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Abstract

It is widely believed that both common and rare variants contribute to the risks of common diseases or complex traits and
the cumulative effects of multiple rare variants can explain a significant proportion of trait variances. Advances in high-
throughput DNA sequencing technologies allow us to genotype rare causal variants and investigate the effects of such rare
variants on complex traits. We developed an adaptive ridge regression method to analyze the collective effects of multiple
variants in the same gene or the same functional unit. Our model focuses on continuous trait and incorporates covariate
factors to remove potential confounding effects. The proposed method estimates and tests multiple rare variants
collectively but does not depend on the assumption of same direction of each rare variant effect. Compared with the
Bayesian hierarchical generalized linear model approach, the state-of-the-art method of rare variant detection, the proposed
new method is easy to implement, yet it has higher statistical power. Application of the new method is demonstrated using
the well-known data from the Dallas Heart Study.
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Introduction

Over the past decade, many causal polymorphic variants for

common diseases have been successfully identified by genome-

wide association studies (GWAS) [1–3] which are based on the

common-disease-common-variant (CDCV) assumption. The asso-

ciated variants greatly facilitate understanding of the genetic basis

underlying common diseases. However, most association studies

are used to identify common variants which have minor allele

frequency (MAF) greater than 1%. This is mainly because

traditional SNP genotyping arrays only capture variants with

relatively high MAF. Although many genetic variants have been

identified for common diseases, large proportion of the heritability

of a trait cannot be explained by the detected variants. Many

factors can lead to the missing heritability phenomenon: (1)

underestimation of the effects of common variants, (2) undetect-

able common variants with small effects, and (3) rare variants

[4,5]. The advance in sequencing technologies makes it possible to

sequence some important candidate genes [6,7] and even the

whole genome [8]. The available sequence information allows us

to find out most variants across the genome and identify associated

variants with different allele frequencies.

Meanwhile, it is found that genetic variants with low MAF,

often called rare variants, may substantially contribute to

phenotypic expression [9–14]. The missing heritability phenom-

enon in GWAS may be due to rare variants which are not

captured by the traditional SNP genotyping arrays [5]. Therefore,

identifying rare variants would help understand the genetic basis

and disease etiology. Rare variants, which have lower minor allele

frequencies compared to common variants, tend to have larger

effects than common variants [9]. Many GWAS studies indicate

that most identified common variants have odds ratio ranging

from 1.1 to 1.3 with a mean odds ratio of 1.36. However, the mean

odds ratio of rare variants is 3.74 and most rare variants have

much greater odds ratio than common variants [9]. In addition,

many non-synonymous rare mutations from exon sequencing are

functional variants for some common diseases [9]. Many studies

have been carried out to investigate the effects of rare variants by

sequencing exons of candidate genes [6,7,11,12,15] and several

rare variants have been found to be associated with common

diseases. For example, rare variants in the IFIH1 gene were found

to be strongly associated with Type I diabetes [15]. Some rare

variants in ANGPTL3 and ANGPTL5 are much more common

in the lowest quartile of plasma triglyceride level [7].

Statistical power of genetic variant identification depends on the

sample size, the effect of the variant and the minor allele frequency

[13,16]. Since the minor allele frequencies (MAF) of rare variants

are extremely low (less than 1%,5%), it is extremely challenging

to identify the causal rare variants by using methods of traditional

association studies [16–20]. The univariate tests (e.g. Chi-Squared

test, Fisher’s exact test, linear regression) have to take into account

multiple test corrections to control family-wise error rate (FWER)

and false discovery rate (FDR). Multiple-marker tests (e.g. multiple

regression, Hotelling’s T2 test) increase the degree of freedom in

hypothesis testing. Univariate test and multivariate test both loose

power when the allele frequencies are very low [18].

Until recently, much effort has been placed on the development

of new statistical methods for detecting rare variants. Most of the

existing methods pool variants in the same group into one variant,

which collectively combines the information from multiple

variants and tries to increase the power of rare variant

identification. For example, cohort allelic sum test (CAST) [21]

combines the rare variants in the same region into a single

‘‘variant’’. The frequency of the pooled single variant can be

compared between the case and control populations. The

combined multivariate and collapsing (CMC) method [18]
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collapses rare variants in the same group into one single ‘‘variant’’,

and then counts the number of individuals carrying this marker in

the case and control populations. The Hotelling’s T2 test is used to

analyze the collapsed genotype data. The authors proved that the

CMC method is much more powerful than the traditional single

marker and multiple marker tests. It is also robust to the

misclassification of rare variants. Morris and Zeggini [22]

proposed two likelihood ratio tests (RVT1 and RVT2) based on

different linear regression models to analyze rare variants. The

first model treats the proportion of rare variants carrying at least

one minor allele as predictor variable. In the second model, the

indicator of presence or absence of the minor allele at any rare

variant for one individual is used as the predictor in the linear

model, which is similar to the collapsing method proposed by Li

and Leal [18]. Madsen and Browning [19] weighed each rare

variant by the minor allele frequency in unaffected individuals and

found that this weighted approach can magnify the signal of rare

variants. In that analysis, each individual was assigned a genetic

score and the scores were ranked to test the significance of the

association signal. Price et al. [23] adopted a variable-threshold

approach to analyzing rare variants. They calculated a z-score for

each reasonable threshold and find the maximum z-score. The

significance of the z value was then tested using a permutation

analysis.

All these so called burden test methods assume that the effects of

rare variants are in the same direction. They collapse rare variants

into a single variant and then compare the frequencies in the case

and control populations. However, it is well known that genetic

variants may not have effects on the phenotype of interests, and

some of the variants may have beneficial effects and others have

deleterious effects. Therefore, such assumptions seem to be

inappropriate and collapsing rare variants in this way will

introduce noise and decrease the power. Taking into account

different directions of the variants will increase the power of rare

variant detection [24,25].

More recently, Yi and Zhi [20] proposed a Bayesian

hierarchical generalized linear model (BhGLM) to analyze rare

variants without assuming known directions of the variant effects.

They introduced two types of parameters to the regression model,

a weight parameter for each variant and an overall effect for all

variants in the same functional unit. The weights and the overall

effect are estimated using the weighted least squares method that

incorporates hierarchical prior information. As a result, the

weights are estimated based on the contribution of the variants

to the phenotype of interest. The association between rare variants

and the phenotype of a target trait can be found by testing the

significance of a single parameter, the overall effect (or score). Yi et

al. [26] eventually proposed a similar method based on the

BhGLM. The new method incorporates covariates and divides

rare variants into several groups according to the minor allele

frequencies and the functions of the variants. They also assigned

hierarchical prior distributions to the weights of the variants and

the groups. The association between the phenotype and the

variants in the same group can be found by testing the group

effects. These two methods do not assume known directions of the

effects of the rare variants and can identify the collective effects of

rare variants in the same group as well as individual variant effects.

The BhGLM has a higher power than all the burden test methods.

This new method is considered the state-of-the-art method for rare

variant detection.

We believe that the high power of the BhGLM is due to (1)

appropriate combination of the individual rare variants (the new

score) and (2) assignment of the hierarchical priors. After a

thorough evaluation of these new methods, we found that there is

still some room for improvement. The new score of the BhGLM

method is a first moment parameter (shared effect). An alternative

score may be a second moment parameter (shared variance). The

Yi and Zhi’s method requires prior distributions, and thus different

priors may produce different results. The hyper-parameters

involved in the prior distributions may also affect the results. In

this study, we proposed to use a shared variance among rare

variants as the new score. The method is originally called ridge

regression [27]. It is further modified to discriminate against rare

variants with small effects. This modified ridge regression is called

the adaptive ridge regression [28]. The adaptive ridge regression

(ARR) is performed under the maximum likelihood framework,

and thus prior distributions of parameters are not required,

equivalent to independent uniform priors for all parameters.

Methods

The key issue in rare variant detection is to combine all rare

variants into a single score (shared feature) and perform a single

test for the collective effect of all rare variants. Our new method

will be developed based on this notion. For the paper to be self-

contained, we will briefly introduce ridge regression [27], based on

which a new method called adaptive ridge regression will be

developed.

Ridge regression
Let yj be the phenotypic value of a quantitative trait measured

from individual j for j~1, � � � ,n, where n is the sample size. The

following linear model is used to describe the relationship between

yj and the rare variants,

yj~Xjbz
Pm

k~1

Zjkckzej ð1Þ

where m is the number of rare variants, Xj is a row vector

representing the incidences of some covariates (fixed effects), b is a

column vector for the fixed effects, Zjk is a genotype indicator

variable for marker k, ck is the effect of the kth rare variant, and

ej eN(0,s2) is the residual error with an assumed normal

distribution. The genotype indicator variable is coded as

Zjk~

z1

0

{1

8><>:
for

for

for

A1A1

A1A2

A2A2

ð2Þ

where A1 is the rare allele and A2 is the common allele of locus k.

This coding system is adopted from that of QTL mapping [29].

An alternative coding system is

Zjk~
z1

{1

for

for

A1A1 or A1A2

A2A2

�
ð3Þ

where a genotype carrying one or two rare alleles is coded as 1 and

the common allele homozygote is coded as 21. Because of the rare

frequency of allele A1, the probability of A1A1 is negligible and

thus the population virtually consists of only the heterozygote and

the homozygote of the common allele. The second coding system

has an advantage of saving computer storage. In this study, we

took the first coding system, i.e., equation (2).

We assume that the effect of each rare variant is sampled from a

normal distribution with mean zero and a common variance, i.e.,

ck eN(0,w2) for k~1, � � � ,m. By doing this, we can evaluate the

Rare Variant Analysis
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shared nature of the rare variants, i.e., they all come from the same

distribution with the same mean and the same variance, so that a

test statistic can be derived to test this single variance. If w2~0,

none of the rare variants are associated with the trait of interest.

This particular formulation treats the cofactors as fixed effects and

the rare variants as random effects. If w2
is a predetermined

constant, the method is called ridge regression analysis with a ridge

factor [27] of l~s2=w2
. However, we can estimate w2

from the

data under the mixed model framework [30], in which the

expectation is E(y)~Xb and the variance covariance matrix of

the phenotypic values is

var(y)~V~ZZT w2zIs2 ð4Þ

where Z~ Zjk

� �
is an n|m matrix for the genotype indicators of

all subjects for all rare variants. The maximum likelihood or

restricted maximum likelihood methods can be used to estimate

the parameters h~ b,w2,s2
n o

and test H0 : w2~0. Rejection of

H0 leads to a conclusion that these rare variants are collectively

associated with the trait. The likelihood ratio test statistic may be

used to test H0,

j~{2 L(~bb,~ss2){L(b̂b,ŵw2,ŝs2)
h i

ð5Þ

where ĥh~ b̂b,ŵw2,ŝs2
n o

represents the ML estimate of h under the

full model and ~hh~ ~bb,~ss2
n o

represents the ML estimate of h under

the null model. When the sample size is sufficiently large, j follows

approximately a chi-square distribution with one degree of

freedom (x2
1). Crainceanu and Ruppert [31] stated that j follows

asymptotically a mixture of two chi-square distributions, denoted

by 0:5x2
0z0:5x2

1. We will use both distributions to draw the critical

values for the test statistic. In addition, we will also use

permutation tests [32] to find the empirical distribution of the

likelihood ratio test statistic and thus the empirical threshold for

the controlled Type I error rate. Therefore, the asymptotic chi-

square distributions may not be required in real data analysis.

The whole purpose of rare variant analysis is to test all the rare

variants collectively using the likelihood ratio test statistic for

H0 : w2~0. However, each individual rare variant can also be

estimated and tested using the mixed model equation [30] with h

substituted by ĥh. The mixed model equation is

b̂b

ĉc

" #
~

X T X X T X

ZT X ZT Zzl̂lI

� �{1
X T y

ZT y

� �
ð6Þ

where l̂l~ŝs2=ŵw2
. Let us define a C matrix by

C~var
b̂b

ĉc

" #

~ŝs2
X T X X T X

ZT X ZT Zzl̂lI

" #{1

~
Cbb Cbc

Ccb Ccc

" #
ð7Þ

The sub matrix Ccc is the variance matrix for all the rare variants.

Given the estimated ck and its estimation error sk~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var(ĉck)

p
, a

test statistic can be drawn,

Wk~
ĉc2
k

var(ĉck )
ð8Þ

from which a p-value can be found, assuming that (under the null

model) Wk is approximately distributed as a chi-square variable

with one degree of freedom. Again, in rare variant detection, our

main purpose is to test w2~0, and thus testing an individual rare

variant is only a by-product of the analysis.

Under the ridge regression method, each rare variant is treated

as a random variable. The shared feature is the common variance

denoted by w2
, This particular treatment has eliminated the

assumption of same direction of rare variant effects in all the

burden test methods described in the introduction.

Adaptive ridge regression
If only a few variants are associated with the trait, then w2

will

be ‘‘diluted’’ by those non-associated variants. This means that the

assumption of a common variance is violated. We now propose an

adaptive ridge regression to selectively weigh each rare variant.

The modified model is formulated as

yj~Xjbz
Pm

k~1

Zjkckckzej ð9Þ

where ck is another effect for variant k. It seems redundant to

define two effects for each rare variant. However, the two effects,

ck and ck, have different meanings. The first effect ck may be

defined as a random effect with a marker specific variance, i.e.,

ck eN(0,t2
k) for k~1, � � � ,m. The second effect ck is defined as a

random effect with a common (shared) variance, i.e., ck eN(0,w2)
for k~1, � � � ,m. Because ck and ck have different variances, they

can be estimated separately. This partitioning of the rare variant

effect appears to be similar to the model proposed by Yi and Zhi

[20] but they differ in a fundamental way. Using our notation,

their model can be expressed as

yj~Xjbz
Pm

k~1

(Zjkck)azej ð10Þ

in which the authors proposed a common effect a (a single first

moment parameter) for all variants. We proposed marker specific

effect ck but with a common variance w2
. Our model is more like

the polygenic model for quantitative traits, where each ck is a

polygenic effect with a common genetic variance w2
.

We now discuss parameter estimation for the new adaptive

ridge regression method. The method is based on the classical

mixed model methodology. Given the value of each ck, we can

rewrite the adaptive ridge regression model as

yj~Xjbz
Pm

k~1

Z�jkckzej ð11Þ

where Z�jk~Zjkck is a weighted independent variable. We can

estimate w2
and predict ck under the original ridge regression

procedure (mixed model methodology) described in the previous

section with Zjk substituted by Z�jk. Hypothesis test for H0 : w2~0

can also be performed under the mixed model framework. Each

Rare Variant Analysis
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individual marker effect is actually redefined as c�k~ckck and the

Wald test statistic remains the same as described before,

Wk~
ĉc�2k

var(ĉc�k)
~

c2
kĉc2

k

c2
kvar(ĉck)

~
ĉc2

k

var(ĉck)
ð12Þ

The question left is how to find ck so that the adaptive ridge

regression can selectively adjust Zjk to prevent w2
from being

diluted by the non-associated rare variants. There are many

different ways to estimate ck. For example, we may use an iterative

approach to estimating ck given ck by reformulating the model as

yj~Xjbz
Pm

k~1

Z�jkckzej ð13Þ

where Z�jk~Zjkck is a newly weighted independent variable.

Given ck to estimate ck and given ck to estimate ck require

iterations. The iteration process continues until the sequence

converges. Estimating ck given ck using this approach may be

complicated because each ck has its own variance. For m markers,

we need to estimate m marker specific effects ck and m marker-

specific variances t2
k for k~1, � � � ,m. We will leave this approach

as a next project and pursue a simple method to estimate ck.

In this study, we adopted a different method for estimating ck.

This approach leads to the Lasso [33] estimate of ck if ck is

restricted in a special way. Grandvalet [28] demonstrated that if

we let ck§0 and enforce the following constraint

Pm
k~1

c2
k~m ð14Þ

the solution for ck is the Lasso (least absolute shrinkage and

selection operator) estimate of ck, assuming that b is removed from

the model by centralization of the data and l~s2=w2
is a constant

provided by the investigator prior to the analysis. In our problem,

we also estimate h~ b,w2,s2
n o

using the mixed model method-

ology. The Lasso parameter is estimated as a by-product because

l~s2=w2
is estimated from the data, not predetermined by the

investigator. Whether such a solution of ck is still Lasso or not is

unknown. Any way, we adopted the approach of Grandvalet [28]

to find ck given ck, which is

c2
k~

mc2
kPm

k~1 c2
k

ð15Þ

During the iteration process, if any c2
kƒ10{5 happens, ck is set to

zero and the corresponding Zjk will be deleted from the model

permanently so that the dimension of the model will be quickly

reduced to the number of non-zero elements of vector c~ ckf g.
The method is not sensitive to the threshold. We tested several

other thresholds, e.g., 10{3 and 10{8. The results are much the

same (data not shown). In fact, we do not need to set this

threshold. The purpose of using this threshold is to improve the

computational speed, because once an effect is set to zero, this

effect will no longer be evaluated in the subsequent iterations.

Adaptive ridge for multiple groups of rare variants
The model can be extended to handle multiple groups of rare

variants. The notation become complicated so we have to use a

compact matrix notation for the model. For a single group, we

may use

y~XbzZcze ð16Þ

where Z~ Zjk

� �
is an n|m matrix and c~ ckf g is an m|1

vector. Assume that we now have g groups and the number of

markers in the lth group is ml , where
Xg

l~1
ml~m is the total

number of markers. We now label the appropriate matrices by a

subscript l to indicate the group, the extended model becomes

y~Xbz
Xg

l~1

Zlclze ð17Þ

where Zl is an n|ml matrix and cl is an ml|1 vector. The group

specific cl is assumed to be N(0,w2
l I) distributed. The variance

matrix is

V~
Xg

l~1

ZlZ
T
l w2

l zIs2 ð18Þ

The parameter vector is h~ b,w2
1, � � � ,w2

g,s2
n o

, which can be

estimated using the maximum likelihood method [34,35]. Once h
is estimated, the effects of rare variants are estimated using the

mixed model equations. When g~2, for example, the mixed

model equations are

b̂b

ĉc1

ĉc2

264
375~

X T X X T Z1 X T Z2

ZT
1 X ZT

1 Z1zl̂l1I ZT
1 Z2

ZT
2 X ZT

2 Z1 ZT
2 Z2zl̂l2I

264
375

{1
X T y

ZT
1 y

ZT
2 y

264
375 ð19Þ

where l̂ll~ŝs2=ŵw2
l for l~1,2. We now have g different weight

systems, one for each group. Let cl be an ml|1 vector of weights

for group l. It is defined by

cl~

ffiffiffiffiffiffiffiffiffi
ml

cT
l cl

r
Dcl D ð20Þ

where Dcl D is an ml|1 vector of the absolute values of cl because of

the constraint cl§0. The weighted Z matrix is defined as

Z�l ~Zldiag(cl), where diag(cl) is a diagonal matrix with the

diagonal elements filled by the values of vector cl . The adaptive

ridge regression for multiple group rare variants is performed

simply with Zl substituted by Z�l .

Many different hypotheses can be tested for the multiple group

variant analysis. An overall hypothesis is H0 : w2
1~:::~w2

g~0,

which can be tested using the likelihood ratio test statistics. Under

the null hypothesis, the test statistic follows asymptotically a chi-

square distribution with g degrees of freedom. Each individual

group can also be tested. For example, to test the lth group, one

needs to evaluate a reduced model by excluding wl from the model

and defining a likelihood ratio test statistic. Under the null

hypothesis Hl : w2
l ~0, the test statistic follows asymptotically a

chi-square distribution with one degree of freedom. In this study,

we used the permutation test to draw the empirical threshold

values of the likelihood ratio test statistics for a given Type I error

rate. As a result, the asymptotic chi-squares critical values are not

used in real data analysis.

Rare Variant Analysis
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Results

Application to the Dallas Heart Study Data
Angiopoietin-like proteins (ANGPTLs) [36–40] can regulate

triglyceride metabolism by inhibiting the activity of lipoprotein

lipase. Romeo et al. [6,7] resequenced the exons and some

intronic regions of ANGPTL3 (MIM 604774), ANGPTL4 (MIM

605910) and ANGPTL5 (MIM 607666) genes in 3,551 individuals

from a multiethnic population (601 Hispanic, 1,830 African

American, 1,045 European American and 75 others). They

wanted to find the sequence variants which have effects on the

regulation of plasma triglyceride level. For the three genes,

ANGPTL3, ANGPTL4 and ANGPTL5, a total of 282 sequence

variants (SNP) were genotyped (88 variants in ANGPTL3, 94

variants in ANGPTL4 and 100 variants in ANGPTL5). In addition

to triglyceride level and race, gender and age were also recorded

for each individual. To test the effects of sequence variants, age,

gender and race were treated as covariates in the adaptive ridge

regression analysis. Since there are some missing data in age, all

missing values for age were replaced by the mean age of all

subjects. The original phenotypic value (triglyceride level) was log

transformed prior to the analysis, as did by the original authors.

In the population of the Dallas Heart Study, the minor allele

frequency of rare variants ranges from 0.014% to 37.9%. Most of

the sequence variants have MAF less than 1%. Therefore, the data

contain many rare variants as well as a few common variants.

Since there are three genes, variants within the same gene are

considered in one group. The way of grouping variants can be

arbitrary. Variants may be grouped based on the minor allele

frequencies or predicted biological functions [26]. We may also

define groups based on physical locations of the rare variants. It is

reasonable to analyze the variants in the same gene as one group

because variants in the same gene may work systematically as a

unit.

First, we analyzed the rare variants one group (gene) at a time.

The adaptive ridge regression tests the group effect of variants in

the same gene. The single group model is

yj~
P6
i~1

Xjibiz
Pm

k~1

Zjkckckzej ð21Þ

where the six covariates represent the intercept (b1), age effect (b2),

gender effect (b3), and three effects for the race (b4,b5 and b6).

Note that there are four ethnic groups, but only three estimable

effects, which explains why we have three fixed effects for the race

factor alone. The number of markers m takes 88, 94 and 100,

respectively, for the three genes. We reported the empirical p-value

for each gene (group) drawn from permutation analysis (1000

permuted samples) along with the theoretical p-values from x2
1 and

0:5x2
0z0:5x2

1 distributions. In the permutation analyses, we kept

the marker genotype data intact but reshuffled the phenotype

along with the six covariates (fixed effects) across all the subjects.

This permutation analysis only destroyed the association between

the phenotype and the markers and did not destroy the association

between the phenotype and the covariates. The estimated

parameters along with the test statistic and the p-values are listed

in Table 1 for the adaptive ridge regression method. Genes

ANGPTL3 and ANGPTL4 had p-values smaller than 0.05, and thus

rare variants of these two genes are collectively associated with

triglyceride level. Variants of gene ANGPTL5 are not associated

with the trait at all because the p-value is 1.00. Estimated

individual marker effects will be reported later when the joint

analysis of three genes are reported. We also analyzed the three

genes separately (one gene at a time) using BhGLM [26]. The

results of BhGLM are listed in Table 2 and they are similar to our

ARR analysis. Genes ANGPTL3 and ANGPTL4 are strongly

associated with the triglyceride level but gene ANGPTL5 is not.

We now report results of joint analysis for the three genes in the

Dallas Heart Study. First, we used the adaptive ridge regression

method to analyze the three genes jointly. This time, we have four

hypotheses to test. The overall test for all three genes,

H0 : w2
1~w2

2~w2
3~0, and a test for each gene, i.e., H1 : w2

1~0,

H2 : w2
2~0 and H3 : w2

3~0. The p-value of each test was

calculated using the permutation generated empirical threshold

Table 1. Parameters of three genes of the Dallas Heart Study estimated separately using the ARR method proposed in this study.

Parameter ANGPTL3 ANGPTL4 ANGPTL5

Intercept (b1) 4:201+0:1121 4:152+0:175 4:304+0:069

Age (b2) 0:009+0:001 0:009+0:001 0:009+0:001

Gender (b3) {0:088+0:009 {0:089+0:009 {0:087+0:009

Race 1 (b4) 0:142+0:024 0:135+0:024 0:139+0:024

Race 2 (b5) {0:214+0:021 {0:206+0:021 {0:230+0:021

Race 3 (b6) 0:020+0:022 0:012+0:022 0:027+0:022

Residual variance (s2) 0:310 0:310 0:311

Genetic variance (w2) 0:026 0:077 0:010

Likelihood ratio test (j) 7:248 9:935 0:000

Theoretical p-value (x2
1)2 7:10|10{3 1:62|10{3 1:000

Theoretical p-value (0:5x2
0z0:5x2

1)3 3:39|10{3 6:80|10{4 1:000

Empirical p-value (permutation)4 0:029 0:001 1:000

1The numbers after + for the six fixed effects are the standard errors.
2The theoretical p-value (x2

1) for each gene was calculated using a threshold of 3.84 for the test statistic.
3Theoretical p-value (0:5x2

0z0:5x2
1) for each gene was calculated using a threshold of 2.71 for the test statistic.

4The empirical p-value (permutation) was calculated using a threshold drawn from the permutation study.
doi:10.1371/journal.pone.0044173.t001
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value of the corresponding test statistic (1000 permuted samples)

and the theoretical p-values from x2 and mixture x2 distributions.

The results are listed in Table 3. First, the estimated parameters of

the joint analysis regarding the model (e.g., fixed effects and the

residual error variance) are similar to the separate analyses shown

in Table 1. The estimated gene specific parameters and the p-

values showed that genes ANGTPL3 and ANGTPL4 are associated

with triglyceride level but ANGTPL5 is not. The overall test for the

three genes is also significant. This time, we also report the p-value

for each individual rare variant, as shown in Figure 1 (the top

panels). In fact, it is the {log10(p) value that is plotted against the

markers. One marker (8357_non_coding) in gene ANGPTL3 is

significant (p,0.05 and {log10(p).1.301). Two rare variants

(1313_E40K and 8191_R278Q) in ANGPTL4 are significant. No

variants are significant in gene ANGPTL5.

We also analyzed the three genes jointly using BhGLM. The

results of this analysis are listed in Table 4. The general

conclusions are the same as the ARR analysis, ANGPTL3 and

ANGPTL4 are associated with triglyceride level but ANGPTL5 is

not. The plot of {log10(p) against the markers for the BhGLM

analysis is presented in Figure 1 (bottom panels). The same variant

(8357_non_coding) in gene ANGPTL3 is also significant here. The

two significant rare variants (1313_E40K and 8191_R278Q)

detected for gene ANGPTL4 with the ARR analysis are also

significant in the BhGLM analysis. In addition, two more rare

variants (1175_Intronic and 8279_P307P) are detected by the

BhGLM analysis. Each of the two additional rare variants is

closely linked to one of the previously detected ones by the ARR

analysis. The rare variant named 1313_E40K, detected by both

the ARR and BhGLM methods, was also found to be significantly

associated with plasma triglyceride level in different population-

based studies (Dallas Heart Study, Atherosclerosis Risk in

Communities Study and Copenhagen City Heart Study) [6].

The 1313_E40K carriers had lower triglyceride level than the

non-carriers.

The analyses of Dallas Heart Data showed that the method is

not sensitive to the number of groups, because results of separate

and joint analyses are much the same. Because ridge regression is a

random model approach, the method is also not sensitive to the

number of markers within each group. In fact, the number of

markers of each group can be more than the sample size. This is

the beauty of the random model approach, which the fixed model

lacks.

Simulation Studies
Instead of using population genetics models to generate the

genotype data, we used the sequence data from the Dallas Heart

Study for the simulation studies without making any assumption

about the rare variants. The real sequence variants are believed to

be more appropriate in the simulations [16,26]. The covariates

such as age, gender and race were included in the model. The

effects of the fixed effects (including the intercept) and the residual

error variance used to generate the data took the estimated values

obtained from the ARR analysis for gene ANGPTL4. The marker

genotypes took the genotypes of the 94 variants of this gene only.

The purpose of the simulation study is to evaluate the empirical

Type I error and statistical power. Therefore, we only used the

single gene model to evaluate the Type I errors and powers of the

ARR method and BhGLM for comparison.

Simulation of Type I Error Rate. The phenotypic value for

each of the n~3551 subjects was generated using the following

model,

yj~
P6
i~1

Xjibizej ð22Þ

where the Xji’s are covariates of the Dallas Heart Study, the bi’s

are fixed effects estimated in the analysis of ANGPTL4 and ej was

simulated from a N(0,s2) distribution with s2 taking the value

estimated from the analysis of gene ANGPTL4. This model

assumes zero effects for all the 94 variants and thus any association

of the variants is a false positive. The simulated data were then

subject to the same analysis as the real data described early with all

the 94 variants included in the model. For the ARR analysis, we

used two criteria to evaluate the Type I error rate. In the first

criterion, we choose x2
0:05,1~3:84 as the threshold value for the

likelihood ratio statistic, above which the gene (group of variants)

was declared as significance. The threshold value of the likelihood

test statistic for the second criterion was 0:5x2
a0,0z0:5x2

a1,1~2:71,

where a0za1~0:05. The simulation was replicated 1000 times.

Under each criterion, the number of replicates whose test statistics

Table 2. Parameters of three genes of the Dallas Heart Study estimated separately using the BhGLM method.

Parameter ANGPTL3 ANGPTL4 ANGPTL5

Intercept (b1) 6:051+0:5231 7:211+0:528 3:677+0:512

Age (b2) 0:009+0:001 0:009+0:001 0:009+0:001

Gender (b3) {0:088+0:009 {0:088+0:009 {0:088+0:009

Race 1 (b4) 0:144+0:024 0:133+0:024 0:137+0:024

Race 2 (b5) {0:220+0:020 {0:214+0:020 {0:224+0:020

Race 3 (b6) 0:024+0:022 0:016+0:022 0:022+0:022

Residual variance (s2) 0:311 0:309 0:312

Overall score (a) 0:020+0:006 0:038+0:007 {0:007+0:005

Wald test (W ) 11:062 30:250 1:588

Theoretical p-value (x2
1)2 8:81|10{4 3:80|10{8 0:208

Empirical p-value (permutation)3 0:033 0:000 0:355

1The numbers after + for the six fixed effects are the standard errors.
2The theoretical p-value (x2

1) for each gene was calculated using a threshold of 3.84 for the test statistic.
3The empirical p-value (permutation) was calculated using a threshold drawn from the permutation study.
doi:10.1371/journal.pone.0044173.t002
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reached the corresponding threshold was counted as the number

of false positives. This number divided by 1000 is the actual

(observed) Type I error rate. If the observed Type I error rate is

below 0.05, we then conclude that the Type I error rate is under

control (may be conservative). The criterion that is closer to 0.05

should be recommended.

We suspected that the actual Type I error rate is related to the

number of rare variants included in the model. Therefore, we

evaluated the Type I errors under different numbers of variants

included, starting from m~3 and progressively increased to

m~94. Under each model size (m), 1000 replicated simulations

were conducted and the actual Type I error rate was observed.

Figure 2 shows the observed Type I error rate plotted against the

number of rare variants included in the model for the ARR

method along with the BhGLM method [26]. For the BhGLM

method, the test statistic was the Wald test statistic and the

threshold value for the Wald test is also approximated by

x2
0:05,1~3:84. From Figure 2, we can see that the actual Type I

error rate is indeed related to the model size, large models tend to

give higher Type I error rates. However, according to

x2
0:05,1~3:84 , the Type I error rate for the ARR method is

under control (all below the expected 0.05 probability). Therefore,

this criterion may be too conservative. For the

0:5x2
a0,0z0:5x2

a1,1~2:71 criterion, the observed Type I error rate

is much closer to the expected 0.05 probability. When m~60 and

80, the Type I error rates are exactly 0.05. However, when m

reaches 94, the observed Type I error rate is slightly higher than

the 0.05 probability. The observed Type I error rate for the

BhGLM method, however, is out of control for all model sizes

examined except when only m~3 variants were included in the

model.

Our conclusions from this simulation experiment are (1) the

0:5x2
a0,0z0:5x2

a1,1~2:71 criterion is recommended for the likeli-

hood ratio test (in the ARR analysis), (2) the x2
0:05,1~3:84 criterion

for the likelihood ratio test is over conservative and may be more

preferable to some investigators (in the ARR analysis) and (3) the

x2
0:05,1~3:84 criterion for the Wald test statistics is too liberal (out

of control for the Type I error rate) in the BhGLM analysis. To

control the Type I error rate under 0.05 for the BhGLM, the

threshold level should be further increased. The Type I error

analysis is useful if permutation analysis is not performed. We

realized that BhGLM allows users to choose their own prior

distribution. The program also provides a set of default priors. We

simply used the default priors, which may partly explain the high

Type I error rates.

Simulation of Empirical Power. Again, we used the 94

variants of ANGPTL4 as the true genotype data for the power

analysis. The estimated fixed effects and effects of the 94 variants

for ANGPTL4 from the ARR analysis were used as the true values

for the power analysis. The residual variance will determine the

Figure 1. Significance level for each marker in ANGPTL3, ANGPTL4 and ANGPTL5 generated from the joint analyses. P value is shown on
the –log10 scale. The top panels show the result of the adaptive ridge regression (ARR) analysis and the bottom panels show the results of the
Bayesian hierarchical generalized linear model (BhGLM) analysis. The red dots represent variants with p-values smaller than 0.05, i.e.,
{log10(p)w1:301.
doi:10.1371/journal.pone.0044173.g001
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proportion of the phenotypic variance explained by the rare

variants. Recall that the linear model for ANGPTL4 is

yj~Xjbz
X94

k~1

Zjkckzej ð23Þ

where Xj and Zjk were chosen from gene ANGPTL4 from the

Dallas Heart Study, b and ck took values estimated from the ARR

method, and ej
~NN(0,s2) is the residual error with variance s2. The

genetic value for individual j is defined as

aj~
X94

k~1

Zjkck ð24Þ

Table 3. Parameters of three genes of the Dallas Heart Study estimated jointly using the ARR method proposed in this study.

Parameter ANGPTL3 ANGPTL4 ANGPTL5

Gene specific information

(w2
l )Variance component 0:023 0:059 0:009

Likelihood ratio test (jl ) 11:051 13:733 0:979

Theoretical p-value (x2
1) 8:86|10{4 2:11|10{4 0:322

Theoretical p-value (0:5x2
0z0:5x2

1) 4:60|10{4 1:30|10{4 0:162

Empirical p-value (permutation) 0:027 0:010 0:558

Model information

Intercept (b1) 4:032+0:181

Age (b2) 0:009+0:001

Gender (b3) {0:088+0:009

Race 1 (b4) 0:138+0:024

Race 2 (b5) {0:208+0:022

Race 3 (b6) 0:016+0:022

Residual variance (s2) 0:307

Likelihood ratio test (j) 21:269

Theoretical p-value (x2
3) 9:26|10{5

Theoretical p-value (0:5x2
2z0:5x2

3) 8:00|10{5

Empirical p-value (permutation) 0:014

doi:10.1371/journal.pone.0044173.t003

Table 4. Parameters of three genes of the Dallas Heart Study estimated jointly using the BhGLM method.

Parameter ANGPTL3 ANGPTL4 ANGPTL5

Gene specific information

(al )Group effect 0:017+0:005 0:049+0:009 {0:006+0:005

Wald test (Wl ) 9:716 30:692 1:266

Theoretical p-value (x2
1) 1:83|10{3 3:02|10{8 0:261

Empirical p-value (permutation) 0:031 0:000 0:390

Model information

Intercept (b1) 9:066+0:987

Age (b2) 0:009+0:001

Gender (b3) {0:088+0:009

Race 1 (b4) 0:139+0:024

Race 2 (b5) {0:218+0:020

Race 3 (b6) 0:018+0:022

Residual variance (s2) 0:308

Wald test (W ) 41:673

Theoretical p-value (x2
3) 4:71|10{9

Empirical p-value (permutation) 0:000

doi:10.1371/journal.pone.0044173.t004
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The genetic variance is defined as the variance of aj across all

individuals, as shown below,

s2
G~var(a)~

1

3551

X3551

j~1

(aj{�aa)2~0:0021071 ð25Þ

The total phenotypic variance is

s2
P~s2

Gzs2~0:0021071zs2 ð26Þ

in which the variance due to the covariates (fixed effects) has been

removed. The heritability of the trait is

h2~
s2

G

s2
P

~
s2

G

s2
Gzs2

~
0:0021071

0:0021071zs2
ð27Þ

We choose several different values of s2 to control the heritability

at the following levels, 0.6%, 0.8%, 1%, 2% and 3%. At each level

of the heritability, we calculated s2 and used s2 to simulate a

random residual error to add to the fixed effect and the genetic

effect to generate a phenotypic value yj . At each level of the

heritability, the simulation was replicated 1000 times. The

empirical statistical power was then obtained by counting the

proportion of the replicated samples that are significant over the

1000 replicates. For the ARR method, three criteria were used to

determine the threshold values for the likelihood ratio test statistic.

They are x2
0:05,1~3:84, 0:5x2

a0,0z0:5x2
a1,1~2:71 and j0:05~3:45.

The last one, j0:05~3:45, was obtained from the simulation

experiment in the section of Type I error rate study. To compare

the power of the ARR analysis with that of the BhGLM analysis,

the same datasets were also analyzed using the BhGLM program.

The power of BhGLM was determined using two criteria,

x2
0:05,1~3:84 for the Wald test and W0:05~9:78 obtained from

the null model simulation study (Type I error rate study). We knew

that using the x2
0:05,1~3:84 criterion would overestimate the power

for the BhGLM method because the actual Type I error rate for

the BhGLM analysis was much higher than 0.05. The power

analysis showed that using the theoretical threshold x2
0:05,1~3:84,

the BhGLM method appears to be more powerful than the ARR

method (see Figure 3, panel a). However, the ARR analysis based

on 0:5x2
a0,0z0:5x2

a1,1~2:71 has almost the same power as

BhGLM at different levels of heritability (see Figure 3, panel b).

When the empirical thresholds are used (drawn from the Type I

error rate study), the ARR method is more powerful than the

BhGLM method (see Figure 3, panel c). A permutation generated

threshold for the BhGLM method should be used in real data

analysis because the Type I error rate cannot be controlled using

the theoretical threshold.

Discussion

The adaptive ridge regression method was developed based on

the original ridge regression [27]. The purpose of the adaptation is

to selectively weigh each rare variant based on its size, denoted by

ck for the kth rare variant, so that the overall genetic variance w2
is

not ‘‘diluted’’ by the non-associated variants. The adaptive ridge

regression requires just a few iterations to converge. Figure 4

shows the iteration process of the p-values calculated from the

0:5x2
a0,0z0:5x2

a1,1~2:71 criterion for the three genes (ANGPTL3,

ANGPTL4 and ANGPTL5) analyzed separately by the ARR

method. For gene ANGPTL3, the p-value of the initial step (ridge

regression without adaptation) is greater than 0.05. Just one step of

adaption, the p-value has dropped to the 0.05 significance level.

For gene ANGPTL4, the p-value of the initial step (ridge regression

without adaptation) is already lower than the 0.05 probability.

Further iterations continue to drop the p-value. For gene

ANGPTL5, the p-value is very high and remains high after

iterations. This figure clearly shows the necessity of the adaptive

steps for rare variant detection.

Figure 2. Type I error rates of the ARR and BhGLM methods obtained from the simulation studies. The Type I error rate of the Bayesian
hierarchical generalized linear model (BhGLM) method was calculated using a threshold of 3.84 for the Wald test statistic. The Type I error rates of the
adaptive ridge regression (ARR) method were calculated using thresholds of 3.84 and 2.71, respectively, corresponding to the x2

0:05,1 and
0:5x2

a0,0z0:5x2
a1,1 criteria (a0za1~0:05).

doi:10.1371/journal.pone.0044173.g002
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One reviewer brought a recent publication to our attention

[41]. The method is called sequence kernel association test

(SKAT). After reading this paper, we agreed that our approach is

similar to SKAT. However, SKAT only gives the score test and no

parameter estimation is provided. This explains why SKAT is fast

computationally. There are three major advantages of the

adaptive ridge regression. First, a high score test does not mean

the effects are large. It may be caused by small effects but large

sample size. The score test cannot tell the difference. Our method

not only provides a test but also an estimate of the group variance.

Figure 3. Power comparison between ARR and BhGLM at significance level of 0.05. The top panel (A) gives the powers of the adaptive
ridge regression (ARR) and the Bayesian hierarchical generalized linear model (BhGLM) evaluated at the threshold of 3.84. The panel in the middle (B)
shows the powers of ARR and BhGLM evaluated at the threshold 2.71 for ARR and 3.84 for BhGLM. The bottom panel (C) shows the powers of ARR
and BhGLM using thresholds of 3.45 and 9.78, respectively, to control the 0.05 Type I error rate.
doi:10.1371/journal.pone.0044173.g003
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We can provide a total proportion of the phenotypic variance

contributed by the rare variants. Secondly, we introduced an

adaptive step to the original ridge regression. This step plays the

role of ‘‘weighting’’ of the SKAT method but it can ‘‘homogenize’’

the effect of each rare variant within a group. The ridge regression

performs better under the ‘‘homogenized’’ rare variant effect

assumption. Thirdly, our method works for both rare and

common variants. However, the SKAT method was particularly

designed for rare variants because the ‘‘weights’’ for the common

variants will be almost zero (excluded from the model), according

to the authors of that paper. There is a possibility to use the score

test under our adaptive ridge regression framework. The

estimation procedure will remain the same, but we may simply

replace the likelihood ratio test by the score test. The ‘‘weights’’

obtained from the adaptive ridge regression will be used in the

score test. This needs to be further investigated.

We did not compare the ARR method with other rare variant

detection methods other than the BhGLM method. The reason for

this is that Yi and Zhi [20] already compared BhGLM with many

other methods and showed that BhGLM outcompeted all of them.

Given the fact that our method is more powerful than BhGLM

(simulation study), we concluded that the ARR method is also

more powerful than the other methods. The BhGLM program

provides a set of default priors, which were used in this study.

Users do have the option to choose their own priors. If different

priors were chosen, the power of the BhGLM may change slightly

(in either direction). The default priors provided by Yi and Zhi

(2011) were drawn from extensive simulation studies and should be

quite robust. It is difficulty to choose the optimal set of priors in

simulation studies. However, it is easy to choose the optimal prior

set in real data analysis. We need a criterion to evaluate the priors.

Statistical power is not a viable criterion in real data analysis

because the true rare variant effects are not known. The mean

squared error (MSE) via cross validation may be a viable choice

for the criterion. This requires further investigation. Our ARR

method is a maximum likelihood approach, equivalent to uniform

priors for all variances. In theory, we can also assign the variances

to other priors to improve the power. This deserves further

investigation.

The adaptive ridge regression method has been shown to be the

Lasso [33] estimation if the Lassos parameter l~s2=w2
is

predetermined by the investigator. Our new contribution is to

estimate l~s2=w2
using estimated variance components. This

approach has provided a new way to select the shrinkage factor l
based on data. In the original Lasso method, the author used cross

validation to determine the shrinkage factor. With the new

method, the Lasso parameter is estimated from the data and thus

has eliminated the cross validation step. The extension of the ARR

to multiple groups of rare variant detection is conceptually similar

to the group Lasso method [42,43] in which different groups have

different Lasso parameters, as given by ll~s2=w2
l . This idea has a

general application to detection of multiple groups of variants as

well as their interactions (epistatic effects). The current methods of

rare variant detection have not been able to detect interactions

between two groups of rare variants. The Dallas Heart Study

dataset contains three genes (groups). Our next project will be

analyzing the three pairs of group interactions among the three

genes. Gene ANGPTL5 has no effect on triglyceride level.

However, it may interact with other two genes. The full model

will include three group variances plus three variance components

of the interaction.

The Lasso method itself may not be perfect for all data. It may

work for some data but not work for other data. Using the

adaptive ridge regression approach, we may modify the shrinkage

factor through different choice of the constraint. For example, the

constraint of ck given by Grandvalet [28] is
Xm

k~1
c2

k~m. This

constraint determines the level of shrinkage. An obvious extension

may be
Xm

k~1
c2

k~rm, where 0vrv? is another factor we can

use to control the strength of the shrinkage. Our adaptive ridge

regression is equivalent to r~1, a special case of the general

method.

The new method is developed for continuous traits under the

linear mixed model framework [30]. In many situations, the trait

Figure 4. Changes of p-values of the three genes during the iteration process in the separate analysis. The p-values of the three genes
in separate analysis using adaptive ridge regression (ARR) are plotted against the iteration process. P-values are calculated based on 0:5x2

0z0:5x2
1

distribution.
doi:10.1371/journal.pone.0044173.g004
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of interest may be a binary trait. The generalized linear mixed

model (GLMM), which is an extension of the linear mixed model,

can be used to analyze the association of multiple rare variants and

a binary trait. This extension is very straight forward because the

methodology of GLMM has been well established. The simple

extension includes the adaptive steps.

Finally, we performed all the analyses using an R program. The

R package is called Adaptive Ridge Regression (ARR) which can

be downloaded from the authors’ personal website: www.statgen.

ucr.edu.
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