SCIENTIFIC REPORTS

OPEN

Received: 25 January 2018 Accepted: 24 April 2018 Published online: 08 May 2018

Natural and induced growth of VO_2 (M) on VO_2 (B) ultrathin films

Nicolas Émond, Badr Torriss & Mohamed Chaker

This work examines the synthesis of single phase VO₂ (B) thin films on LaAlO₃ (100) substrates, and the naturally-occurring and induced subsequent growth of VO₂ (M) phase on VO₂ (B) films. First, the thickness (t) dependence of structural, morphological and electrical properties of VO₂ films is investigated, evidencing that the growth of VO₂ (B) phase is progressively replaced by that of VO₂ (M) when $t > \sim 11$ nm. This change originates from the relaxation of the substrate-induced strain in the VO₂ (B) films, as corroborated by the simultaneous increase of surface roughness and decrease of the c-axis lattice parameter towards that of bulk VO₂ (B) for such films, yielding a complex mixed-phase structure composed of VO₂ (B)/VO₂ (M) phases, accompanied by the emergence of the VO₂ (M) insulatorto-metal phase transition. Second, the possibility of inducing this phase conversion, through a proper surface modification of the VO₂ (B) films via plasma treatment, is demonstrated. These natural and induced VO₂ (M) growths not only provide substantial insights into the competing nature of phases in the complex VO₂ polymorphs system, but can also be further exploited to synthesize VO₂ (M)/VO₂ (B) heterostructures at the micro/nanoscale for advanced electronics and energy applications.

Vanadium dioxide (VO₂) is a particularly interesting polymorphic material family that exists under several forms including VO₂ (A), VO₂ (B), VO₂ (M₁), VO₂ (M₂) and VO₂ (M₃)¹. Even though the chemical formula remains the same, VO₂ can assume various crystalline symmetries and electronic structures that exhibit different electronic and optical properties on account of strong correlation^{2,3}. This diversity of polymorphs makes VO₂ a promising electronic material and an excellent candidate for technological applications such as batteries, optical and electronic switching devices, IR sensors, smart windows and tunable metamaterials^{4–13}. VO₂ (M) and VO₂ (B) are the most desired VO₂ polymorphs as they display large changes in their electrical resistivity with temperature.

VO₂ (M) is stable at room temperature and exhibits a monoclinic structure with the $P_{2_1/c}$ (14) space group and lattice parameters $a_M = 5.75$ Å, $b_M = 4.54$ Å, $c_M = 5.38$ Å and $\beta = 122.6^{\circ 14-16}$. It undergoes a structural first-order reversible insulator-to-metal transition (IMT) at a critical temperature of $T_{IMT} \approx 68$ °C to a VO₂ (R) rutile structure with the $P4_2/mmm$ (136) space group and corresponding lattice parameters $a_R = b_R = 4.55$ Å and $c_R = 2.85$ Å. This transition is accompanied by sharp changes of both electrical resistivity and infrared reflectivity. The VO₂ (M) phase is characterized by V-V dimerization, and alternatively short (~2.65 Å) and long (~3.12 Å) V-V bonds that result in localization of d orbital electrons to individual ions, which yields an insulating material. In the VO₂ (R) phase, all the V-V bonds are equidistant (~2.87 Å), so that the d orbital electrons are shared by all the vanadium ions along the V-V chain, which leads to a metallic behavior¹⁷.

The VO₂ (B) metastable phase assumes a monoclinic layered structure similar to that of V₆O₁₃ with the *C2/m* (12) space group and lattice parameters $a_B = 12.03$ Å, $b_B = 3.69$ Å, $c_B = 6.42$ Å and $\beta = 106.6^{\circ 18}$. Unlike VO₂ (M), the decrease of the VO₂ (B) electrical resistivity across the phase transition occurs gradually over a very broad range of temperatures, decaying by ~4 orders of magnitude when heating from -123 °C to 127 °C. This transition is characterized by a change in the structure from a monoclinic semiconducting phase to another monoclinic semi-metallic phase¹. While the layered structure is maintained across the transition, the distance between neighboring V⁴⁺ ions slightly decreases, the reduction being larger for the ions in the (*ac*) plane, which represent half of the cations in the VO₂ (B) structure.

Recent experiments have demonstrated the possibility to synthesize textured VO₂ (B) thin films via pulsed laser deposition by lattice matching with SrTiO₃ (001) and LaAlO₃ (100) substrates^{10,19}. These results indicate that the thinnest VO₂ (B) films do not contain any VO₂ (M) phase and that the fraction of VO₂ (M) phase increases with the film thickness. However, the mechanism that governs the emergence of the VO₂ (M) phase and its distribution among the VO₂ (B) phase remains unclear. Besides their individual properties, combining the properties of the two phases by co-growing these VO₂ polymorphs or by designing and fabricating VO₂ (M)/VO₂

INRS-Énergie, Matériaux et Télécommunications, 1650, Boulevard Lionel Boulet, Varennes, Québec, J3X 1S2, Canada. Correspondence and requests for materials should be addressed to M.C. (email: chaker@emt.inrs.ca)

(B) heterostructures could be exploited for future optoelectronic materials with tunable properties suitable in advanced electronic and energy devices.

Herein, we first investigate the structural, morphological and electrical properties of VO₂ thin films of various thickness ($3 \text{ nm} \le t \le 38 \text{ nm}$) grown on LaAlO₃ (100) (LAO) substrates. We demonstrate that the growth of distorded monoclinic VO₂ (B) metastable phase breaks at a critical thickness (t_c) between 11 and 25 nm. Beyond that critical thickness, the strain-induced structural change further promotes the growth of the VO₂ (M) phase, which in turn results in the presence of a complex mixed-phase structure composed of VO₂ (B) and VO₂ (M) and in the appearance of the VO₂ (M) insulator-to-metal phase transition. We further exploit this behavior and demonstrate the possibility to tailor the growth of VO₂ polymorphs by modifying the properties of an ultrathin VO₂ (B) film via treatment of the film surface with an argon plasma. This process significantly modifies the vanadium valence state at the VO₂ (B) film surface and further promotes the growth of the VO₂ (M) phase.

Results

Natural growth of VO₂ (M) on VO₂ (B). The quality of the VO₂/LAO thin films was evaluated by acquiring XRD diffraction patterns of films with thicknesses ranging from 3 to 38 nm, as shown in Fig. 1(a). An interesting modification of the structure with thickness is observed. A detailed analysis reveals the presence of VO₂ (B) (00 *l*) peaks for film thickness between 3 and 25 nm, which suggests that the films are highly oriented along this

Figure 2. Thickness dependent morphological properties of VO₂ films. AFM images of (**a**) 3, (**b**) 5, (**c**) 11, (**d**) 25 and (**e**) 38 nm-thick VO₂ thin films grown on LAO substrates. (**f**) RMS surface roughness as a function of film thickness. The white and black rectangles in (**e**) represent the rough and flat regions, which have a large RMS roughness and a RMS roughness comparable to that of the thinnest VO₂ films (**a**–**c**), respectively.

direction. However, the thickest film (38 nm) behaves differently, with the intensity of the VO₂ (B) (00*l*) peaks being significantly smaller, while two other peaks appear at $2\theta = 27.8^{\circ}$ and 42.2° . These angles correspond to the Bragg angle of the (011) and (210) orientations of the VO₂ (M) phase, respectively. All the other peaks coincide with reflection planes from the LAO substrate. The lower intensity observed for the VO₂ (M) (011) and (210) peaks in the diffractogram of the 38 nm-thick film as compared to those of the VO₂ (B) (00*l*) peaks in the diffractograms of the thinner films (3–25 nm) is due to the difference in both the diffracting planes Miller indices and crystalline structure between VO₂ (M) and VO₂ (B) phases. Accordingly, the structure factor (*F*) associated with each of these phases diffracting planes is different, and so is the diffracted intensity ($I \propto F^2$). For films with thickness below or equal to 25 nm, all peaks located at $2\theta = 14.4^{\circ}$, 28.9°, 44 0° and 60.0° (corresponding to the Bragg angle of VO₂ (B) (001), (002), (003) and (004) orientations respectively) show a full width at half maximum (FWHM) that decreases with increasing thickness, while their intensity increases and their position shifts to higher 2θ values.

The presence of well-defined thickness-interference (Kiessig) fringes in the X-ray reflectivity (XRR) curves of Fig. 1(b) indicates that the film surface is smooth and the film-substrate interface well defined²⁰. The film thickness (*t*) can thus be calculated from these XRR curves from equation $(1)^{21}$

Figure 3. Thickness dependent electrical properties of VO₂ films. Temperature-dependent resistivity of 5, 11, 25 and 38-nm thick VO₂ thin films grown on LAO substrates for heating (red curve) and cooling (black curve) segments using a van der Pauw geometry.

$$t = \frac{(m-n)\lambda}{2(\sin\theta_m - \sin\theta_n)} \tag{1}$$

Where *m* and *n* are the orders of interference, and θ_m and θ_n are the corresponding diffraction angles, respectively. The thickness values obtained from the XRR measurements are consistent with those determined from the cross-section SEM images of a VO_2 test sample. Figure 1(c) shows the c-axis parameter and the FWHM

Figure 5. Effect of surface modification by plasma treatment on the structural properties of the VO₂ films. X-ray diffraction θ -2 θ patterns of the untreated (5 nm UT) and plasma-treated (5 nm T) 5 nm-thick VO₂ thin films on LAO substrate and of the 5 nm-thick VO₂ films deposited on the untreated (10 nm UT) and plasma-treated (10 nm T) 5 nm-thick VO₂ thin film surface.

Figure 6. Effect of surface modification by plasma treatment on the vanadium valence state content of the VO₂ films. (a) XPS spectra of the V2p_{3/2} peak deconvoluted into V⁵⁺, V⁴⁺, V³⁺ and V²⁺ peaks and (b) vanadium valence content of the untreated (5 nm UT) and plasma-treated (5 nm T) 5 nm thick VO₂ thin films on LAO substrate and of the 5 nm-thick VO₂ films deposited on the untreated (10 nm UT) and plasma-treated (10 nm T) 5 nm-thick VO₂ thin film surface.

of the (002) peak. The c-axis parameter gradually decays from 6.63 Å for the 3 nm-thick film to 6.44 Å for the 25 nm-thick film, which closely corresponds to the theoretical value of bulk VO₂ (B) ($c_B = 6.42$ Å), while its FWHM decreases from 2.14° to 0.39°. The decrease of the c-axis parameter means that the strain in the VO₂ films is gradually released as thickness grows.

The observed thickness-dependent behavior of the VO₂/LAO system can also be illustrated by observing the film surface topography. The AFM images of Fig. 2(a–e) indicate that the thinnest films (3 to 11 nm) are very smooth. On the other hand, the thicker films (25 and 38 nm) show the presence of some regions with granular morphology along with other regions where the surface remains flat. Accordingly, as depicted in Fig. 2(f), the RMS surface roughness of the films increases with thickness with a more drastic change (from ≈ 0.7 to ≈ 4.5 nm) between 11 and 25 nm. The presence of distinctive regions characterized by different morphologies on the surface of the 25 and 38 nm-thick films is evidenced in Fig. 2(d–e). More specifically, for the 38 nm-thick film (Fig. 2(e)), the measured RMS roughness increases from 0.81 nm for the flat region (black rectangle), in agreement with the measured values for the thinnest VO₂ (B) films, to 6.94 nm for the rough region (white rectangle). Combining both AFM and XRD analysis strongly suggests that these rough regions are composed of VO₂ (M) phase nano-crystallites that grow at the expense of the VO₂ (B) phase.

Figure 3 shows the electrical resistivity of the VO_2 films with different thicknesses as a function of the temperature for both heating and cooling. The resistivity of the 3 nm-thick film could not be measured as it was beyond the upper detection limit of the system over the available range of temperatures. Such behavior most likely originates from an early stage VO_2 film growth that is driven by Volmer-Weber island-type mechanism^{22,23}, which is characterized by the formation of unconnected separated islands. The film discontinuity therefore prevents the formation of a current pathway between the electrical contacts and rules out the possibility to reliably measure the 3 nm-thick VO₂ film resistivity. The monotonous resistivity decrease with increasing temperature for the thinnest films (5 and 11 nm) is accompanied by a small hysteresis at low temperature, in agreement with the typical behavior of VO₂ (B) thin films²⁴. On the other hand, for the 38 nm-thick VO₂ film, the temperature-dependent resistivity behaves like that of VO₂ (M) phase²⁵ as it decreases from 9.14 Ω cm at T = 20 °C in the insulating state to 0.96 m Ω cm at T = 105 °C in the metallic state. This provides evidence of the presence of the typical VO₂ (M) insulator-to-metal transition with transition temperatures $T_{IMT(h)} = 70.6$ °C for the heating cycle and $T_{IMT(c)} = 63.8$ °C for the cooling cycle, as calculated from the d(log(ρ))/dT curves. The average transition temperature is therefore $T_{IMT} = 67.2$ °C, a value similar to that of bulk VO₂ (M) ($T_{IMT} \approx 68$ °C), while the hysteresis width is 6.8 °C. Finally, the 25 nm-thick film exhibits a monotonous decrease of the resistivity in the temperature range [-90 °C - 55 °C], in agreement with the VO₂ (B) phase behavior. However, at $T \approx 65$ °C, this film shows an abrupt decrease of its resistivity (from 40 m Ω cm to 6 m Ω cm), as observed for the VO₂ (M) phase¹⁴.

Overall, the thickness dependence of the phase of the VO₂ thin films deposited on LAO substrates clearly indicates that the exclusive growth of VO₂ (B) ceases at some critical thickness where the growth of highly-oriented metastable monoclinic VO₂ (B) films is no longer possible. Beyond that thickness, the monoclinic VO₂ (M) phase appears and the films are then composed of a mixture of VO₂ (B) and VO₂ (M) polymorphs.

The VO₂ (B) monoclinic structure observed for the thinnest VO₂ thin films results from the good lattice matching and from the corresponding consistent strain with the LAO substrate. For films thicker than 11 nm, removing this strain through the creation of dislocations and defects strongly modifies locally and randomly the film surface morphology. Accordingly, the growth of the VO₂ (B) polymorph is prevented, which promotes that of the VO₂ (M) polymorph and leads to the coexistence of both VO₂ (B) and VO₂ (M) phases for films with thickness $t > t_c$. These observations therefore indicate that strain significantly influence the competing nature of VO₂ polymorphs growth, so as it does for the ultrafast structural transition dynamics following above-gap photoexcitation²⁶. Likewise, they strongly suggest that the surface properties of the VO₂ (B) film, which play a key role in the observed phase growth change from VO₂ (B) to VO₂ (M), should definitely be considered to further control the growth of these polymorphs. Indeed, a local modification of the surface of the VO₂ (B) films, which is very smooth for the thinnest VO₂ films, could locally be induced to promote the growth of the VO₂ (M) phase in specific regions.

Induced growth of VO₂ (M) on VO₂ (B) ultrathin films. To explore the possibility of inducing the growth of the VO₂ (M) phase, a 5 nm-thick VO₂/LAO sample displaying only the VO₂ (B) phase was exposed to an argon plasma to modify its surface. In this experiment, performed at 20 °C, half of the sample surface was covered by a bare LAO substrate and the full sample was further exposed for 30 seconds to an argon plasma at a pressure of 10 mTorr with a substrate bias of 135 V. This experiment, which enables to expose only half of the ultrathin VO₂ film as the other half remains as deposited, also ensures that the properties of the VO₂ film surface are absolutely identical prior to the plasma treatment. After plasma treatment, the bare LAO substrate was removed and another 5 nm of VO₂ was deposited over the whole sample. This yields on one half of the sample a 10 nm-thick untreated VO₂ film and on the other half a mixed 10 nm-thick VO₂ film composed of a 5 nm-thick treated layer.

The morphological (AFM) and structural (XRD) properties of each half of the VO₂ film were characterized prior to and after plasma treatment, and also after the second VO₂ deposition. Figures 4 and 5 show the surface morphology and diffraction patterns of the untreated film (5 nm UT), of the treated film (5 nm T), of the film deposited on the untreated surface (10 nm UT) and of the film deposited on the plasma-treated surface (10 nm T). It is observed that plasma treatment modifies neither the morphology of the 5 nm-thick VO₂ film nor its RMS surface roughness. Indeed, the topography of both 5 nm UT (Fig. 4(a)) and 5 nm T (Fig. 4(b)) is flat and smooth with small RMS roughness values of 0.32 nm and 0.29 nm, respectively. The structural properties are also unaffected by the plasma treatment as the diffractograms of both 5 nm UT and 5 nm T films exclusively display VO₂ (B) (00l) peaks. Nevertheless, a slight intensity reduction is observed for the VO₂ (B) (00l) peaks present in the diffractogram of the 5 nm T film with regards to that of the 5 nm UT film. This small intensity reduction could result from a plasma treatment-induced surface amorphization within the top first few atomic layers of the 5 nm T film. While the surface morphology of the 10 nm UT film (Fig. 4(c)) remains similar to that of the 5 nm UT and the 5 nm T films with only a slightly higher RMS roughness of 0.42 nm, that of the 10 nm T film (Fig. 4(d)) is significantly modified. In this case, the surface is covered with nanograins and its RMS roughness increases to 9.86 nm. In addition, the structural properties of the 10 nm T film are significantly altered as compared to those of the 10 nm UT film. Indeed, as shown in Fig. 5, the intensity of the VO_2 (B) (00 *l*) peaks of the 10 nm T film significantly decreases as compared with that of the three other films while the VO2 (M) (011) peak emerges. Clearly, these effects exclusively result from the plasma treatment of the underlying VO2 ultrathin film, which indicates that this treatment has induced a modification of the growth mechanisms. Interestingly, these effects are also similar to those previously observed when the thickness of the VO_2 films is increased from 11 nm to 38 nm so as to exceed the critical thickness.

Origin of the induced growth. To further gain insight in the mechanisms governing the phase growth change induced by plasma treatment, X-ray photoelectron spectroscopy (XPS) was performed on the four samples (5 nm UT, 5 nm T, 10 nm UT and 10 nm T). The $V2p_{3/2}$ core level binding energy was used to characterize the oxidation state of vanadium²⁷. Therefore, the vanadium valence state content of the VO₂ films was determined at each step of the process by deconvoluting the $V2p_{3/2}$ peak in a combination of V^{5+} , V^{4+} , V^{3+} and V^{2+} Gaussian/ Lorentzian peaks, as depicted in Fig. 6(a). The position of these peaks was ascribed to 517.4 eV, 516.1 eV, 514.1 eV and 512.9 eV, respectively²⁸ and the spectra were fitted using the CasaXPS software and a Shirley function to

remove the background. The vanadium valence state content of the VO_2 films shown in Fig. 6(b) was calculated from the ratio of the integrated areas of the V^{5+} , $V^{4+} V^{3+}$ and V^{2+} peaks.

The spectrum of the 5 nm UT film is mainly due to the V⁵⁺ (39.4%) and V⁴⁺ (57.7%) valence states with negligible contribution from V³⁺ (2.9%) and none from V²⁺ valence states. It is similar to that of the 10 nm UT film, but strongly differs from that of the 5 nm T film. Indeed, the latter film shows a broader XPS spectrum that is shifted to lower binding energies, so that the contribution from the V⁵⁺ valence state is strongly reduced to 11.1% and that of the V³⁺ valence state is enhanced from 2.9% to 32.4%, while a small contribution from the V²⁺ valence state (2.5%) appears. For the 10 nm T film, the spectrum width shrinks back and returns to higher binding energies, like 5 nm UT and 10 nm UT films. Accordingly, the main contributions comes from the V⁵⁺ (54.6%) and V⁴⁺ (43.1%) valence states while the V³⁺ valence state negligibly contributes (2.5%) and the V²⁺ not at all. One can therefore conclude that plasma treatment strongly modifies the surface chemical states of the ultrathin VO₂ (B) film, lowering the contribution of the higher valence state (V⁵⁺) and enhancing that of the lower valence states (V³⁺ and V²⁺). This indicates a larger amount of oxygen vacancies at the surface²⁹⁻³¹, which favors the growth of the VO₂ (M) phase as compared to that of VO₂ (B). Furthermore, even though the stoichiometry and chemical states of the VO₂ (B) film are significantly modified by plasma treatment, the stoichiometry of the subsequently grown VO₂ film is preserved.

The change of phase growth induced by plasma treatment strongly affects the structural and morphological properties of the VO₂ ultrathin film. Indeed, the 2D growth of pseudomorphic metastable VO₂ (B) film exhibiting a flat surface topography switches to a 3D island-type growth of stable VO₂ (M) nanocrystallites with rough surface, forming a VO₂ (B)/VO₂ (M) composite structure. These effects are very similar to those observed when the VO₂ film thickness is increased beyond the critical thickness lying between 11 and 25 nm. However, tailoring the phase growth offers the possibility to spatially control both the size and location of the emerging VO₂ (M) phase regions using for example a patterning method such as lithography. In contrast, natural phase growth results in randomly distributed phase mixtures. Tailoring the phase growth could thus be exploited to control the VO₂ (B) ultrathin film, paving the way to the synthesis of various VO₂ (M)/VO₂ (B) complex heterostructures.

Conclusions

In conclusion, by investigating the morphological, structural and electrical properties of VO₂ films grown on LAO substrates with various thickness (3 nm $\leq t \leq$ 38 nm), the growth of single pseudomorphic distorted metastable monoclinic VO₂ (B) phase was shown to change once a critical thickness lying between 11 and 25 nm is reached. This strain-induced change of structural phase growth is accompanied by the increase of surface roughness and by the appearance of the stable VO₂ (M) phase. The thicker films exhibit a complex mixed-phase structure composed of VO₂ (B) and VO₂ (M) polymorphs and undergo the typical VO₂ (M) first-order phase transition at $T_{\rm IMT} \approx 68$ °C. By modifying the VO₂ (B) ultrathin film using plasma treatment, the possibility to induce this change of phase growth was demonstrated and further related to a strong modification of the vanadium valence state on the VO₂ (B) film surface and to the corresponding creation of oxygen vacancies. Natural or induced phase growth change not only provides a stimulating environment for investigating the fundamental issues related to the complex competing nature of the VO₂ polymorphs, but also presents a strong potential for the fabrication of VO₂ (M)/VO₂ (B) heterostructures at the nanoscale. This opens new opportunities of applications in the field of advanced electronics and energy where nanostructured electronic materials with tunable properties are required, as well as for the design of metamaterials for optoelectronic applications.

Methods

Sample growth. Reactive pulsed laser deposition (RPLD) was used to fabricate VO_2 thin films by ablating a commercial vanadium metal target (99.95% purity, KJ Lesker). The films were deposited on LaAlO₃ (100) substrates. The growth temperature was 550 °C and the oxygen pressure was kept at 21 mTorr. The detailed growth conditions were reported in a previous study¹⁰.

XRD, AFM, XPS and electrical characterization. The structural properties of the films were examined by X-ray diffraction (XRD) in the θ -2 θ configuration, between 10° and 65°, and in the X-ray reflectivity (XRR) configuration using a PANalytical's X'Pert PRO Materials Research Diffractometer with Cu K α radiation operated at 45 kV and 40 mA. The film thickness was determined by cross-section scanning electron microscopy (SEM, JEOL JSM-7401F) on a test sample and by X-ray reflectivity. The surface morphology of the films was imaged by atomic force microscopy (AFM, DI-EnviroScope, Veeco) while X-ray photoelectron spectroscopy (XPS) measurements were carried out using a VG Escalab 220I-XL system with Al K α ($h\nu$ = 1486.6 eV) radiation. The resistivity of the films was measured in van der Pauw geometry using a Quantum Design physical properties measurement system (PPMS) and a cryostat. The electrical contacts (100 nm Au/300 nm Cu/5 nm Cr) were deposited at the corners of the samples using e-beam evaporation.

Surface treatment by argon ions. Surface treatment was achieved in a cylindrical Inductively Coupled Plasma reactor (ICP) from Oxford instruments (Plasmalab 100, model ICP 380). In this system, the ICP plasma was generated at a frequency of 2 MHz and the power was set at 1 kW. The kinetic energy of the ions was controlled by applying 13.56 MHz RF power on the chuck table, yielding a bias voltage of 135 V. The experiments were carried out in pure Ar and the gas pressure (10 mTorr) was controlled by means of a throttling valve located at the bottom of the processing chamber.

Data availability. The data that support the findings of this study are available from the corresponding author on request.

References

- 1. Srivastava, A. et al. Selective growth of single phase VO₂(A, B, and M) polymorph thin films. APL Mater. 3, 026101 (2015).
- 2. Imada, M., Fujimori, A. & Tokura, Y. Metal-insulator transitions. Rev. Mod. Phys. 70, 1039–1263 (1998).
- Basov, D. N., Averitt, R. D., van der Marel, D., Dressel, M. & Haule, K. Electrodynamics of correlated electron materials. *Rev. Mod. Phys.* 83, 471–541 (2011).
- Mai, L. et al. Nanoscroll buffered hybrid nanostructural VO₂(B) cathodes for high-rate and long-life lithium storage. Adv. Mater. 25, 2969–2973 (2013).
- Pei, C. et al. VO₂ nanoflakes as the cathode material of hybrid magnesium–lithium-ion batteries with high energy density. ACS Appl. Mater. Interfaces 9, 17060–17066 (2017).
- Wu, C., Wei, H., Ning, B. & Xie, Y. New vanadium oxide nanostructures: Controlled synthesis and their smart electrical switching properties. Adv. Mater. 22, 1972–1976 (2010).
- Appavoo, K. *et al.* Ultrafast phase transition via catastrophic phonon collapse driven by plasmonic hot-electron injection. *Nano Lett.* 14, 1127–1133 (2014).
- 8. Shukla, N. et al. A steep-slope transistor based on abrupt electronic phase transition. Nat. Commun. 6, 7812 (2015).
- Zhi, B. et al. Electric-field-modulated nonvolatile resistance switching in VO₂/PMN-PT(111) heterostructures. ACS Appl. Mater. Interfaces 6, 4603–4608 (2014).
- Émond, N., Hendaoui, A. & Chaker, M. Low resistivity W_xV_{1-x}O₂-based multilayer structure with high temperature coefficient of resistance for microbolometer applications. *Appl. Phys. Lett.* **107**, 143507 (2015).
- 11. Zhou, J. et al. VO₂ thermochromic smart window for energy savings and generation. Sci. Rep. **3**, 3029 (2013).
- 12. Chen, Z. *et al.* Self-assembled, nanostructured, tunable metamaterials via spinodal decomposition. ACS Nano **10**, 10237–10244 (2016). 13. Émond, N., Torriss, B., Morris, D. & Chaker, M. Natural metamaterial behavior across the phase transition for $W_x V_{1-x} O_2$ films
- 15. Emond, N., forriss, B., Morris, D. & Chaker, M. Natural metamaterial behavior across the phase transition for $w_x v_{1-x} O_2$ in revealed by terahertz spectroscopy. *Acta Mater.* **140**, 20–30 (2017).
- 14. Morin, F. J. Oxides which show a metal-to-insulator transition at the Neel temperature. *Phys. Rev. Lett.* **3**, 34–36 (1959).
- 15. Zylberstejn, A. & Mott, N. F. Metal-insulator transition in vanadium dioxide. Phys. Rev. B 11, 4383-4395 (1975).
- 16. Eyert, V. The metal-insulator transitions of VO₂: A band theoretical approach. Ann. Phys. **11**, 650–702 (2002).
- Goodenough, J. B. The two components of the crystallographic transition in VO₂. *J. Solid State Chem.* 3, 490–500 (1971).
 Oka, Y., Yao, T., Yamamoto, N., Ueda, Y. & Hayashi, A. Phase transition and V⁴⁺ V⁴⁺ pairing in VO₂(B). *J. Solid State Chem.* 105, 271–278 (1993).
- Chen, A. et al. Textured metastable VO₂(B) thin films on SrTiO₃ substrates with significantly enhanced conductivity. Appl. Phys. Lett. 104, 071909 (2014).
- 20. Sinha, S. K. X-ray diffuse scattering as a probe for thin film and interface structure. J. Phys. III France 4, 1543-1557 (1994).
- 21. Lu, Y. et al. Magnetoresistance of coherently strained La_{2/3}Ba_{1/3}MnO₃/SrTiO₃ superlattices. Phys. Rev. B 62, 15806–15814 (2000).
- Paik, H. et al. Transport properties of ultra-thin VO₂ films on (001) TiO₂ grown by reactive molecular-beam epitaxy. Appl. Phys. Lett. 107, 163101 (2015).
- Rúa, A., Díaz, R. D., Lysenko, S. & Fernández, F. E. Semiconductor-insulator transition in VO₂ (B) thin films grown by pulsed laser deposition. J. Appl. Phys. 118, 125308 (2015).
- 24. Corr, S. A. *et al.* VO₂(B) nanorods: Solvothermal preparation, electrical properties, and conversion to rutile VO₂ and V₂O₃. *J. Mater. Chem.* **19**, 4362–4367 (2009).
- 25. Nakano, M. et al. Collective bulk carrier delocalization driven by electrostatic surface charge accumulation. Nature 487, 459–462 (2012).
- He, X. et al. Photoinduced strain release and phase transition dynamics of solid-supported ultrathin vanadium dioxide. Sci. Rep. 7, 10045 (2017).
- Silversmit, G., Depla, D., Poelman, H., Marin, G. B. & De Gryse, R. Determination of the V2p XPS binding energies for different vanadium oxidation states (V⁵⁺ to V⁰⁺). J. Electron Spectrosc. Relat. Phenom. 135, 167–175 (2004).
- 28. Hryha, E., Rutqvist, E. & Nyborg, L. Stoichiometric vanadium oxides studied by XPS. Surf. Interface Anal. 44, 1022-1024 (2012).
- 29. Xu, H. Y. *et al.* Effects of annealing ambient on oxygen vacancies and phase transition temperature of VO₂ thin films. *RSC Adv.* **6**, 79383–79388 (2016).
- Zhang, J. et al. Evolution of structural and electrical properties of oxygen-deficient VO₂ under low temperature heating process. ACS Appl. Mater. Interfaces 9, 27135–27141 (2017).
- Jeong, J. et al. Suppression of metal-insulator transition in VO₂ by electric field-induced oxygen vacancy formation. Science 339, 1402–1405 (2013).

Acknowledgements

The authors are grateful to the Canada Research Chair program and to the "Fonds de recherche du Québec – Nature et technologies (FRQNT)" for their financial support.

Author Contributions

N.É. prepared the VO₂ samples and performed the XRD, XPS and electrical measurements. B.T. performed the AFM measurements. N.É. analysed the data. N.É. and B.T performed the surface treatment of the film. The manuscript was prepared by N.É. with assistance from B.T. and M.C. All the authors discussed the results. M.C. directed the overall project.

Additional Information

Competing Interests: The authors declare no competing interests.

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2018