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Abstract

Background: In quantitative biology, mathematical models are used to describe and analyze biological processes.
The parameters of these models are usually unknown and need to be estimated from experimental data using
statistical methods. In particular, Markov chain Monte Carlo (MCMC) methods have become increasingly popular as
they allow for a rigorous analysis of parameter and prediction uncertainties without the need for assuming parameter
identifiability or removing non-identifiable parameters. A broad spectrum of MCMC algorithms have been proposed,
including single- and multi-chain approaches. However, selecting and tuning sampling algorithms suited for a given
problem remains challenging and a comprehensive comparison of different methods is so far not available.

Results: We present the results of a thorough benchmarking of state-of-the-art single- and multi-chain sampling
methods, including Adaptive Metropolis, Delayed Rejection Adaptive Metropolis, Metropolis adjusted Langevin
algorithm, Parallel Tempering and Parallel Hierarchical Sampling. Different initialization and adaptation schemes are
considered. To ensure a comprehensive and fair comparison, we consider problems with a range of features such as
bifurcations, periodical orbits, multistability of steady-state solutions and chaotic regimes. These problem properties
give rise to various posterior distributions including uni- and multi-modal distributions and non-normally distributed
mode tails. For an objective comparison, we developed a pipeline for the semi-automatic comparison of sampling
results.

Conclusion: The comparison of MCMC algorithms, initialization and adaptation schemes revealed that overall
multi-chain algorithms perform better than single-chain algorithms. In some cases this performance can be further
increased by using a preceding multi-start local optimization scheme. These results can inform the selection of
sampling methods and the benchmark collection can serve for the evaluation of new algorithms. Furthermore, our
results confirm the need to address exploration quality of MCMC chains before applying the commonly used quality
measure of effective sample size to prevent false analysis conclusions.
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Background
In the field of computational systems biology, mechanis-
tic models are developed to explain experimental data,
to gain a quantitative understanding of processes and to
predict the process dynamics under new experimental
conditions [1–3]. The parameters of these mechanistic
models are typically unknown and need to be estimated
from available experimental data. The parameter estima-
tion provides insights into the biological processes and its
quantitative properties.
The parameters of biological processes are often esti-

mated using frequentist and Bayesian approaches [4, 5].
Frequentist approaches usually exploit optimization
methods to determine the maximum likelihood estimate
and its uncertainty, e.g., using bootstrapping or profile
likelihoods [6–8]. Bayesian approaches often rely on the
sampling of the parameter posterior distribution using
MCMC algorithms [9–11]. Both, optimization and sam-
pling, are challenging for a wide range of applications
encountered in computational systems biology [5, 12].
Likelihoods and posterior distributions are frequently
multi-modal and possess pronounced tails (see, e.g.,
[4, 5]), and many applications problems possess structural
and practical non-identifiabilities (see, e.g., [13–16] and
references therein). This is, among others, due to scares,
noise-corrupted experimental data and a features of the
underlying dynamical systems, such as bistability [17, 18],
oscillation [19–21] and chaos [22–24].
For optimization, a large collections of benchmark prob-

lems were established to facilitate a fair comparison of
methods (see, e.g. [25]). Furthermore, optimization tool-
boxes are available and provide access to a large number of
different optimization schemes [26, 27]. The availability of
both, benchmark problems and toolboxes, is more prob-
lematic for sampling methods. To the best of our knowl-
edge, there is no collection of benchmarking problems
for sampling methods featuring dynamical systems. For
MATLAB, which is frequently used for dynamical model-
ing in systems biology, a selection of single-chain methods
is implemented in the DRAM toolbox [28]. Standard
implementations for state-of-the-art multi-chainmethods
do however not seem to be publicly available.
In this manuscript, we address the aforementioned

needs by (i) providing generic MATLAB implementa-
tions for several MCMC algorithms and (ii) compiling a
collection of benchmark problems. Our code provides
implementations and interfaces to several single- and
multi-chain methods, including Adaptive - Metropolis
[29–32], Delayed Rejection Adaptive Metropolis [28], Par-
allel Tempering [32–35], Parallel Hierarchical Sampling
[36] and Metropolis - adjusted Langevin algorithm [37]
with or without a preceding multi-start optimization
[12]. Furthermore, different initialization and adapta-
tion schemes are provided. The sampling methods are

evaluated on a collection of benchmark problems –
implementation provided in the Additional file 1 – fea-
turing dynamical systems with different properties such
as periodic attractors, bistability, saddle-node, Hopf and
period-doubling bifurcations as well as chaotic parameter
regimes and non-identifiabilities. The benchmark prob-
lems possess posterior distributions with different proper-
ties i.e., uni- and multi-modal, heavy tails and non-linear
dependency structures of parameters. This collection of
features which are commonly encountered in systems
biology facilitates the evaluation of the sampling methods
under realistic, challenging conditions. To ensure realism
of the evaluations, knowledge about the posterior distri-
bution, which is not available in practice, is not employed
for selection, adaptation or tuning of methods.
To ensure a rigorous and efficient evaluation of sam-

pling methods, we developed a semi-automatic analysis
pipeline. This enabled us to evaluate > 16, 000 MCMC
runs covering a wide spectrum of sampling methods and
benchmarks. This comprehensive assessment required
roughly 300,000 CPU hours. The study among others
revealed the importance of using multi-chain methods
and appropriate adaptation schemes. In addition, our
results for the benchmark problems indicated a strong
dependence of the sampling performance on the proper-
ties of the underlying dynamical systems.

Methods
In this section, we introduce parameter estimation, sam-
pling methods along with initialization and adaptation
schemes. In addition, the analysis pipeline and the perfor-
mance evaluation criteria are described.

Mechanistic modelling and parameter estimation
We focus on ordinary differential equation (ODE) mod-
els for the mechanistic description of biological processes.
ODE models are used to study a variety of biological pro-
cesses, including gene regulation, signal transduction and
pharmacokinetics [11, 38]. Mathematically, ODE models
can be defined as

ẋ = f (x, t, η), x(t0) = x0(η) (1)

with time t ∈[ t0, tmax], state vector x(t) ∈ R
nx and a

parameter vector η ∈ R
nη . The vector field f (x, t, η) and

the initial conditions x0(η) define the temporal evolution
of the state variables as functions of η. For biological pro-
cesses, experimental limitations usually prevent the direct
measurement of the state vector x(t). Instead, measure-
ments provide information about the observable vector
y(t). The observables depend on the state of the pro-
cess, y = h(x, t, η), in which h denotes the output map
R
nx ×R×R

nη → R
ny . An exemplification of f (x, t, η) can

be found in “Benchmark problems” section for each of the
benchmark problems.
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The measurement of the observables y yields noise
corrupted experimental data D = {(tk , ỹk)}ntk=1. In the
following, we assume independent, additive normally dis-
tributed measurement noise

ỹik = yi(tk) + εik , εik ∼ N
(
0, σ 2

i
)

(2)

in which σ denotes the standard deviation of the mea-
surement noise and with i = 1, . . . , ny. An example for
noisy measurement data is discussed and visualized in the
“Results”, “Application Of sampling methods to mRNA
transcription model” subsection.
The standard deviations σ are usually unknown and part

of the parameter vector, i.e., θ = (η, σ ). The likelihood of
observing the dataD given the parameters θ is

p(D|θ) =
ny∏

i=1

nt∏

k=1

1
σi

√
2π

exp
(

− (ỹik − yi(tk))2

2σ 2
i

)

, (3)

in which y(tk) depends implicitly on η.
In Bayesian parameter estimation the posterior

p(θ |D) = p(D|θ)p(θ)

p(D)
(4)

is considered, in which p(θ) denotes the prior and p(D)

denotes the marginal probability (being a normalization
constant).

Sampling methods
The posterior p(θ |D) encodes the available informa-
tion about the parameters θ given the experimental data
D and the prior information p(θ) [39]. Accordingly, it
also encodes information about parameter and predic-
tion uncertainties. This information can be assessed by
sampling from p(θ |D) using MCMC algorithms.
A well-known MCMC algorithm is the Metropolis-

Hastings (MH) algorithm [40, 41]. The MH algorithm
samples from the posterior via a weighted random walk.
Parameter candidates are drawn from a proposal distri-
bution and accepted or rejected based on the ratio of
the posterior at the parameter candidate and the current
parameter. The choice of the proposal distribution is a
design parameter. In practice the distribution is frequently
chosen to be symmetric, e.g., a normal distribution, and
centered at the current point.
The MH algorithm has several shortcomings, includ-

ing the need for manual tuning of the proposal covariance
and high autocorrelation [39]. Accordingly, a large num-
ber of extensions have been developed. In the following,
we introduce the three single-chain and the two multi-
chain methods employed in this study. Figure 1 highlights

the differences between the sampling methods employed
in this study using a pseudo-code representation.

Adaptive Metropolis (AM): The AM algorithm is an
extension of the standard MH algorithm. Instead of using
a fixed proposal distribution which is tuned manually, the
distribution is updated based on the already available sam-
ples. In particular, for posteriors with high correlation,
this improves sampling efficiency by aligning the pro-
posal with the posterior distribution [31]. In addition to
the correlation structure, the scale of the proposal is also
adapted. A commonly applied scaling scheme is based on
the dimension of the problem [28, 29] while other possi-
ble schemes are based on the chain acceptance rate [34].
These scaling schemes are in the following indicated by
‘dim’ and ‘acc’, respectively.

Delayed Rejection Adaptive Metropolis (DRAM): To
further decrease the in-chain auto-correlation, the AM
algorithm has been combined with a delayed rejection
method, yielding the DRAM algorithm [28]. When a can-
didate parameter is rejected, the algorithm tries to find a
new point using the information about the rejected point.
This is repeated multiple times until a certain number
of tries is reached or a point is accepted. We employ
the implementation provided in [28]. This implementa-
tion is exclusively based on the previously mentioned ‘dim’
adaption scheme.

Metropolis-adjusted Langevin Algorithm (MALA):
Both AM and DRAM work best if the local and the
global shape of the posterior are similar. Otherwise, the
performance of the algorithm suffers, i.e. the in-chain
auto-correlation increases. To circumvent this problem,
the MALA makes use of the gradient, ∇θp(θ |D), and
Fisher Information Matrix [37] of the estimation problem
at the current point in parameter space. This information
is used to construct a proposal which is adapted to the
local posterior shape [37, 42]. Gradient and Fisher Infor-
mation Matrix can be computed using forward sensitivity
equations [43].

Parallel Tempering (PT): All of the algorithms, AM,
DRAM and MALA, discussed so far are single-chain
algorithms which exploit local posterior properties to
tune their global movement. This can make transitions
between different posterior modes unlikely if they are sep-
arated by areas of low probability density. To address the
issue, PT algorithms have been introduced. These algo-
rithm sample from multiple tempered versions of the
posterior p(D|θ)

1
βl p(θ), βl ≥ 1, l = 1, . . . , L, at the

same time [33–35]. The tempered posteriors are flattened
out in comparison to the posterior, rendering transitions
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Fig. 1 Pseudo-code for the MCMC methods used in this study. The pseudo-code highlights differences between MCMCmethods using comments
indicated by “//” and the color-coded name of the relevant algorithm either AM, DRAM, PT, PHS or MALA
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between posterior modes more likely. Allowing the tem-
pered chains to exchange their position by chance enables
the untempered chain, which samples from the posterior,
to ‘jump’. For this study, we have implemented the PT algo-
rithm as formulated by Lacki et al. [32] using AM with
‘acc’ adaption scheme or MALA for each tempered chain.
We considered different initial numbers L0 of tempered

chains, adaptive L ≤ L0 or fixed numbers L = L0 and two
different swapping strategies [32]:

• Swaps between all adjacent chains (aa)
• Swaps of chains with equal energy (ee)

are employed.

Parallel Hierarchical Sampling (PHS): An alternative
to PT is PHS, which employs several chains sampling from
the posterior [36]. Similar to PT, the idea is to start multi-
ple auxiliary chains at different points in parameter space
and to swap the main chain with a randomly picked one
in each iteration. The main differences between PT and
PHS are that all chains of PHS are sampling from the same
distribution and that a swap between main and auxiliary
chains is always accepted in PHS. The use of multiple
chains can improve the mixing as different chains can
employ different proposal distributions [5]. Here we apply
AM(‘acc’) for each of the auxiliary chains.

Initialization
The performance of sampling methods can depend on
their initialization [39]. Here we consider two alternative

initialization schemes: Initialization using samples from
the prior distribution; and initialization using multi-start
local optimization results. The methods are illustrated in
Fig. 2.

Sampling From Prior Distribution (RND): In many
applications, sampling is initialized with parameters
drawn from the prior distribution. As the prior distri-
butions are often available in closed-form, this is usually
straightforward and computationally inexpensive.

Multi-start Local Optimization (MS): Sampling from
the prior distribution frequently yields starting points
with low posterior probability. Sampling methods started
at these points can require a large number of iterations
to reach a parameter regime with high posterior probabil-
ities. To address this problem, initialization using multi-
start local optimization has been proposed [5]. The results
of multi-start local optimization provide a map of the
local optima of the posterior distribution where the fre-
quency of occurrence of a local optimum corresponds to
the size of their basin of attraction. Single-chain meth-
ods are initialized at the local optima with the highest
posterior probability. For multi-chain methods, we first
filter the optimization results based on the difference to
the best optimization result. From the remaining results
initial conditions are sampled for each of the individual
chains (please refer to the Additional file 1: Section 1 for
further details of the initializations).

Fig. 2 Graphical representation of initialization schemes. a Drawn from the prior distribution. b Drawn from the best results of a multi-start local
optimization
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Run repetitions
We benchmark five state-of-the-art sampling approaches
for multiple settings of tuning parameters in challenging,
yet low dimensional benchmark problems. In the follow-
ing, these combinations – of which we consider 23 –
are denoted as scenarios. To obtain reliable evaluation
results, we perform 100 runs for each scenario thus per-
forming 2300 runs per benchmark problem (details about
the benchmark problems can be found below). Each run
comprises 106 iterations of a single- or multiple chains
depending on the used algorithm.

Analysis pipeline
The sampling results for all benchmark problems and
sampling strategies are analyzed using a combination of
four measures: burn-in time, global exploration quality,
effective sample size and computation time demand in
seconds. The analysis pipeline is illustrated in Fig. 3.
The pipeline exploits a combination of heuristics and
statistical tests. General details are covered in the fol-
lowing while some further details regarding the statistical
tests and heuristics can be found in Additional file 1:
Sections 2 and 3.

Burn-In (BI): Often the first part of a Markov chain is
strongly influenced by the starting point and, for adap-
tive methods, by the initial choice of the adaptation
parameters [42]. While these effects will vanish asymp-
totically, for finite chain lengths there might be a large
effect. To reduce these effects, the burn-in phase, in which
the statistical sample mean changes substantially, is often
discarded [44]. We denote the last of those iterations as
nBI and only the shortened chains with iteration num-
bers nBI + 1 to 106 are considered for further analysis.
The BI is typically estimated by a visual check and val-
idated using the Geweke test [45], which is described
below and illustrated in Fig. 4a. To circumvent a manual
visual inspection, we developed an automatic approach
for burn-in calculation using a sequence of Geweke tests
taking Bonferroni-Holm adaptation [46] into account (see
Additional file 1: Section 2 for further details).

Exploration Quality (EQ): An important quality mea-
sure for anMCMC algorithm is the fraction of runs which
provide a representative sample from the posterior distri-
bution for a given finite number of iterations. We denote
this fraction as EQ.
While all MCMC algorithms considered in this

manuscript converge asymptotically under mild condi-
tions, for a finite number of samples, individual modes
or tails of the posterior might be underrepresented in the
chain. This problem is often adressed with statistical tests
as Geweke [45] and the Gelman-Rubin-Brooks diagnos-
tic [47]. While the Geweke test considers differences in
the means of two signals (usually the beginning and the

Fig. 3 Analysis pipeline for the quantitative comparison of sampling
methods. aMultiple MCMC runs per scenario. b Diversity of raw
results. c Removal of burn-in. d Similarity grouping of runs across
scenarios of the same benchmark problem. Each frame color belongs
to similar chains. e Identification of groups with good exploration
quality by comparing all groups
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Fig. 4 Visual representation of statistical chain diagnosis. a Geweke test. b Gelman-Rubin-Brooks test

end of a MCMC chain), the Gelman-Rubin-Brooks diag-
nostic focuses on within-chain and between-chain vari-
ance comparison (see Fig. 4b for a visual representation).
The convergence diagnostics consider selected summary
statistics, mostly the sample means, and might miss dif-
ferences which are easy to spot (see, e.g. the accepted
cases in Fig. 4 (right panel) and the Additional file 1:
Sections 2–3 for further details about the tests). Unfor-
tunately, convergence diagnostics provide only necessary
conditions for convergence and do not necessarily reveal
problems. In particular for multi-modal posterior distri-
butions, MCMC methods sampling only from one mode
pass simple convergence tests [39]. For this reason, the
assessment of chain convergence is still an active field of
research.
In this manuscript, we determine the EQ by first

grouping individual MCMC runs of the same bench-
mark problem and then identify groups with members
which explored the relevant parameter space well. The
inspection of groups replaces the inspection of individ-
ual chains, resulting in improved efficiency and decrease
of subjective judgment regarding chain convergence. The
grouping is based on a pairwise distancemeasure between
chains using the afore-described multivariate Gelman-
Rubin-Brooks and Geweke diagnostics [45, 47]. If both
tests are passed, the corresponding runs are assumed to be
similar. Each time two runs are similar they form a group.
If one of themembers of a group is classified as similar to a
run not yet included in the group the latter run is assigned

to the entire group as well. For further details we refer to
the Additional file 1: Section 3.
We compare 100 runs per scenario across algorithms

(and tunings) thus evaluating 2300 runs per benchmark
problem. Groups smaller than 115(5%) runs are neglected
from further analysis. For each of the remaining groups
we assess whether the posterior is explored by the group
members by comparing the groups with each other.
Therefore, we evaluate for each group if (i) all regions of
high posterior probability and (ii) tails, found in the other
groups, have been covered. In this way, we can tell if a
group is not covering relevant parameter regimes found
by others. This facilitates the selection of the group(s) with
the best exploration properties (across algorithms). How-
ever, it can still not be ensured that the chains within
the best exploring group have indeed explored the entire
relevant parameter space properly.

Effective Sample Size (ESS): For the groups with well
exploring members we compute the ESS [37, 42, 48]. The
ESS accounts for the in-chain autocorrelation and is an
important measure for the quality of the posterior approx-
imation for individual chains. As the ESS is overestimated
if chains sample only from individual modes of the pos-
terior distribution, we only considered chains assigned to
groups which explore the posterior well. For these chains,
autocorrelation for individual parameters θi is determined
using Sokal’s adaptive truncated periodogram estimator
[28, 49] which is implemented in the DRAM toolbox [28].
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As this is a univariate measure, we take the maximum of
the autocorrelation across all θi to determine the ESS and
to thin the chain.

Computation Time: The different sampling methods
demand different computational cost. MALA requires
gradient information while multi-chain methods require
multiple evaluations of the (tempered) posterior proba-
bility in each iteration. To account for these differences,
we evaluate the ESS per central processing unit (CPU)
second, which provides a comparable measure for com-
putational efficiency. Furthermore, we consider the effi-
ciency reduction caused by runs which lack proper explo-
ration. Therefore, we multiply the ESS/s value of each
run with the EQ of the scenario. This normalization is
chosen because bad runs are sometimes much faster in
execution than well behaving runs, e.g. a run only propos-
ing parameter values outside the parameter bounds is
extremely swift since neither cost function nor gradients
are calculated.

Benchmark problems
For the evaluation of the sampling algorithms, we estab-
lished six benchmark problems for ODE constrained
parameter estimation. Each benchmark problem is related
to a biologically motivated ODE model. The estima-
tion problems considered are low dimensional, yet the
ODE models possess properties such as structural non-
identifiabilities, bifurcations, limit-cycle oscillations and
chaotic behavior. This yields posterior distributions with
pronounced tails, multi-modalities and rims which makes
them difficult to sample. These are common scenarios for
many application problems in systems biology [4, 5, 13–24]
which are difficult to identify prior to the parameter esti-
mation. A visual summary of the benchmark problems is
depicted within Fig. 5 and described in the following.

(M1) mRNA Transfection: This model describes the
transfection of cells with GFP mRNA, its translation and
degradation [50]. The observable is the protein concentra-
tion. The posterior of the estimation problem is bimodal
as the exchange of the degradation rates of mRNA and
protein results in the same dynamics. This ODE model
is studied for experimental data (M1a) and for artificial
data (M1b).

(M2) Bistable Switch: This model describes a bistable
switch [51], a frequent motif in gene regulation [52], neu-
ronal science [53] and population dynamics [54]. Depend-
ing on the initial condition, for given parameters, the state
orbit converges to one of two steady states. This leads to
a steep rim in the posterior. In addition, (M2) possesses
a saddle-node bifurcation resulting in the absence of the
steep rim in certain parameter regimes.

(M3) Saturated Growth: This model describes the
growth of a population in an environment with limited
resources. It is widely used to model population dynam-
ics, i.e. immigration-death processes [55], and a variety of
extensions are available. Already for the simplest model,
the parameters are strongly correlated and the posterior
distribution possesses ‘banana’ shaped tails if the mea-
surement is stopped before the steady state is reached [56].
This effect can be enhanced by decreasing the maximum
measurement time tmax when creating data.

(M4) Biochemical SystemWithHopf Bifurcation: This
model describes a simple biochemical reaction network
[57] with a supercritical Hopf bifurcation [58–60] as found
in many biological applications [54, 61, 62]. Depending on
the parameter values, the orbit of the system approaches a
stable limit cycle or a stable fixed point. The posterior dis-
tribution for this problem is multi-modal but most of the
probability mass is contained in the main mode.

(M5) Driven Van Der Pol Oscillator: This model is an
extension of the Van der Pol oscillator by an oscillat-
ing input [63–66]. The input causes deterministic chaos
by creating a strange attractor. Chaotic behavior can be
observed in biological applications e.g. in cardiovascu-
lar models with driving pacemaker compartment [61, 67].
The posterior distribution possesses a large number of
modes of different sizes and masses. This effect can be
increased by creating data with larger tmax. For chaotic
systems sampling is known to be very challenging [68].

(M6) Lorenz Attractor: The Lorenz attractor provides
an idealized description of a hydrodynamic process and
can be interpreted as chemical reaction network [69].
Similar to (M5), this system is chaotic and thus possesses a
multi-modal posterior distribution. However, its topology
strongly differs from the one of (M5) and the chaotic
behavior does not arise from a driving term.

Priors & data generation
We consider benchmark settings with measured data
(M1a) or simulated data (M1b-M6). The simulated data is
obtained by simulating themodels for the parameters θ true
(Table 1) and adding normally distributed measurement
noise. The prior distributions are uniform in the inter-
val θ ∈[ θmin, θmax] and the data is created using an ODE
solution at θ true, absolute, normally distributed noise and
equidistantly spaced points in time. Information about
observables is provided in Fig. 5.

Implementation
We implemented the sampling algorithms and the bench-
mark problems in the Parameter EStimation TOolbox



Ballnus et al. BMC Systems Biology  (2017) 11:63 Page 9 of 18

Fig. 5 Visual summary of benchmark problems. Left ODE model and its properties, e.g. bifurcations. Right Illustration of system dynamics using
posterior cuts and orbits

(PESTO)(please refer to the “Availability of data andmate-
rials” section for a GitHub reference). This implemen-
tation in provided in Additional file 2. PESTO comes
with a detailed documentation of all functionalities and
the respective methods. For numerical simulation and
sensitivity calculation we employed the Advanced MAT-
LAB Interface for CVODES and IDAS (AMICI) [7, 70].
Both toolboxes are developed and available via GitHub
and we provide the code used for this study in Addi-
tional file 2. The entire code basis could be transfered
to other programming languages similar to MATLAB,
such as Python, Octave or Julia, without major changes.
A re-implementation of the tool in R would also be

conceptually possible and allow for the comparison with
other packages, e.g. [71].

Results
In the following, we present the properties and the perfor-
mance of sampling methods for an application problem as
well as for the proposed benchmark problems.

Application of sampling methods to mRNA transcription
model
To illustrate the behavior and the properties of the dif-
ferent sampling methods, we consider the process of
mRNA transcription ((M1), Fig. 6a). This process has



Ballnus et al. BMC Systems Biology  (2017) 11:63 Page 10 of 18

Table 1 An overview on which priors were used and on how the
data was created

θ θmin θmax θ true

(M1a) log10(t0) −2 1 -

log10(kTLm0) −5 5 -

log10(β) −5 5 -

nt = 150 log10(δ) −5 5 -

t ∈ [2, 27] log10(σ ) −2 2 -

(M1b) log10(t0) −2 1 log10(2)

log10(kTLm0) −5 5 log10(5)

log10(β) −5 5 log10(0.8)

nt = 51 log10(δ) −5 5 log10(0.2)

t ∈ [0, 10] log10(σ ) −2 2 −1

(M2) k1 2 20 8

k2 0 5 1

k3 0 5 1

k4 0 5 1

x0,1 −3 3 2

x0,2 −3 3 0.25

nt = 101 σ 0
1 10−3 1 0.3

t ∈ [0, 200] σ 0
2 10−3 1 0.3

(M3) b1 0 5 1

nt = 101 b2 0 5 0.2

t ∈ [0, 2.5] σ1 10−3 102 0.03

(M4) κ 1 5 3.8

k2 0.8 1.2 1

k3 0.8 1.2 1

k4 0.8 1.2 1

k5 0.8 1.2 1

x0,1 0 2 1

x0,2 0 2 1

x0,3 0 2 1

σ1 10−2 2 0.75

nt = 101 σ2 10−2 2 0.32

t ∈ [0, 200] σ3 10−2 2 0.46

(M5) a 2 8 5

d 2 8 5

ω 2 8 2.464

x0,1 −1 3 0

x0,2 −1 3 0

x0,3 −1 3 1

σ1 10−2 2 0.2

Table 1 An overview on which priors were used and on how the
data was created (Continued)

nt = 101 σ2 10−2 2 0.8

t ∈ [0, 200] σ3 10−2 2 0.2

(M6) α 0 20 10

β 0 10 8
3

ρ 10 30 28

x0,1 0 35 26.61

x0,2 −10 10 −2.74

x0,3 −5 5 0.95

σ1 10−4 102 1

nt = 101 σ2 10−4 102 1

t ∈ [0, 200] σ3 10−4 102 1

been modeled and experimentally assessed by Leonhardt
et al. [50]. The ODE model possesses two state vari-
ables and five parameters. Structural analysis using the
MATLAB toolbox GenSSI [15] indicated one structural
non-identifiability but did not reveal its nature. Leon-
hardt et al. [50] derived the analytical solution of the
ODE model and showed that the parameters β and δ

can be interchanged without altering the output y. This
implied that the parameters are locally but not globally
structurally identifiable, giving rise to a bimodal posterior
distribution (Fig. 6b, c). As the analytical solution is in
general not available, we disregard the information about
the interchangeability of β and δ for the initial assessment.
We sampled the posterior distribution using several

single- and multi-chain methods as well as settings and
initialization schemes. The analysis of the sampling results
revealed that many methods fail to sample from both
modes of the posterior within 106 iterations (see Fig. 6d, e).
Accordingly, the exploration quality of many methods is
low (Fig. 6f). We expected that the single-chain meth-
ods, AM, DRAM and MALA, always sample close to
the starting point, which was indeed the case. Interest-
ingly, we found that PHS often succeeded in moving
its chain between both modes but failed to explore the
modes tails properly. Merely PT, either MS or RND ini-
tialized, captured both modes in most runs (Fig. 6f). Thus,
in (M1a) the conditional ESS – the ESS for the chains
sampling both modes and the tails – was the highest
for PT.
For most ODE constrained parameter estimation prob-

lems, information about the identifiability properties of
parameters will not be available prior to the sampling.
This is unfortunate as the sampling performance of all
methods could be improved by exploiting such additional
information. Models with parameter interchangeabilities
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Fig. 6 Results from benchmark problem (M1a). a Sketch of the translation process. b A bivariate scatter plot of a chain which explored both modes.
c The corresponding trajectories of the sampled parameter points of both modes. d A representative chain which was not able to cover both
modes. e The corresponding trajectories of the sample of one mode. f Effective sample sizes of chains which explored both modes. For several
methods, no chain explored both modes, implying an effective sample size of zero



Ballnus et al. BMC Systems Biology  (2017) 11:63 Page 12 of 18

such as (M1) are well studied in the context of mix-
ture models. Tailored methods for such problems include
post-processing methods or a random permutation sam-
pler [72, 73]. For this simple ODE model, we evaluated
the benefit of applying a post-processing strategy and
found that having access to information about number
and location of the posterior modes improved the sam-
pling performance significantly for all sampling methods.
(see Additional file 1: Section 4).
This application example highlights challenges arising

from missing information about parameter identifiability
and limitations of available sampling methods. Some of
these limitations were not encountered in themanuscripts
introducing the methods (e.g. [32] or [36]) as the study
focused on different aspects or considered well-suited
problems. The analysis of (M1a) demonstrates that even
simple linear ODE models can give rise to posterior land-
scapes that are difficult to sample. This motivates the
analysis of other (small-scale) benchmark problems.

Benchmarking of algorithms using simulated data
To facilitate a comprehensive evaluation of sampling
methods, we considered the aforementioned benchmark
problems (M1-6). These benchmark problems possess a
wide range of different properties regarding the under-
lying dynamical system (e.g. mono- and bistable) as well
as the posterior distribution (e.g. unimodal/multi-modal
or with/without pronounced tails). This renders the col-
lection presented suitable for the in-depth evaluation and
will facilitate the derivation of guidelines for the a priori
selection of the appropriate sampling scheme.
We sampled the posterior distributions of all bench-

mark problems using the algorithms introduced in the
“Methods” section. Different tuning parameters and ini-
tialization schemes were employed to study their influ-
ence on the sampling efficiency. For each benchmark
problem we performed 100 independent runs with 106
iterations. The large amount of sampling results was ana-
lyzed using the analysis pipeline illustrated in Fig. 3. The
results for the individual problems (EQ and ESS) and
some information about the memory usage of the dif-
ferent algorithms are provided in the Additional file 1:
Figures S2, S4–S9.

Influence of posterior properties on sampling performance
Given the sampling results, we asked the question how EQ
depends on the benchmark problem and its properties.
We found that the size of the groups of runs identified by
the analysis pipeline (Fig. 7a) and the EQ (Fig. 7b) varies
strongly between the benchmark problems. For problems
with uni-modal (M2-3) and weakly multi-modal (M4)
posteriors, the average EQ of the sampling methods was
higher than 50%. For the problems with bimodal poste-
riors (M1a,b), 79% of the runs sampled from one of the

modes and failed to explore the posterior, while 21% of
the chains sampled from both modes and achieved a good
exploration. For posteriors with strong multi-modalities
(M5-6), all chains appear to be different and no large
groups can be identified (Fig. 4a).
In terms of the dynamical properties of the under-

lying dynamical system, our results for the benchmark
problems indicated that state-of-the-art sampling meth-
ods work well with multiple steady states and saddle-node
bifurcations, as well as Hopf bifurcations and (limit cycle)
oscillations resulting in weak multi-modality of the poste-
rior, oscillating trajectories. However, these methods still
fail in case of (aperiodic) oscillations/chaotic behavior and
local non-identifiability resulting in strongmulti-modality
of the posterior.
The analysis on the level of sampling methods revealed

that for (M2-4) most algorithms worked appropriately
(Fig. 7b) while for (M5-6) all algorithms fail. For (M1), we
observed a benefit for using PT and PHS. Since the EQ
directly impacts the ESS, these observations hold true for
the ESS per CPU second (Fig. 6f and Additional file 1:
Figures S2–S8). Indeed, we found a strong correlation of
exploration quality and sampling efficiency and identified
it as the major limiting performance factor for (M1a,b)
and (M5-6).

Comparison of single- andmulti-chainmethods
Following the analysis of the differences between bench-
mark problems, we compared single- and multi-chain
methods. The average performance characteristics for
single- and multi-chain methods were computed by aver-
aging over sampling methods, initialization schemes and
tuning parameter choices (Fig. 8). We found that for all
considered benchmark problems, multi-chain methods
achieved better EQs than single-chain methods (Fig. 8a).
Indeed, for several problems, multi-chain methods pro-
vided representative samples from the posterior distribu-
tions while single-chain methods sampled only individual
modes. Interestingly, the improved mixing of multi-chain
methods outweighed the higher computational complex-
ity even for benchmark problems with one mode. As
a result, multi-chain methods produced higher effective
samples sizes and were overall computationally more effi-
cient (Fig. 8b).

Comparison of initialization schemes
In addition to characteristics of methods, we assessed
the importance of initialization schemes. Therefore, the
average performance characteristics for RND and MS ini-
tialization were computed by averaging over sampling
methods and tuning parameter choices (Fig. 9). This
revealed that multi-start local optimization substantially
improved the EQ (Fig. 9a). The difference in the sam-
pling efficiency (conditioned ESS per CPU second) was
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Fig. 7 Overview of observed exploration qualities. a Distribution of group sizes regarding chain similarity. All groups with the same groups sizes are
colored identically. The coloring scheme is indicated below the individual plots. b Exploration quality by benchmark problem (row) and algorithm
(column). Each colored square is based on the fraction of 100 runs which were able to explore well

less pronounced than for the EQ as multi-start local opti-
mization required additional computation time (Fig. 9b).
A detailed analysis revealed that some methods were

more sensitive to the initialization than others. The
performance of PT appeared to be almost indepen-
dent of the initialization scheme (Fig. 7b), making it a
robust choice. PHS required initialization using multi-
start optimization results to achieve good EQ (Fig. 7b).
Indeed, PHS initialized using samples from the prior per-
formed poorly while PHS initialized using multi-start

optimization outperformed the other methods in some
cases.

Selection of tuning parameters and algorithm settings
To provide guidelines regarding tuning parameters and
adaptation mechanisms, we carried out a fine-grained
analysis of sampling method and subclasses of them. The
assessment of single-chain samplers revealed that the
adaptiveMetropolis methods with acceptance rate depen-
dent proposal scaling (AM(acc)) outperformed methods
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Fig. 8 Benchmark problem wise comparison of single- and
multi-chain based sampling methods. a EQ and b ESS per second
computed by averaging across scenarios using single- or multi-chain
sampling methods

Fig. 9 Benchmark problem wise comparison of initialization using
samples from the prior (RND) and multi-start local optimization
results (MS). a EQ and b ESS per second computed by averaging
across scenarios using RND or MS initialization

with dimension-dependent proposal scaling (AM(dim)
and DRAM(dim)) as shown in Fig. 6f and the Addi-
tional file 1: Figures S2–S8. Delayed rejection imple-
mented in DRAM could not compensate for the improved
proposal scaling implemented in AM(acc). Furthermore,
for the benchmark problems considered here, AM(acc)
outperformed MALA. While AM(acc) worked for the
benchmark problems with mono-modal posterior distri-
butions, AM(dim), DRAM and MALA mostly failed to
explore the posterior distribution (see Figs. 6f, 7b and
Additional file1: Figures S2–S8).
The PT algorithms employed in this study used tem-

perature and proposal density adaptation. We evaluated
different swapping strategies and strategies to select the
number of temperatures. The best performance charac-
teristics were achieved with a large, fixed number of tem-
peratures (see Fig. 6f and Additional file 1: Figures S2–S8).
If few temperatures or an adaptive reduction of the num-
ber of temperatures are used, the methods are more likely
to sample from a single mode. This indicates that the
available methods for the reduction of the number of
temperatures [32] — which worked for a series of sim-
ple examples — is not sufficiently robust. In contrast, the
parallel tempering algorithms appeared to be robust with
respect to the swapping strategy, with equi-energy (ee)
swaps yielding superior performance.
To conclude, this section illustrated practical problems

of sampling algorithms and we performed a compre-
hensive evaluation of sampling algorithms, initialization
schemes and tuning parameters. The comprehensive eval-
uation provided information for the problem-specific
selection of sampling strategies and beneficial combina-
tions of settings, e.g. to combine adaptive Metropolis
Parallel Hierarchical Sampling with multi-start local
optimization.

Discussion
The quantitative and qualitative properties of biological
models depend on the values of their parameters. These
parameters values are usually inferred using optimization
or sampling methods. For optimization schemes compre-
hensive benchmarking results are available [12, 25, 74, 75].
In this work we complemented these results and bench-
marked a selection of sampling methods.
We studied a collection of small-sized benchmark prob-

lems for ODE constrained parameter estimation with
oscillating, bifurcating and chaotic solutions as well
as multi-stable steady states and non-identifiabilities.
These model properties lead to pronounced tails, mul-
tiple modes and rims in the posterior distributions.
Some of these challenges can be addressed by employ-
ing additional information about the model and tools like
structural identifiability analysis (see “Application of sam-
pling methods to mRNA transcription model” section).
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However, in applications, it might not be possible to avoid
non-identifiabilities, e.g., if the biological interpretation
needs to be conserved or prediction uncertainties need to
be quantified. By considering benchmark problems with
a diverse set of features, this study provided an unbiased
comparison for available sampling methods.
As a by-product of our presented benchmarking study

we considered the effect of properties of the ODE model,
such as Hopf-bifurcation and multi-stability, onto the per-
formance of sampling algorithms. As most models of
biological systems are nonlinear, high-dimensional and
possess multiple positive and negative feedback loops
[76], a single model can usually exhibit different prop-
erties in different parameter regimes. As the biologically
relevant regimes in parameter spaces are usually unknown
prior to the parameter estimation, knowledge about the
dynamic properties cannot be employed and the use of
robust sampling methods is beneficial. We previously
expected bifurcations to strongly impact the sampling
efficiency. This, however, was not the case. Instead, we
observed that chaotic regimes have a strong influence
on the sampling efficiency and might even render it
intractable. This is consistent with previous finding and
expected as “chaotic likelihood functions, while ultimately
smooth, have such complicated small scale structure” [68].
To derive guidelines for sampling method selection,

we assessed a range of single- and multi-chain sam-
plers. This revealed that most state-of-the-art sampling
methods require a large number of iterations to pro-
vide a representative sample from multi-modal posterior
distributions even in low-dimensional parameter spaces.
Multi-chain methods clearly outperformed single-chain
methods, as reported earlier (see, e.g., [5, 21] and refer-
ences therein), even for unimodal posterior distributions.
The reliability and performance of all sampling meth-
ods except PT was substantially improved when initial-
ized using optimization results instead of samples from
the prior. Interestingly, for the benchmarks considered
in this manuscript, PT performed better without novel
adaptation schemes for the number of temperatures [32].
This is in contrast to results for posterior distributions
in the original publication [32] – for which we achieved
the same results using our implementation –, suggest-
ing that additional research is required. Furthermore,
this emphasizes the importance of realistic test problems.
The comparison of dimension-dependent proposal scal-
ing [28] and acceptance-rate-dependent proposal scaling
[34], which was to the best of our knowledge not pub-
lished before, revealed the superiority of the latter. From
this insight a range of single- and multi-chain methods
can benefit. Overall, PHS with optimization-based ini-
tialization performed best for uni-modal posterior land-
scapes while PT performed most robustly regarding all
posteriors.

Beyond the evaluation of algorithms, the results demon-
strate the importance of performingmultiple independent
runs of sampling methods starting from different points
in parameter space [5]. Most algorithms provide merely a
representative sample in a fraction of the runs. In addition
to standard sampling diagnostics (e.g. convergence tests
like Gelman-Rubin-Brooks [45]), our extended analysis
pipeline takes into account the EQ while minimizing the
need for subjective visual inspection. Our results confirm
the need to evaluate sampling methods by not only taking
into account the ESS of the generated runs but the overall
EQ as important measure for algorithmic robustness.
The benchmark problems considered in this study

are low-dimensional but resemble essential features of
parameter estimation problems in systems biology. While
the precise quantitative results might depend on the selec-
tion of the benchmarks, the qualitative findings should be
transferable. To verify this, a range of application prob-
lems should be considered. Furthermore, while several
classes of sampling methods have been considered, the
study of additional methods would be beneficial. In partic-
ular the assessment of Hamiltonian Monte Carlo (HMC)
based algorithms such as NUTS or Wormhole Monte
Carlo [77, 78], region-based methods [79], Metropolis-in-
Gibbs methods [80], Transitional MCMC [81], sequen-
tial Monte Carlo methods [82] or additional proposal
adaptation strategies [71] would be valuable. For ODE
models for which the full conditional distribution of the
parameters can be derived, also Gibbs samplers might be
used [83]. Furthermore, a comparison with non-sampling-
based approximation methods, e.g. variational methods
[84] or approximation methods [85] could be interesting.

Conclusion
In summary, our comprehensive evaluation revealed that
even state-of-the-art MCMC algorithms have problems to
sample efficiently from many posterior distributions aris-
ing in systems biology. Problems arose in particular in
the presence of non-identifiabilities and chaotic regimes.
The examples provided in manuscripts presenting new
algorithms are often not representative and a more thor-
ough assessment on benchmark collections should be
required (as is common practice in other fields). The pre-
sented study provides a basis for future developments
of such benchmark collections allowing for a rigorous
assessment of novel sampling algorithms. In this study,
we already used six benchmark problems with common
challenges to provide practical guidelines for the selec-
tion of sampling algorithms, adaptation and initialization
schemes. Furthermore, the presented results highlight the
need to address chain exploration quality by taking into
account multiple MCMC runs which can be compared
with each other before calculating effective sample sizes.
The availability of the code will simplify the extension
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of the methods and the extension of the benchmark
collection.

Additional files

Additional file 1: Supplementary Notes. Covering additional details
about the analysis pipeline and sampling results. (PDF 1200 kb)

Additional file 2: Supplementary Code. Containing a standalone
implementation of methods, benchmark problems, data sets and analysis
tools used in this study. (ZIP 6953 kb)
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