circuit
We concentrated on following aspects of working memory when
we performed this cognitive task in the neuromorphic WTA
circuit: the ability of working memory and the limitation of its
capacity. In circuit simulations, we verified the working memory
capacity limit under two circuit configurations (Iw+ = 240pA and
300pA). We also applied the stimuli with one or two items to the
circuit during the cue presentation according to the protocol of
working memory (Figure 4B).

The neural activity patterns of the circuit with Iw+ = 240pA
in the circuit simulations are shown in Figure 7A. Several
characteristics are worth noting. First, two neural populations
were spontaneously active at a low rate before the onset
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FIGURE 6 | Bifurcation diagram of a neural population with the unbiased stimulus Isti and neural responses to different Isti in the neuromorphic WTA

circuit. (A) Bifurcation diagram. Bold lines, stable steady states; dashed lines, unstable steady states. (B) Time constant. (C) Neural responses to different stimuli Isti
are consistent with expectations in the bifurcation analysis in the WTA circuit.

of the cue stimuli. Second, the neural populations, which
encoded the directions of the items that appeared during the
cue period, increased their neural activities. When only one
item was presented, only the corresponding neural population
fired (Figure 7a1). When two items appeared, both neural
populations developed strong activities (Figure 7a2). Third, the
strong activity persisted throughout the delay period when the
working memory load comprised one item (Figure 7a1), but
the strong activities decayed gradually when the load size was
two (Figure 7a2). The results from the above circuit simulations
revealed that theWTA circuit with Iw+ = 240pA could remember
only one item.

The results from the phase-plane analysis for the WTA model
were also able to account for these observations (Figure 7C).
For the system without the cue presentation (Figure 7c1), two
nullclines intersected with each other five times, thus producing
three stable steady states and two unstable steady states. These
three stable steady states, around which three basins of attraction
formed, were divided into two classes: one symmetric low state,
called the spontaneous state, and two asymmetric high states,

calledmemory states. TheWTA circuit stayed at this spontaneous
state before the cue presentation. After the onset of the cue,
if the memory load was one item, the system had only one
attractor (Figure 7c2), and then one population in the WTA
circuit evolved from its spontaneous state to the high activity
(Figure 7a1). If the memory load was two items, the system
had three attractors (Figure 7c3). Because the initial state of
the circuit was located in the attraction basin of the attractor
with two high values, the activities of both populations increased
(Figure 7a2). After the cancellation of the cue, the system evolved
from the attractor in Figure 7c2 to its closest memory state (the
south-east asymmetric attractor) in Figure 7c1 for one item, but
from the attractor with two high values in Figure 7c3 to the
spontaneous state in Figure 7c1 for two items. These results
illustrate why the WTA circuit could hold only one item in its
working memory.

When Iw+ was configured to be 300pA, all populations
subjected to the cue items, showed persistent activities after
the cue stimuli offset (Figure 7B). The memory capacity was
two in this configuration, which was also illustrated by the
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FIGURE 7 | Working memory capacity and its attractor dynamics in the neuromorphic WTA circuit. (A) Neural activities of two neural populations in the WTA

circuit with the self-excitation strength Iw+ = 240pA . Persistent activity shows after the cancellation of the stimulus for one item but not two items. (B) Neural

activation plot when Iw+ = 300pA . Persistent activities show during the delay for both one item and two items. (C,D) Phase-plane plot for two neural populations in

working memory tasks without external input (c1 and d1), in the presence of one item (c2 and d2) and two items (c3 and d3). Because of unprecise mapping of the

WTA model onto the WTA circuit, we set Iw+ as 200pA in (C) and 250pA in (D), which correspond to those in (A,B).

similar phase-plane analysis for the WTA model. Given the
cue stimuli with one item and two items, the dynamics of the
system characterized by Figures 7d2,d3 was similar to those of
Figures 7c2,c3. Therefore, the WTA circuit behaved similarly
during the cue presentation for both configurations of recurrent
excitatory connection strength (Figures 7A,B). However, two
nullclines intersected nine times, producing four basins of
attraction, among which there was a memory attractor with two
high values representing the memory of two items (Figure 7d1).
In the case of the stimuli with two items, the system state did
not evolve toward the spontaneous state but instead evolved
toward its closest memory state responsible for the memory of
two items. Thus, the WTA circuit was able to hold persistent
activities during the delay and remember two items (Figure 7b2).

Hysteresis in Visual Perception
Our previous work has revealed that hysteresis in visual
perception can be reproduced in the simulation of the two-
variable WTAmodel (You et al., 2011). In circuit simulations, we
applied the stimulus protocol of the discrimination task between

the man’s face and the kneeling girl to the neuromorphic WTA
circuit with three different Iw+ . Corresponding activity plots
are shown in Figure 8A. In the circuit simulation for Iw+ =

100pA (Figure 8a1), the activity of the population representing
the man’s face (solid curve) gradually decreased and that of
the kneeling girl (dashed curve) increases with the changing
stimulus. Notably, the crossover of two activities (15.5s) was
followed by the crossover of the stimulus to two populations
(10s). Thus, the circuit perceives the kneeling girl later than
the time at which its feature exceeds the feature of the man’s
face; that is, a hysteresis phenomenon in the visual perception
was observed. The corresponding hysteresis loop of neural
activity is shown in Figure 8. Similarly, a hysteresis phenomenon
was also observed for Iw+ = 80pA, but the corresponding
hysteresis effect weakened (Figures 8a2,b2). If Iw+ decreased
further, for example, 60pA, the hysteresis effect disappeared
(Figures 8a3,b3).

To compare the circuit simulation results and theoretical
analysis results, we calculated the steady states of the WTA
model with the variant parameter Iw+ and the increasing feature
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FIGURE 8 | Hysteresis in visual perception and its attractor dynamics in the neuromorphic WTA circuit. (A) The time course of activities of two neural

populations when Iw+ is 100pA (a1), 80pA (a2), and 60pA (a3), respectively. (B) The activity of the man’s face selective population exhibits hysteresis. The sequence

of Iw+ is the same as that in (A). The hysteresis effect decreases with decreasing Iw+ , and there is no hysteresis when Iw+ is small enough. (C) Bifurcation diagram of

a selective population with the feature coherence of figures Coh as parameter. Bold lines, stable steady states; dashed lines, saddle steady states. Because the

mapping of the WTA model onto the neuromorphic WTA circuit cannot be precise, Iw+ is 120pA, 100pA, and 80pA, respectively.

coherence Coh. However, because of the unprecise mapping of
the WTA model onto the neuromorphic WTA circuit, we chose
another set of Iw+s (120, 100, and 80pA) in the WTA model
for comparisons. When Iw+ = 120pA, the system had strong
self-excitation. Along with the increase in Coh, the number of
steady states of the system changed from one to three and then
to one (Figure 8c1). There was a Coh interval around 0, in which
the system had three steady states, including two stable and
one unstable. These steady states accounted for the hysteresis
in the visual perception (Figures 8a1,b1). If Iw+ decreased and
was equal to 100pA, the Coh interval with three steady states
decreases (Figure 8c2), thus revealing a weakened hysteresis
effect of the visual perception (Figures 8a2,b2). When Iw+ =

80pA, the Coh interval with three steady states disappeared and
the system had a single steady state (Figure 8c3). Thus, there was
no hysteresis in the visual perception (Figures 8a3,b3). Although
there was a slight mapping mismatch from the WTA model
onto the neuromorphicWTA circuit, the above circuit simulation
results and theoretical analysis results demonstrated that the
neuromorphic WTA circuit mimics hysteresis behavior in the
visual discrimination task.

CONCLUSIONS AND DISCUSSION

In this work, we designed a WTA circuit with NMDARs by using
a dynamical system approach of circuit synthesis according to
the two-variable version of a plausible biophysical WTA model
(Wong and Wang, 2006; Arthur and Boahen, 2011). Comparing
the results between circuit simulations of this neuromorphic

WTA circuit and theoretical analysis of the current-mode WTA
model, we demonstrated that the WTA circuit with NMDARs
was able to implement attractor dynamics underlying cognitive
functions, such as decision-making, working memory and
hysteresis in visual perception. For decision tasks, the WTA
circuit reproduced gradual ramp-up neural activities determined
by the saddle node structure and the slow integration of sensory
evidence. Furthermore, the divergence speed of neural activities
was also consistent with the prediction of the time constants
of corresponding saddle points. For working memory tasks, the
WTA circuit showed sustained activities determined by multi-
stable dynamics, that is, the spontaneous state and memory
states coexisted. More interestingly, the memory capacity of
the WTA circuit was able to be tuned by configuring the
recurrent excitatory connection strength, as has been discussed
in a continuous spiking network model (Wei et al., 2012). During
discrimination tasks between a man’s face and a kneeling girl, the
WTA circuit reproduced the typical hysteresis behavior observed
in visual, auditory and somatosensory perceptions (Williams
et al., 1986; Kleinschmidt et al., 2002; Jackson et al., 2009)
and predicted by bifurcation analysis with feature coherence
Coh as a parameter. Furthermore, the hysteresis effect was
able to be regulated by configuring the recurrent connection
strength in the WTA circuit. It was also critical to implement
the non-linear dynamics of the NMDAR-mediated synaptic
current in the WTA circuit for the above cognitive tasks.
These results demonstrated that our WTA circuit was able to
implement attractor dynamics underlyingWTA-related cognitive
functions.
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Quantitatively accurate neuromorphic mapping is important
for neuromorphic systems to emulate computations carried out
in the nervous system in VLSI hardware. In this study, we
designed and implemented a neuromorphic WTA circuit by
using a dynamical system design, which has been applied for
mapping of quantitative neuronal models onto neuromorphic
hardware (Takemoto and Kohno, 2007; Arthur and Boahen,
2011; Gao et al., 2012). However, imprecise mapping of the WTA
model onto the WTA circuit is inevitable because of factors
such as ideal modeling of transistors, inaccurate current replica.
Parameters configured for circuit simulations of the WTA circuit
in Cadence and theoretical analysis of the WTA model during
three cognitive tasks are not same but are similar. Thus, the
dynamical system approach of circuit synthesis in our work
was effective. The circuit simulation results demonstrated that
the WTA circuit produced behaviors that was predicted and
explained by the WTA model, such as the divergence speed of
neural activities predicted by the time constants of corresponding
saddle points in implementing decision tasks and the working
memory capacity determined by memory attractors in the phase-
plane analysis when implementing working memory tasks. In
addition, the mismatch is inevitable because identical devices
suffer from random mismatch, which stems from microscopic
fluctuations in dimensions, doping, oxide thickness and a host
of other causes (Hastings, 2005; Sun and Basu, 2011). The
mismatch can destroy the symmetry of the WTA circuit and
deteriorate performance during cognitive tasks. For example,
the probability of choosing either of two options will not be
50% for an unbiased stimulus (Coh. = 0%) during decision
tasks. However, weakly biased behavior is acceptable if the
asymmetry of the WTA circuit is not made severe by reducing its
mismatch.

The primary components of the networks in the brain are
neurons, which transfer information by digital means (the pulse,
called a “spike” or “action potential”) and process information by
analog means. Therefore, most neuromorphic systems are event
based. Hence massively parallel, low-power, and inexpensive
computing architectures are promising (Boahen, 2000; Liu et al.,
2015), such as neuromorphic systems from the COLAMN
project (Wijekoon and Dudek, 2012), NCS research project
(Qiao et al., 2015), the Neurogrid project (Benjamin et al.,
2014), the SpiNNaker project (Furber et al., 2014). Most silicon
neurons on hardware are built according to various spike neuron
models, such as leaky integrate-and-fire neurons (Indiveri et al.,
2006; Gao et al., 2012), Hodgkin-Huxley neurons (Saighi et al.,
2011), Izhikevich neurons (Mizoguchi et al., 2011) and other
two-variable neurons (Takemoto et al., 2011). Non-spiking
neurons, described by various activation transfer functions, are
used in convolutional and deep neural networks on hardware
(Krizhevsky et al., 2012; Chen et al., 2014; Luo et al., 2017).
In this study, the two-variable WTA model is the firing rate
model, not the spiking neuron model. Therefore, we developed
the WTA circuit in a current-mode manner, and the information
transfer in the WTA circuit operates in the analog mode. This
methodology is practical because the WTA circuit is small-scale
and does not have too much information transferred inside.

These independent cognitive modules can be configured for
some cognitive tasks and can be assembled to construct larger-
scale neuromorphic systems; moreover, communications among
the WTA circuits can be event based for high-efficiency and
low-power design.

Using the relationship between dynamic field theory (DFT)
and soft WTA networks, Sandamirskaya has systematically
revised and integrated DFT mechanisms that may be
implemented in neuromorphic devices to achieve working
memory, intentionality or autonomous learning (Sandamirskaya,
2014). The main characterizations of the dynamic neural
fields underlying the above cognitive functions are detection
instability, selection instability, working memory instability
and reverse detection instability. The WTA circuit can also
present the above characterizations, which were demonstrated
by circuit simulation and theoretical analysis results in this
study. Moreover, the WTA circuit displays rich repertories
of dynamics underlying cognitive behavior after being
configured with NMDARs. Therefore, the WTA circuit as a
basic cognitive module, together with other functions, such as
associative memory (Hu et al., 2015) and synaptic plasticity
(Fusi et al., 2000; Indiveri et al., 2010), may be extended and
assembled into the framework of higher neuromophic cognitive
systems. For instance, this WTA architecture, may be used
as state-holding elements to be assembled into finite state
machines (FSM) (Neftci et al., 2013), or as WTA elements to be
assembled into a sophisticated classifier network (Shim et al.,
2016).

Compared with continuous models of dynamic neural fields,
the two-variable WTA circuit is based on the discrete model, and
its neural coding ability determined by the state space is limited.
However, theoretical analysis reveals that the WTA model with
more than two populations also has similar dynamics to that
discussed above (McMillen and Holmes, 2006; Albantakis and
Deco, 2009). By using the dynamical system approach of circuit
synthesis, the WTA circuit could be constructed for a given
number of populations to implement more complex cognitive
behavior with more alternatives, memory items or classifiers.
However, the scale of the WTA circuit cannot be too large,
because the complexity of synaptic interactions on hardware
would grow according to n-squared with an increasing number
of populations.
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