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Pigs serve as an important agricultural resource and animal model in biomedical
studies. Efficient and precise modification of pig genome by using recently developed
gene editing tools has significantly broadened the application of pig models in various
research areas. The three types of site-specific nucleases, namely, zinc-finger nucleases,
transcription activator-like effector nucleases, and clustered regularly interspaced short
palindromic repeats (CRISPR)/CRISPR-associated protein, are the main gene editing
tools that can efficiently introduce predetermined modifications, including knockouts
and knockins, into the pig genome. These modifications can confer desired phenotypes
to pigs to improve production traits, such as optimal meat production, enhanced
feed digestibility, and disease resistance. Besides, given their genetic, anatomic, and
physiologic similarities to humans, pigs can also be modified to model human diseases
or to serve as an organ source for xenotransplantation to save human lives. To date,
many genetically modified pig models with agricultural or biomedical values have been
established by using gene editing tools. These pig models are expected to accelerate
research progress in related fields and benefit humans.
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INTRODUCTION

Pigs hold great promise in agriculture and biomedicine. As an important meat source, domestic
pigs provide the most commonly consumed meat worldwide. Through selective breeding, humans
produce pigs that harbor desired characteristics for agriculture, albeit the selection is a long and
slow process (Ruan et al., 2017). However, the process can now be substantially revolutionized
and accelerated through genetic modification, including random transgenesis and gene knockouts
and knockins (Gaj et al., 2013; Garas et al., 2015). With the improved efficiency of genetic
modification, pig genome modification can confer any desired, predetermined genetic changes,
which would take years to be realized in traditional selective breeding. Numerous economically
significant characteristics, such as increased meat production (Qian et al., 2015; Wang et al., 2015,
2017b; Bi et al., 2016; Rao et al., 2016), reduced fat deposition (Zheng et al., 2017), or enhanced
disease resistance (Whitworth et al., 2016; Burkard et al., 2017; Wells et al., 2017; Yang et al.,
2018), have been achieved simply and efficiently through genetic modification in pigs, which can
be used as valuable breeding materials to advance pig production. In biomedical research, pigs
serve as an important large animal model given their advantages over other models. Compared
with rodent models, pigs share a higher similarity to human beings in terms of body/organ size,
lifespan, anatomy, physiology, and metabolic profile. Compared with non-human primates, pigs
have low-cost and mature embryonic manipulation techniques. Pigs can be modified to carry the
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same gene mutation found in humans to replicate inherited
diseases (Perleberg et al., 2018), or offer organs with minimal
transplant rejection during xenotransplantation (Hryhorowicz
et al., 2017). Pigs bridge the gap between humans and the heavily
used small rodent models to favor biomedical research ranging
from basic science to translational medicine.

However, production of gene-targeted mammals other than
mice remained difficult until the late 2000s because the traditional
gene targeting technique developed in mice requires homologous
recombination (HR) manipulation in embryonic stem (ES) cells
(Mansour et al., 1988; Capecchi, 1989). The lack of bona
fide germline-competent ES in large animals urged researchers
to perform HR in somatic cells rather than in ES cells and
then use somatic cell nuclear transfer (SCNT) to produce
genetically modified large animals (Polejaeva et al., 2000).
Although theoretically possible, the modification of somatic cells
by using HR is extremely inefficient; thus, the generation of such
cells is impractical (Wells and Prather, 2017). Therefore, only
very few gene-targeted pigs were created within two decades
(between the establishment of gene targeting technique prior to
1990 and the late 2010s when the novel gene targeting tools
began to be used in large animals) (Dai et al., 2002; Lai et al.,
2002; Rogers et al., 2008; Suzuki et al., 2012; Davis et al., 2014).
This situation changed when newly developed gene targeting
technologies called site-specific engineered nucleases or “gene
scissors” became available. The designed engineered nucleases,
such as zinc finger nucleases (ZFNs), transcription activator-like
effector nucleases (TALENs), or clustered regularly interspaced
short palindromic repeats (CRISPR)/CRISPR-associated protein
(Cas), are very effective in creating double-stranded breaks
(DSB) at a specific locus of a genome, thereby facilitating
genetic modifications, including knockouts via non-homologous
end joining (NHEJ) and knockins via homology-directed repair
(HDR) (Hsu et al., 2014) (Figure 1). Creation of an intentional
DSB in the genomic target can stimulate HR by 50–1000-fold
(Jasin, 1996). Therefore, a high rate of DSB formation results in
a high rate of modification either in somatic cells or in embryos.
With the use of these gene scissors, a large number of genetically
modified pigs have been generated through SCNT of modified
somatic cells or direct microinjection of engineered nucleases
into the embryos. In addition to establishment of genetically
modified pigs with agricultural and biomedical values, this
technology might have a potentially wider range of application
in pigs, such as treatment of viral infections as a therapeutic tool,
and gene therapy to correct mutation in pig disease model. These
areas still await further investigation.

NUCLEASE-BASED GENE EDITING
TOOLS

Zinc Finger Nucleases (ZFNs)
Zinc Finger Nucleases are artificial chimeric proteins consisting
of a specific DNA-binding domain, which comprises tandem zinc
finger-binding motifs, fused to a non-specific cleavage domain
of the restriction endonuclease FokI (Kim et al., 1996; Urnov
et al., 2010). Zinc finger protein characteristically consists of two

beta sheets and an alpha helix, with one or more coordinated
zinc ions at their core to confer rigidity to finger (Pavletich and
Pabo, 1991). Given that a zinc finger protein unit recognizes 3 bp
of DNA, usually in ZFN, 3–6 zinc finger units are combined to
recognize 9–18 bp DNA sequences to achieve a specific targeting.
By designing two zinc finger motifs recognizing either side of 5–
6 bp spacer sequences at a target region, FokI nuclease combined
with zinc finger can introduce DSBs within a target region (Kim
et al., 1996; Smith et al., 1999; Bibikova et al., 2003; Porteus and
Baltimore, 2003; Urnov et al., 2010).

Being the early version of artificial engineered nucleases, ZFN
opened a new possibility for gene targeting manipulation in
pigs, although this technology still suffers from a complicated
construction process and unpredictability of targeting activity.
In general, a rational design and assembly of ZFN is somewhat
a tough task for many laboratories (Klug, 2010; Lam et al.,
2011; Chandrasegaran and Carroll, 2016). An effective ZFN
reagent can only be obtained from some commercial sources
at a prohibitive price or laboratories that embark in intensive
work on ZFN. To the best of my knowledge, studies creating
ZFN-mediated genetically modified pigs all use commercially
synthesized ZFN reagents. The difficulty of generating active ZFN
reagents has impeded their extensive use. Nevertheless, compared
with the extremely low gene targeting efficiency of less than 10−6

by using conventional HR in somatic cells, ZFN can achieve
approximately 1–4% gene targeting rate in selection of modified
pig somatic cells (Hauschild et al., 2011; Yang et al., 2011), thereby
allowing the cost-effective generation of genetically modified
pigs.

Transcription Activator-Like Effector
Nucleases (TALENs)
Transcription activator-like effector nucleases (TALENs) actually
have a similar conceptual structure to ZFNs by comprising a
DNA binding domain and a DNA cleavage domain and by acting
in pairs to satisfy the requirement for dimerization (Christian
et al., 2010; Miller et al., 2011). The DNA binding domain
of TALENs, named transcription activator-like effector (TALE),
originates from the plant-pathogenic bacterium Xanthomonas
and includes tandem repeat modules of 34 amino acids, with
each module specifying the binding to a single base pair. The
repeat modules can be rearranged according to a simple cipher
to target any DNA sequence (Boch et al., 2009; Moscou and
Bogdanove, 2009). Unlike ZFN, TALEN reagents are easy to build
by several assembly schemes and can be produced routinely for
many laboratories (Cermak et al., 2011; Li et al., 2011; Morbitzer
et al., 2011). Aside from their simple design and assembly,
TALENs have a broad target range and a substantially improved
targeting activity; thus, active TALENs may be designed for
almost any DNA target in a genome. About 64% of synthesized
TALENs are active in livestock fibroblasts. Three-quarters of
these active TALENs demonstrate a high cleavage efficiency (19–
40% NHEJ rates). Moreover, TALEN pairs efficiently induce gene
knockouts after direct injection of TALEN-encoding mRNA into
the cytoplasm of swine and bovine embryos, with a 29% and
43–75% knockout efficiency, respectively (Carlson et al., 2012).
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FIGURE 1 | Overview of genome editing in the pig. Two ways to generate genome-edited pigs are shown: embryo injection of engineered nucleases and somatic
cell nuclear transfer. In genome editing process, engineered nucleases induce a DSB at the target site. Subsequent DNA-repair by NHEJ and HDR pathways can
introduce site-specific knockout and knockin, respectively, in the pig genome.

Given that HR-mediated gene knockin results in precise
alteration, including point mutation, DNA fragment
replacement, and insertion of a new DNA sequence in a
target site, knockin modification has a wide range of application
prospect compared with the NHEJ-mediated gene knockout,
which only causes loss in the functional phenotype of a gene.
However, most of the created DSBs were repaired by NHEJ,
and only few of them could be repaired by HR when a donor
DNA repair template was offered (Mao et al., 2008). Therefore,
HR-mediated knockin manipulation is less efficient than NHEJ-
mediated knockout even in the presence of engineered nucleases.
The high effectiveness of TALEN-mediated gene targeting
could achieve an effective gene knockin. Using TALENs and
oligonucleotide donor transfection that introduces defined
nucleotide changes into multiple targets in the genome of
livestock fibroblasts, Tan et al. achieved 10–64% knockin cell
colonies, with up to 32% of the homozygous knockin colonies in
just one round of transfection (Tan et al., 2013). Another study
has established Rosa26 knockin pig models by using TALEN
plasmid and long-range arm donor DNA transfection. In this
study, the knockin efficiency in selected fibroblasts was as high
as 31.3% (60 positive colonies of 192 selected fibroblast colonies)
(Li et al., 2014).

Clustered Regularly Interspaced Short
Palindromic Repeats
(CRISPR)/CRISPR-Associated Protein
(Cas)
Clustered regularly interspaced short palindromic repeats
(CRISPR)/CRISPR-associated protein (Cas), originally known
as a microbial adaptive immune system, has been adapted
for mammalian gene editing recently. The CRISPR/Cas system
is based on an adaptive immune mechanism in bacteria and
archaea to defend the invasion of foreign genetic elements
through DNA or RNA interference (Gasiunas et al., 2012; Jinek
et al., 2012; Wiedenheft et al., 2012). Through mammalian
codon optimization, CRISPR/Cas has been adapted for precise

DNA/RNA targeting and is highly efficient in mammalian
cells and embryos. The most commonly used and intensively
characterized CRISPR/Cas system for genome editing is the type
II CRISPR system from Streptococcus pyogenes; this system uses
a combination of Cas9 nuclease and a short guide RNA (gRNA)
to target specific DNA sequences for cleavage. A 20-nucleotide
gRNA complementary to the target DNA that lies immediately 5′
of a PAM sequence (NGG) directs Cas9 to the target DNA and
mediates cleavage of double-stranded DNA to form a DSB (Cong
et al., 2013; Mali et al., 2013). Thus, CRISPR/Cas9 can achieve
gene targeting in any N20-NGG site.

Since CRISPR/Cas9 first emerged, researchers have been
highly impressed by its incomparable gene targeting efficiency
and simple construction of customized vectors compared with
previous site-specific nucleases. These characteristics render
CRISPR/Cas9 highly accessible for almost any laboratories,
thereby significantly contributing to the progress of research
in many areas of biomedicine and agriculture. The high
cleavage activity of CRISPR/Cas9 allows simultaneous targeting
of multiple loci in a single cell within a single reaction (Cong et al.,
2013). GGTA1/iGb3S and GGTA1/CMAH double knockout
and GGTA1/iGb3S/CMAH triple knockout pigs, which have
potential for xenotransplantation, were created by a single-step
transfection of multiplexed sgRNA and Cas9 nuclease together
with a single nuclear transfer (Li et al., 2015). We generated
homozygous Pink1/Parkin double knockout pigs as Parkinson’s
disease models through a single transfection of CRISPR/Cas9
and SCNT. The frequency of selecting homozygous double
knockout fibroblast colonies could reach up to 38.1% (Zhou et al.,
2015).

GENETICALLY MODIFIED PIGS FOR
AGRICULTURAL APPLICATION

Traditional selective breeding has produced a series of
superior livestock varieties that demonstrate a dramatically
enhanced production performance compared with their
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original counterparts. However, individual trait shows only
0.5–3.0% genetic response to selection per year, and some
traits such as fertility and disease resistance remain difficult
to improve (Clark and Whitelaw, 2003). Furthermore, when
production traits have been improved to a certain degree,
their further optimization would even be more difficult
and would need an even longer breeding cycle to achieve
even a slight progress. Genome editing offers an alternative
approach to rapidly and directly realize genetic improvement in
livestock (Ruan et al., 2017). Fully improvement of individual
and even multiple traits can be accomplished within only
one generation. Importantly, by using genome editing, we
can confer upon animals favorable genetic traits that are
unavailable in natural genetic sources, thereby generating novel
livestock varieties that cannot be achieved through traditional
breeding.

Meat Production
Myostatin (MSTN) is a negative regulating factor of skeletal
muscle mass in vivo. MSTN knockout mice exhibit a two–
threefold increase in muscle mass due to muscle fiber hyperplasia
and hypertrophy (McPherron et al., 1997). Natural mutations
of MSTN have been found in several species, including cattle
(Grobet et al., 1997; Kambadur et al., 1997; McPherron and
Lee, 1997), sheep (Clop et al., 2006), and dogs (Mosher et al.,
2007). MSTN modification is an effective approach to enhance
muscle growth in various animals. Given that this gene is
a “hot” candidate that is possibly beneficial in agriculture,
several strains of MSTN-knockout pigs have been generated
by using ZFNs (Qian et al., 2015), TALENs (Rao et al., 2016),
and CRISPR/Cas9 (Wang et al., 2015, 2017b; Bi et al., 2016).
These MSTN-knockout pigs demonstrate muscle hypertrophy
or double-muscled (DM) phenotype, with increased muscle
mass and decreased fat accumulation compared with wild-
type (WT) pigs. One study showed some MSTN-mutant pigs
with one extra thoracic vertebra (Qian et al., 2015). MSTN-
knockout pigs are valuable breeding materials for rapid genetic
improvement to produce lean meat from fat-type (indigenous)
pig breeds.

However, some deleterious effects were found in some MSTN-
null DM pigs. In homozygous MSTN knockout piglets of the
Landrace breed, newborns have abnormal forelegs and/or hind
legs and thus their motor function is severely impaired. The
affected piglets usually die quickly after birth (Zou et al., 2018).
MSTN possibly plays an important role in the development and
function of muscles and other organs as MSTN is expressed
from early embryogenesis through adulthood. It seems that
MSTN modification could result in severe side effect in
some pig breeds, albeit not observed in all reported MSTN-
knockout pigs. Therefore, a careful selection of pig breeds which
show an increased meat production but minimized collateral
damage by MSTN modification is needed for establishment
of MSTN-knockout DM pig breeds. A new candidate target
(FBXO40) that influences muscle production has been found
recently. FBXO40 knockout pigs display a muscle hypertrophy
phenotype and survive normally without detectable pathological
changes in major organs (Zou et al., 2018). Also of note

is that the DM animals are more susceptible to respiratory
disease, lameness, stress and dystocia, thus requiring extra
attention in husbandry to preserve animal welfare (Fiems,
2012).

Viral Resistance
Porcine reproductive and respiratory syndrome virus (PRRSV)
is the most economically important swine disease worldwide,
currently causing huge economic losses in the swine industry.
Genome editing shed light on the establishment of PRRSV-
resistant pigs through knockout of viral receptors in pigs.
Potential PRRSV entry mediators, SIGLEC1 and CD163 were
knocked out in pigs through conventional HR and CRISPR/Cas9,
respectively (Prather et al., 2013; Whitworth et al., 2014).
PRRSV challenge in knockout pigs demonstrated that SIGLEC1
is unnecessary for infectivity (Prather et al., 2013), whereas
CD163 is the definitive receptor for PRRSV. CD163 knockout
pigs are fully resistant to PRRSV challenge with no obvious
PRRSV-related symptom and no detectable PRRSV antibody
and RNA in the serum (Whitworth et al., 2016). Furthermore,
multiple genotypes of CD163 modifications were achieved by
using CRISPR/Cas9 in different laboratories; these modifications
include CD163 total knockout (CD163 null) (Yang et al., 2018),
domain swap of CD163 exon 7 (corresponding to SRCR 5,
the PRRSV binding domain at the protein level) with human
CD163L-1 exon 11 (chimeric CD163) (Wells et al., 2017), and
CD163 truncation with a deletion of exon 7 (1SRCR5 CD163)
(Burkard et al., 2017). Among these CD163-modified pigs, those
with CD163 null phenotype were completely resistant to both
Type 1 and Type 2 PRRSV isolates (Wells et al., 2017). The
chimeric CD163 phenotype was resistant to Type 1 PRRSV
but still supported the replication of the Type 2 virus (Wells
et al., 2017). Our group also generated CD163 knockout pigs
with null phenotype, and they demonstrated their complete
resistance to the highly pathogenic PRRSV, which is the dominant
circulating strain in China and other Asian countries (Yang et al.,
2018).

Thermoregulation
Due to their lack of a functional UCP1 gene, pigs lack brown
adipose tissue (BAT). As a result, the BAT-mediated adaptive
non-shivering thermogenesis is absent in pigs (Trayhurn et al.,
1989; Berg et al., 2006; Jastroch and Andersson, 2015). Newborn
piglets are thus susceptible to cold stress, which may result in
neonatal death. To address this issue, Zheng et al. inserted a
mouse adiponectin-driven UCP1 into the porcine endogenous
UCP1 locus by using a CRISPR/Cas9-mediated knockin strategy
combined with SCNT. The resultant UCP1 knockin pigs
showed an improved ability to maintain body temperature when
acutely exposed to cold. Moreover, UCP1 prevented obesity
by reducing fat deposition, an economically important trait
targeted in pig breeding. UCP1 knockin pigs demonstrated
reduced fat deposition through UCP1-promoted lipolysis (Zheng
et al., 2017). Thus, UCP1 knockin pigs are a potentially
valuable genetic resource for agricultural production on the
basis of their improved thermoregulation and decreased fat
deposition.
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Recipients for Spermatogonial Stem Cell
(SSC) Transplantation
Spermatogonial stem cells sustain normal spermatogenesis and
maintain male fertility through self-renewal and differentiation.
SSCs can be transplanted to generate donor-derived offspring
(Brinster and Zimmermann, 1994). From the agricultural
perspective, SSC transplantation is a potential tool to rapidly
expand the availability of gametes from desirable superior
livestock, thereby dramatically influencing production efficiency,
quality, and other production traits in a population (Ehmcke
et al., 2006). A recipient male lacking endogenous SSC and other
germ cells but preserving intact somatic support cells is required
for a successful SSC transplantation. Although chemotoxic drug
or irradiation was employed to destroy spermatogenesis and
cause infertility, the outcome was not ideal as manifested by the
incomplete elimination of endogenous germ cells or the severe
side effect on the recipient animals (Oatley, 2017; Park et al.,
2017). An approach to eliminate SSC by knockout of the gene
essential for SSC development has established an ideal surrogate
for SSC transplantation. Park et al. generated NANOS2 knockout
pigs by directly injecting CRISPR reagents into the cytoplasm of
embryos. Knockout males could not produce sperm but still kept
intact seminiferous tubules structure, thus had the potential to
serve as an ideal SSC recipient (Park et al., 2017).

GENETICALLY MODIFIED PIGS AS
DISEASE MODELS

Genome editing has extensively and intensively promoted the
application of pigs as human disease models. Changing the pig
genome allows these animals to resemble the mutations causing
genetic disorder in humans, and pigs could phenocopy human
disease manifestations more accurately than the commonly used
mouse models. The suitable size and long lifespan of pig disease
models also facilitates carrying out surgical manipulation closer
to clinical conditions and long-term tracking and evaluation
of therapeutics over clinically relevant time frames. Using the
genome editing tools, genomic changes could occur not only
in a single gene but also in multiple genes simultaneously with
a high editing efficiency, thereby paving a way to mimic and
decipher complex polygenic heredity diseases in large animal
models similar to humans.

Neurodegenerative Diseases
Genetically modified pigs have been successfully used to
establish animal models of neurodegenerative diseases, including
Huntington’s disease (HD) and Parkinson’s disease (PD) (Zhou
et al., 2015; Yan et al., 2018). Yan et al. reported a huntingtin
(HTT) knockin pig as Huntington’s disease model, in which
pig HTT exon 1 containing 18 CAG repeats was replaced
with human HTT exon 1 containing a 150-CAG repeat
with CRISPR/Cas9. An expanded CAG repeat causes the HD
phenotype (Mangiarini et al., 1996). The cloned HTT knockin
pigs showed less weight gain compared with age- and sex-
matched WT pigs, and HD-like symptoms, including deficient

motor function and respiratory difficulty usually observed in
HD patients. Morphological analysis revealed neuropil and
nuclear HTT aggregates in the brain of knockin pigs, as
well as a marked decrease in the number of neurons in the
striatum compared with that in the cortex and cerebellum;
this condition is similar to the selective neurodegeneration
in the striatum of brains of HD patients (Yan et al.,
2018).

Parkinson’s disease is the second most common form of
neurodegenerative disorders. Approximately 10% of PD are
familiar cases with many disease-associated/caused genetic
mutations were identified (Lesage and Brice, 2009). Zhou et al.
(2015) reported on Pink1/Parkin double knockout pigs generated
using CRISPR/Cas9 in a one-step transfection and cloning. The
brains of cloned knockin pigs lost the expression of Pink1 and
Parkin, but no PD-associated phenotypic changes were found
(Zhou et al., 2015). These pigs are expected to show late onset of
the disease because PD is a progressive disease with a mean onset
at around the age of 60 in humans.

Cardiovascular Diseases
Cardiovascular diseases are the number one cause of death and
disability worldwide (Joseph et al., 2017). As the most commonly
used disease models, mice usually cannot accurately model the
physiology and pathology of the human cardiovascular system
given their significantly different heart size and rate compared
with humans (Milani-Nejad and Janssen, 2014). Therefore,
mouse models usually fail to predict human outcomes. For
example, thiazolidinediones (TZDs), selective ligands of PPAR-γ,
can sensitize insulin to treat type 2 diabetes. Although TZD-
mediated activation of PPAR-γ exerts a beneficial effect on
cardiovascular diseases in mouse models, the therapeutic efficacy
of TZDs has been severely compromised because of the increased
risk of adverse cardiovascular events in patients (Nissen and
Wolski, 2007). Pig and human myocardia are highly similar.
Thus, pigs are the most attractive models bridging the gap
between humans and mice. Yang et al. (2011) established PPAR-γ
heterozygous knockout pigs by using ZFN. Their work was the
first to use the genome editing tool to knockout an endogenous
gene of large animals (Yang et al., 2011).

The loss of function of low-density lipoprotein receptor
(LDLR) and Apolipoprotein E (ApoE) has been implicated
in the progression of atherosclerosis, the primary culprit for
cardiovascular diseases (Mahley, 1988; Hasler-Rapacz et al., 1998;
Sehayek et al., 2000; Rader et al., 2003). Given that the lipoprotein
profiles and metabolism in mice differ from those in humans,
atherosclerosis pig models may benefit atherosclerosis research.
ApoE/LDLR double knockout pigs have been recently established
by using CRISPR/Cas9 (Huang et al., 2017). These pigs show
an abnormal lipid metabolism related to atherosclerosis. Prior to
that, several strains of LDLR knockout pigs, including Yucatan
miniature pigs engineered using the traditional HR (Davis
et al., 2014) and Ossabaw pigs engineered by using TALENs
(Carlson et al., 2012), were generated. Among the models, LDLR
knockout Yucatan miniature pigs, which are used to model
atherosclerosis, have been well characterized. LDLR-deficient
pigs had considerably elevated levels in total and LDL cholesterol
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fed a standard diet, resulting in atherosclerotic lesions in the
coronary arteries and abdominal aorta that resemble human
familial hypercholesterolemia and atherosclerosis in a short
time (Davis et al., 2014). Recently, LDLR-deficient Yucatan pigs
were used to test the effect of bempedoic acid on lowering
LDL cholesterol and in attenuating atherosclerosis, indicating
the value of LDLR-deficient pigs in preclinical evaluation of
therapeutics (Burke et al., 2018).

Cancer
Acquired mutations are the most common causes of cancer.
Instability of genome, activation of oncogenes, and inactivation
of tumor-suppressor genes all can result in different types of
cancer. An optimal cancer animal model should be established
by inducing genetically defined tumors in a tissue-specific
manner rather than by genetically engineering the animal.
Wang et al. (2017a) established a Cre-dependent inducible
Cas9-expression pig with CRIPSR/Cas9-mediated knockin in
the Rosa26 locus. This pig model allows ex vivo genome
editing in isolated pig cells and in vivo genome editing by
introducing a corresponding gRNA. To mimic an abnormal
oncogenic EML4-ALK fusion gene identified in a subset of
non-small-cell lung cancers (NSCLCs) (Soda et al., 2007),
two gRNAs targeting EML4 and ALK were introduced into
the isolated pig fibroblasts via lentivirus. Fibroblasts with
oncogenic EML4-ALK fusion gene arising through a paired
CRISPR/Cas9-mediated genome inversion could be generated.
Moreover, the study investigated the feasibility of lung cancer
induction in vivo through intranasal delivery of multiplexed
gRNAs targeting tumor suppressor genes TP53, PTEN, APC,
BRCA1, and BRCA2, as well as oncogene KRAS. Three months
after gRNA administration, the Cre-dependent Cas9-expressing
pigs presented signs of pneumonopathy, and morphological
analysis of lung tissue showed a pathological feature similar
to the human adenocarcinoma. The target genes harbored
insertions/deletions close to the CRISPR-cleavage site, indicating
a loss-of-function mutation in the tumor suppressor genes.
For the oncogene KRAS, gain-of-function mutations induced
by CRISPR/Cas9 were observed, with genotypes similar to
that in the potent oncogenic mutations in human lung
tumors (Wang et al., 2017a). The inducible Cas9 pig models
offer an ideal platform for inducing tumor-associated somatic
mutations in situ to model human cancer. Apart from
this model, several other pig cancer models were produced,
including knockout of tumor suppressors P53 and RUNX3
by TALENs and CRISPR/Cas9 as the germline mutations,
respectively (Kang et al., 2016; Shen et al., 2017). The
carcinogenic phenotypes of these animals require further
investigation.

Immunodeficiency
An animal with severe combined immune deficiency (SCID)
not only mimics human diseases but also serves as a valuable
research tool for cancer, stem cell, cell therapy, and organ
transplantation. The interleukin-2 receptor gamma (IL2RG)
knockout pigs that were generated using conventional HR or
ZFN exhibited X-linked SCID, in which T and NK cells were

absent (Suzuki et al., 2012; Watanabe et al., 2013). In generation
of ZFN-mediated IL2RG knockout pigs, ZFN-encoding mRNA
was transfected into male porcine fibroblasts to target IL2RG. The
researchers obtained 1 ZFN-induced knockout cell line from 192
single cell-derived cell lines obtained by limiting dilution (0.5%
targeting efficiency) (Watanabe et al., 2013). In the allogeneic
bone marrow transplantation, the lymphoid lineage of the SCID
pigs was reconstituted by donor cells and survival time was
prolonged through restoration of immune function (Suzuki et al.,
2012). This SCID pig serves as an essential preclinical model to
evaluate stem cell therapy. In 2014, two laboratories separately
established RAG1/2 knockout pigs by using TALENs (Huang
et al., 2014; Lee et al., 2014). RAG knockout pigs exhibited an
SCID phenotype and lacked T and B cells. In one study, human
induced pluripotent cells were injected into these SCID pigs,
which developed teratomas that represent a wide range of human
tissues.

In another study, B cell-deficient pigs were generated by
applying CRISPR/Cas9 to target the IgM heavy chain gene, which
is crucial in B cell development and differentiation (Chen et al.,
2015). The cloned modified pigs manifested a depletion of both B
cells and antibody in their blood and thus can be used to model
human B cell deficiency. Moreover, the pig models can be further
engineered for large-scale production of therapeutic humanized
polyclonal antibodies for clinical use.

GENETICALLY MODIFIED PIGS FOR
XENOTRANSPLANTATION

Domestic pigs are the most suitable donors for
xenotransplantation to alleviate the growing shortage of
allogeneic donor organs for clinical transplantation to treat
patients with end-stage organ failure. Pigs can provide size-
matched organs at an affordable cost. However, the high immune
incompatibility between the donor and the recipient is the major
barrier for xenotransplantation. The immunological hurdles
to xenotransplantation include but not limited to hyperacute
rejection, delayed xenograft rejection, acute cellular rejection,
and chronic rejection (Yang and Sykes, 2007; Hryhorowicz et al.,
2017). Advances in genome editing enable genetic modifications
in pigs to reduce cross-species immune barrier and prevent
xenograft rejection.

The host normally destroys xenografts within minutes
or hours through hyperacute xenograft rejection, which
inevitably leads to failure. The main reason for hyperacute
rejection of xenograft is the presence of naturally occurring
antibodies in human plasma that recognizes the Galactose
α(1–3)Galactose (Galα(1–3)Gal) antigen on the surface of
porcine endothelial cells. Synthesis of Galα(1–3)Gal is catalyzed
by the enzyme a-1,3-galactosyltransferase (GGTA1), which
is present in pigs but absent in humans (Good et al., 1992;
Galili, 1993). As early as 2002, pigs with heterozygously
knockout GGTA1 were produced using HR (Dai et al.,
2002; Lai et al., 2002), and homozygous GGTA1 knockout
(GTKO) piglets were born by further screening of homozygous
knockout cells from the heterozygous pigs (Phelps et al., 2003;
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Kolber-Simonds et al., 2014). Heart xenotransplantation
from GTKO pigs into immune-suppressed baboons showed
a mean graft survival period of 99 days, and the longest
surviving graft functioned in the recipient for 179 days
(Kuwaki et al., 2005). Generation of GTKO pigs indicates
that hyperacute xenograft rejection has been overcome to a
great extent. A series of GTKO pigs with different genetic
backgrounds has been recently established by using genome
editing tools (Hauschild et al., 2011; Xin et al., 2013; Bao
et al., 2014; Feng et al., 2016; Petersen et al., 2016; Chuang
et al., 2017). Furthermore, other xenoreactive antigens present
in pigs but absent in humans have been identified; these
antigens include Neu5Gc antigen (N-glycolylneuraminic acid)
catalyzed by cytidine monophosphate-N-acetylneuraminic
acid hydroxylase (CMAH) and a glycan produced by β1,4-N-
acetylgalactosaminyltransferase (B4GALNT2) (Byrne et al., 2015,
2018). In addition, corresponding knockout pigs with double
(GGTA1/CMAH) and triple (GGTA1/CMAH/B4GALNT2) gene
inactivation were established (Lutz et al., 2013; Estrada et al.,
2015; Miyagawa et al., 2015; Gao et al., 2017). Based on the GTKO
pigs, numerous other genetic modifications were performed to
further overcome xenogeneic barriers; these approaches mainly
include individual or combined overexpression of transgenes,
such as CD46, CD55, CD59, CD39, thrombomodulin, heme
oxygenase 1, A20, HLA-E, and CD47, to prevent complement
activity, delayed xenograft rejection, or/and acute cellular
rejection (Fischer et al., 2016; Hryhorowicz et al., 2017; Laird
et al., 2017). These pigs were produced through transgenesis
and thus excluded in this review for a deep discussion. These
multi-modified pigs may exhibit further immune tolerance to
attenuate xenograft injury.

Besides the concern on pig-to-human immune barrier,
another notable issue in xenotransplant is the risk of cross-species
transmission of porcine endogenous retroviruses (PERVs), which
are dormant (inactive) endogenous retroviruses constituting an
integral part of the porcine genome; PERVs may be reactivated by
certain factors or changes in the environment and thus become
infectious (Patience et al., 1997; van der Laan et al., 2000).
PERVs in xenografts possess the potential to become pathogenic
and infectious in the recipient. Elimination of PERV in porcine
genome is difficult because they are integrated in multiple
locations in the genome. Yang et al. (2015) used CRISPR/Cas9 to
disrupt all 62 copies of the PERV pol gene in the immortal pig cell
line PK15; by using the PERV knockout cells, they demonstrated
a >1000-fold reduction in PERV transmission to human cells
(Yang et al., 2015). The same group has recently cloned PERV
inactivated pigs combining CRISPR/Cas9 and SCNT, in which all
25 copies of functional PERVs were inactivated (Niu et al., 2017).
The use of PERV knockout pigs addressed the safety concern
in clinical xenotransplantation. Moreover, the powerful ability of
the CRIPSR tool to target dozens of genomic sites simultaneously
provides infinite possibility to create animals harboring complex
modifications.

In this section, we present an emerging cutting-edge
technology, that is, growing of humanized organ in pigs or called
xeno-generation; this technology is greatly promoted with the
use of genome editing. Compared with directly modifying pig as

an organ donor, xeno-generation includes interspecies blastocyst
complementation combining donor (human) pluripotent stem
cells and organogenesis-disabled hosts (pigs), allowing the
enrichment of donor cells in a target organ to form a chimeric
animal harboring a humanized target organ, which can be
finally used for transplantation (Wu et al., 2016). In this regard,
organogenesis-disabled pigs can be simply realized by genome
editing when the gene controlling the development of the
target organ is identified. Matsunari et al. (2013) demonstrated
the feasibility of isogeneic organ generation using blastocyst
complementation in pigs. In which, the transgene Hes1 under
the Pdx1 promoter (Pdx1-Hes1) was used to suppress pancreatic
development, resulting in the creation of apancreatic pigs
compatible for pancreatogenesis derived from donor cells. Wu
et al. (2017a) reported on an interspecies chimerism that human
pluripotent stem cells could integrate and differentiate in a
pig embryo, constituting a big step toward xenogeneic organ
generation. Furthermore, this group disabled pancreatogenesis in
pigs through knockout of PDX1 using CRISPR/Cas9, creating a
suitable platform for realizing human organogenesis in pig (Wu
et al., 2017b).

CONCLUSIVE THOUGHTS

Comparison of Three Engineered
Nucleases
Engineered nuclease-based genome editing has revolutionized
the creation of genetically modified pigs, thus expanding
their utilization in diverse research fields. As the prelude
of next-generation genome editing technology, ZFN surprised
researchers for opening an effective approach to modify a target
genome site. The gene targeting efficiency of ZFN, although
limited, remains considerably higher than that of traditional HR.
TALEN quickly overtook ZFN technology when it first appeared
due to its higher efficiency in gene targeting, greater flexibility in
targeting specific sequences, and ease of construction. Moreover,
the emergence of CRISPR/Cas system represents a major leap for
remarkably efficient specific genetic modification in mammalian
cells and zygotes. In addition, the design and production
of gRNA are through a quick and simple procedure by the
in vitro transcription of synthetic DNA oligonucleotides or by
the cloning of oligonucleotides into expression vectors; this
process offers a clear advantage over the production of ZFN
and TALEN. However, few concerns emerged in CRISPR/Cas,
such as requirement of a PAM sequence adjacent to the 3′
end of the target sequence and a high frequency of off-target
cleavage. The requirement of a specific PAM sequence often
restricts the range of targetable sequences. The commonly
used Cas9 protein derived from S. pyogenes utilizes NGG as
the PAM sequence, but recent exploitation of Cas9 orthologs
from other bacterial species or redesigned/evolved Cas9 can
recognize different PAM sequences, thereby increasing flexibility
in genome editing. A study reported on the fusion of Cas9 with a
programmable DNA-binding domain at an improved precision
and increased targeting range. The Cas9 fusion protein was
equally efficient for a range of PAMs, including NAG, NGA,
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NGC, and NGG (Bolukbasi et al., 2015). Another study used
phage-assisted continuous evolution to generate an expanded
PAM SpCas9 variant that can recognize a broad range of PAM
sequences, including NG, GAA, and GAT. Moreover, the SpCas9
variant demonstrated a considerably greater DNA specificity than
the original SpCas9 (Hu et al., 2018). The current Cas9 family
expands the DNA targeting scope of CRISPR systems and is
suitable at nearly any genomic locus. With regard to off-target,
a typical TALEN target sequence usually covers 30 nt, which
is unique within the genome, whereas CRISPR/Cas recognizes
20 nt target and can allow multiple mismatches in the guide
sequence, thereby increasing the likelihood of off-target effects
(Fu et al., 2013; Hsu et al., 2013). A possible solution is the
use of Cas-nickases guided by a pair of gRNAs targeting the
opposite strands for cooperative genome editing, as the longer
target site increases the on-target precision (Mali et al., 2013;
Ran et al., 2013). In addition, various strategies have been
developed to improve the targeting specificity; these strategies
include optimized design of gRNA, Cas9 enzyme engineering,
and off-target detection assays (Tycko et al., 2016). Notably,
two recent engineered enzymes (eSpCas9 and SpCas9-HF) have
elegantly increased SpCas9 specificity by reducing tolerance for
mismatched DNA binding (Kleinstiver et al., 2016; Slaymaker
et al., 2016).

Approaches in Pig Genome Editing:
SCNT Versus Embryo Injections
Somatic cell nuclear transfer or cloning involves screening of
somatic cells (typically fetal fibroblasts), which carry the intended
genetic alterations, and the nuclear transfer of the modified
cells in a cloning process. Engineered nuclease can be easily
applied to create either NHEJ- or HDR-induced mutations
within a donor cell in vitro through a pre-screening or selection
strategy, which enables enrichment of cells carrying the desired
mutation (Zhou et al., 2015). An alternative to SCNT is the
method involving direct gene editing in single-cell embryos.
The mRNA of editors (for knockout) or together with donor
DNA (for knockin) can be microinjected into the cytoplasm
or pronucleus of zygotes, which are then transferred into
the synchronized surrogates to generate edited animals. This
procedure is vastly simple compared with SCNT (Lillico et al.,
2013).

The major advantage of SCNT over direct embryo injection
is the predictable genotype of the founder pigs. By contrast,
pigs generated via embryo injection usually contain mosaic
genotypes with multiple modification types in different cells,
and several cycles of breeding are usually needed to produce
homozygously modified pigs with identical genotype. In
some situations, the chimeric founder includes intact WT
germ cells and thus cannot generate genetically modified
progeny. However, SCNT of genome-edited cells suffer from
an impaired embryonic development probably due to the off-
target effect or other unidentified toxicity of the genome editing
nucleases. Therefore, genome-edited somatic cells usually have
a relatively lower cloning efficiency than WT and randomly
integrated transgenic cells. Taking into account the aspects

mentioned above, embryos injection is currently the preferable
ways for production of CRISPR/Cas9-edited pigs in many
laboratories. The extremely high editing activity and low
toxicity to embryos during microinjection of CRISPR/Cas9
mRNA cocktail can reduce mosaicism and even generate
homozygously knockout founder pigs with identical mutation
(Whitworth et al., 2017). However, knockin manipulation
remains a limitation because few knockin pigs generated
through zygote injection have been reported to date (Peng
et al., 2015; Zhou et al., 2016). The field still awaits for the
optimal strategies that enhance HDR, such as drug treatment,
optimal design of donor, and new generation of editing
tools.

Other Emerging Genome Editing
Nucleases
The number of reported genetically unique large animals
dramatically increases as a result of the extensive use of
genome editing tools. Moreover, the types of endonucleases
used in genome editing are rapidly increasing. In the Cas9
system, many Cas9-like nucleases were developed given the
natural diversity of bacterial CRISPR systems. Cpf1, a putative
Class 2 CRISPR effector, mediates target DNA editing with
distinct features from Cas9 (Zetsche et al., 2015). In contrast
to Cas9 which generates blunt ends, Cpf1 generates a 5-
nt staggered cut with a 5′ overhang, which is particularly
advantageous in facilitating a NHEJ-based gene insertion
(knockin) into a genome. Recently, the CRSIPR/Cpf1-mediated
dystrophin knock-out pigs, and phospholamban knock-in pigs
with a 3-nt deletion in the presence of a single-stranded
oligo donor, have been established as a Duchenne muscular
dystrophy (DMD) and dilated cardiomyopathy (DCM) models,
respectively. In this study, the CRSIPR/Cpf1 induced 41.8%
knockout rate and 2% knockin rate in the selected fibroblast
colonies (Wu et al., 2018). A hybrid enzyme combining the
Cas9-nickase and PmCDA1, an activation-induced cytidine
deaminase could perform targeted nucleotide substitution (C-
U) without the use of template DNA, providing a novel route
for point mutation (Nishida et al., 2016). A CRISPR system
(Cas13a) that targets RNA has also been developed recently
(Abudayyeh et al., 2017). In addition to the CRISPR system,
Xu et al. (2016) designed a structure-guided endonuclease
(SGN) consisting of flap endonuclease-1 that recognizes the
3′ flap structure and the cleavage domain of Fok I, which
cleaves DNA strands. A guide DNA complementary to the
target with an unpaired 3′ end is needed to form a 3′ flap
structure. SGN recognizes and cleaves the target DNA on the
basis of the 3′ flap structure of a double-flap complex formed
between the target and the guide DNA. The SGN offers a
strategy for a structure-based recognition, capture, and editing
of any desired target DNA, thereby expanding the toolkit for
genetic modification (Xu et al., 2016). Taken together, these
systems are expected to substantially broaden the application of
artificial engineered nucleases and facilitate the establishment of
excellent pig models with desirable genotypes in agriculture and
biomedicine.
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