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Heterogeneity between late-onset Parkinson’s disease (LOPD) and early-onset
Parkinson’s disease (EOPD) is mainly reflected in the following aspects including
genetics, disease progression, drug response, clinical manifestation, and
neuropathological change. Although many studies have investigated these differences
in relation to clinical significance, the functional processing circuits and underlying neural
mechanisms have not been entirely understood. In this study, regional homogeneity
(ReHo) and amplitude of low-frequency fluctuation (ALFF) maps were used to explore
different spontaneous brain activity patterns in EOPD and LOPD patients. Abnormal
synchronizations were found in the motor and emotional circuits of the EOPD group, as
well as in the motor, emotional, and visual circuits of the LOPD group. EOPD patients
showed functional activity change in the visual, emotional and motor circuits, and LOPD
patients only showed increased functional activity in the emotional circuits. In summary,
the desynchronization process in the LOPD group was relatively strengthened, and
the brain areas with changed functional activity in the EOPD group were relatively
widespread. The results might point out different impairments in the synchronization
and functional activity for EOPD and LOPD patients.

Keywords: resting-state fMRI, early-onset Parkinson’s disease, late-onset Parkinson’s disease, motor, vision,
emotion

INTRODUCTION

Parkinson’s disease (PD) is a progressive and prevalent neurodegenerative disease in the
elderly (de Lau and Breteler, 2006) with several clinical features including motor symptoms
(bradykinesia, tremor, rigidity, and gait disturbance) and non-motor symptoms (olfactory
dysfunction, constipation, cognitive decline, and depression) (Berg et al., 2015; Postuma et al.,
2015). In most cases, the first motor symptom appears after age of 50 (late-onset PD, LOPD),
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while some patients may present with a parkinsonian syndrome
before the age of 50 (early-onset PD, EOPD) (Schrag and Schott,
2006). The clinical features, disease progression and medical
management vary between LOPD and EOPD, while little is
known about the neural basis.

Recent studies of genetics, disease progression, drug response,
and clinical manifestation have provided evidence of different
pathological heterogeneity in LOPD and EOPD. Compared with
LOPD, EOPD is more affected by genetic factors and the relatives
of EOPD patients have a higher risk in developing PD (Stern et al.,
1991). Although gait disturbance and dystonia are more common
in LOPD patients, EOPD patients have higher prevalence of
dyskinesia (Schrag and Schott, 2006; Wickremaratchi et al., 2009),
a much slower disease progression (Inzelberg et al., 2004), and
levodopa treatment effectiveness (Spica et al., 2013). In terms
of non-motor symptoms, EOPD patients present with a better
cognitive function and higher incidence of depression (Schrag
and Schott, 2006; Spica et al., 2013). Previous studies have found
that neuropathological change was different between EOPD and
LOPD (Mayer et al., 1986; Gibb and Lees, 1988; Shih et al., 2007;
Liu et al., 2015), which may be related to clinical heterogeneity.
The pathological results showed that dopaminergic neuron loss
of substantia nigra was more serious in EOPD than that in
LOPD (Mayer et al., 1986). The studies of single photon emission
computed tomography (SPECT) revealed more severe damage to
the dopaminergic system and a different dysfunction pattern of
striatum in EOPD (Shih et al., 2007; Liu et al., 2015). However,
pathological study seems to be limited by the difficulty of
obtaining brain specimen and poor repeatability; a more effective
tool is needed for further research.

Resting-state functional MRI (rs-fMRI) is a non-invasive
neuroimaging technique that has been widely applied to
investigate spontaneous brain activity in vivo (Smith, 2012).
The regional homogeneity (ReHo) and the amplitude of low-
frequency fluctuations (ALFFs) are common approaches for
depicting regional characteristics of rs-fMRI data. The ReHo
calculates the synchronization of low-frequency fluctuations
between a given voxel with neighboring voxels (Zang et al.,
2004), reflecting the neural function synchronization in local
brain region. ALFF measures the ALFFs of individual voxels
(Zang et al., 2007), characterizing spontaneous neural activity
in local brain region. The rs-fMRI technique has been widely
used to explore the neural activity in PD (Lewis et al.,
2011; Gao and Wu, 2016; Zhang et al., 2016; Zeng et al.,
2017). PD patients showed relatively weakened striatum-cortical
and striatum-cerebellar connections and strengthened cortico-
cerebellar connection (Wu et al., 2011).

Further to consideration of clinical symptoms, previous
studies had found that tremor-dominant PD showed an increased
functional connectivity (FC) in the thalamus of the cerebello-
thalamo-cortical pathway (Lewis et al., 2011; Zhang et al., 2016)
and an increased FC between the subthalamic nucleus (STN)
and cerebellum, while PD patients with posture instability and
gait difficulty showed a decreased FC among the putamen, pons,
and STN (Wang et al., 2016). Default mode network (DMN)
dysfunction was involved in cognitive decline (Lucas-Jimenez
et al., 2016), and a study found that the efficiency of DMN

was lost with the progression of PD (Zeng et al., 2017). Intact
prefrontal-limbic connections and reduced amygdala volumes
might result in depression in PD patients (Surdhar et al., 2012).
These findings indicated that different clinical symptoms were
related to specific disrupted brain function patterns. Use of ALFF
has revealed significant alterations of brain activity in the motor
control related regions (Xiang et al., 2016), visual processing
related regions (Yao et al., 2015), and emotional processing
related regions (Hu et al., 2015b) in PD. With the ReHo analysis,
the dysfunction of neural synchronization in the cortico-striatal-
thalamo-cortical circuit (CSTS) (Zhang et al., 2015), visual
processing circuit (Li et al., 2016), and emotional processing
circuit (Hu et al., 2019) have been clarified in PD. In terms of
age of onset, the synchronizations in both the right putamen
and left superior frontal gyrus were different between EOPD and
LOPD, and the ReHo values of the right putamen were negatively
correlated with the Unified Parkinson’s Disease Rating Scale
(UPDRS) total scores in LOPD that indicated the distribution
of cerebral ReHo was associated with onset-age (Sheng et al.,
2016). Sheng et al.’s (2016) study also found higher ReHo values
in the left inferior temporal gyrus in EOPD and suggested that
further studies are needed to confirm these findings and effects
on the emotion regulation in EOPD. In addition, the different
striatal FC patterns between EOPD and LOPD were found, and
that revealed a more strengthened compensatory mechanism
in motor processing network in EOPD (Hou et al., 2016). To
our best knowledge, previous studies for different onset-age PD
subtypes lack a systemic point of view and integrity; the function
change of brain region beyond motor control circuit was not fully
explored. To this end, ReHo and ALFF values were calculated to
explore the brain activity pattern in motor, visual, and emotional
functions for different onset-age PD subtypes.

In the present study, ReHo and ALFF methods were used
to evaluate altered spontaneous brain activity pattern in the
motor, visual, and emotional circuits for EOPD and LOPD
patients compared with age-matched healthy controls (HC). The
correlation between these values and clinical features was further
analyzed. We assumed that the neural circuits’ change patterns
were differently altered in EOPD and LOPD. We supposed
to clarify the neural basis mechanism of clinical heterogeneity
of EOPD and LOPD.

MATERIALS AND METHODS

Participants
In the current study, 40 patients with idiopathic PD and 20
age-matched HC were enrolled. PD patients were diagnosed
according to the UKPD Society Brain Bank criteria (Hughes et al.,
1992). The Movement Disorder Society-Unified Parkinson’s
Disease Rating Scale (MDS-UPDRS) was used to quantify
parkinsonian symptoms. Mini-Mental State Examination
(MMSE), Montreal Cognitive Assessment (MoCA), Hamilton
Depression Scale (HAMD), and Hamilton Anxiety Scale
(HAMA) were conducted to evaluate the cognitive function
and emotional status. The inclusion criteria were as follows:
age between 40 and 65 years, Hoehn-Yahr stage between
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1 and 3, MMSE score ≥ 24, right handed and no history
of other neurological disease. All PD patients were sorted
into two groups according to their age at onset: 16 EOPD
patients (age 49.8 ± 3.6 years, 8 male) and 24 LOPD patients
(age 60.8 ± 3.5 years, 16 male), as well as the two groups
with age-matched HC, 10 young healthy controls (HCy, age
49.7 ± 2.3 years, 5 male) and 10 older healthy controls (HCo,
age 58.0 ± 4.1 years, 3 male), were recruited for further analysis.
Anti-parkinsonian medications were withdrawn for 12 h before
experiment. The study was approved by the ethics committee of
the Second Affiliated Hospital of Zhejiang University School of
Medicine, and informed consent was written before experiment.

Image Acquisition and Analysis
Participants were scanned on a 3T MRI scanner (Magnetom 3T
Siemens, Prisma, Germany) with a 20-channel phased array head
coil. The anatomical images were obtained by using a volumetric
3D-magnetization prepared rapid acquisition gradient
echo sequence (T1WI-3D-MPRAGE) with TR = 2300 ms,
TE = 2.32 ms, flip-angle = 8◦, slice-thickness = 0.9 mm, and
voxel size = 0.9 mm × 0.9 mm × 0.9 mm. The rs-fMRI data
were acquired by using an echo-planar image (EPI) pulse
sequence with TR = 3000 ms, TE = 26 ms, flip-angle = 76◦,
slice-thickness = 3 mm, and voxel size = 3 mm × 3 mm × 3 mm.

The image data was analyzed using the brantmaster
toolkit1 with MATLAB (version 2013a, MathWorks Inc., MA,
United States). The preprocessing procedures consisted of the
following steps: (1) converting dicom format to nifti with the
first 10 time points discarded; (2) time alignment across slices; (3)
head motion correction (exclusion criteria: displacement >3 mm
or angular rotation >3 in any direction); (4) coregistration
and spatial normalization; (5) denoise and band pass filtering
(0.01–0.08 Hz); and (6) smoothening (a 6-mm full-width at
half-maximum Gaussian kernel). The framewise displacement
(FD) value was calculated for head motion estimate (Power
et al., 2012). The ALFF map and ReHo map of each subject

1http://github.com/kbxu/brant

were calculated with the brantmaster toolkit to evaluate the
local spontaneous activity and brain functional synchronization
(Zang et al., 2004, 2007). Brain regions with significant difference
between EOPD vs HCy or LOPD vs HCo were extracted as masks,
signals within masks were calculated using the REST software2.

Statistical Analysis
Demographic and clinical data of EOPD, LOPD, and age-
matched HC groups were analyzed using GraphPad Prism
software (version 5.0, GraphPad Software, United States).
Categorical variables (gender) were analyzed with Pearson Chi-
square (χ2) tests, and the two sample t-test was performed for
continuous variables (age, disease duration, H-Y stage, UPDRS,
UPDRS-III, MMSE, MoCA, HAMD, and HAMA).

MRI data of EOPD and LOPD with respective age-matched
HCs were analyzed and compared using brantmaster toolkit. Two
sample t-test was used to compare EOPD with HCy, and LOPD
with HCo to find the brain regions with significant difference in
ALFF and ReHo map. The statistical significance threshold was
set at p < 0.01, voxel size > 40 corresponding to a corrected
p < 0.01 as determined by AlphaSim correction. Correlation
between clinical data and functional image calculated inside the
clusters that showed significant difference was performed using
Spearman correlation analysis, p < 0.05 was defined as statistical
significance with Bonferroni correction. ANOVA analysis for
FD value between EOPD, LOPD and corresponding HCs was
performed, and p < 0.05 was defined as statistically significance.

RESULTS

Demographic and Clinical Features
Demographic and clinical features are summarized in Table 1.
EOPD and LOPD groups did not statistically differ with respect to
disease duration, disease severity and all clinical assessment scale
score. The LOPD group showed lower MMSE score (p = 0.03,

2http://www.resting-fmri.sourceforge.net

TABLE 1 | Demographic information and clinical features of PD patients and healthy controls.

EOPD HCy EOPD vs. HCy (p-value) LOPD HCo LOPD vs. HCo (p-value)

Sample 14 10 26 10

Handedness (right) 14 10 26 10

Age (years) 49.8 ± 3.6 49.7 ± 2.3 0.94 60.8 ± 3.5 58.0 ± 4.1 0.07

Gender (male) 8 5 0.7292 16 3 0.0896

Disease duration (month) 26.9 ± 17.0 NA 22.0 ± 17.5 NA

H-Y stage 1.71 ± 0.61 NA 1.42 ± 0.58 NA

UPDRS 34.7 ± 10.6 NA 33.7 ± 14.0 NA

UPDRS-III 21.1 ± 8.3 NA 19.8 ± 10.5 NA

MMSE 26.4 ± 4.4 26.4 ± 2.7 0.99 25.9 ± 3.6 27.9 ± 1.3 0.03

MoCA 24.4 ± 4.4 24.6 ± 3.7 0.89 22.0 ± 4.2 26.5 ± 3.2 0.003

HAMD 6.2 ± 4.1 3.7 ± 2.5 0.08 6.7 ± 4.7 3.0 ± 2.5 0.005

HAMA 4.6 ± 2.6 4.1 ± 4.0 0.73 5.8 ± 3.7 3.0 ± 2.2 0.01

Data are given as mean ± SD. MMSE, Mini-Mental State Examination; MoCA, Montreal Cognitive Assessment; HAMD, Hamilton Depression Scale; HAMA, Hamilton
Anxiety Scale; UPDRS, Unified Parkinson’s Disease Rating Scale; NA, not applicable.
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FIGURE 1 | ReHo analysis. Two-sample t-tests results are presented, voxel level p < 0.01, voxel size >40, corrected by AlphaSim. Area in blue with significantly
decreased ReHo value; area in yellow and red with significantly increased ReHo value.

two sample t-test) and MOCA score (p = 0.003, two sample
t-test) but higher HAMA score (p = 0.01, two sample t-test) and
HAMD score (p = 0.005, two sample t-test) as compared with
HCo, while there was no significant difference between EOPD
and HCy. In addition, the results of mean FD value showed
no significant difference between four groups using ANOVA
(p = 0.27), indicating the head motion characteristics were similar
between PD patients and HC.

Altered ReHo in PD Patients
ReHo results of PD subgroups compared to corresponding
age-matched HC groups were shown in Figure 1, and the
local maxima of ReHo values obtained by two-sample t-test
are listed in Table 2. For the EOPD compared with HCy,

ReHo values of brain regions involved in motor processing
circuits changed with a decreased value in right precentral
gyrus (PreCG_R) and increased value in left cerebellum_4_5
(lCbe_4_5). Besides, altered ReHo values were also found in
emotional processing circuits presented with decreasing in left
superior frontal gyrus (SFG_L), right medial superior frontal
gyrus (SFGmed_R), right middle frontal gyrus (MFG_R) and
left middle temporal_Pole (TPOmid_L). In addition, ReHo
values by comparison of LOPD and HCo mainly changed
in visual processing circuits including decreased ReHo in
bilateral fusiform gyrus (FFG) and right lingual gyrus (LING_R).
Decreased ReHo values were also found in the left middle
temporal gyrus (MTG_L) and left pallidum (PAL_L). While
increased ReHo values were found in left angular gyrus (ANG_L).
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TABLE 2 | ReHo analysis.

Cluster Brain regions MNI coordinates Voxel size Peak

X Y Z

EOPD vs. HCy

Cluster 1 Precentral_R 42 −18 66 62 −3.9154

Cluster 2 Frontal_Sup_L −21 30 45 41 −4.6176

Cluster 3 Frontal_Sup_Medial_R 6 57 21 94 −4.163

Cluster 4 Frontal_Mid_R 33 60 6 92 −4.8285

Cluster 5 −18 −18 −30 265 5.6964

Cerebellum_4_5_L 46

Cluster 6 Temporal_Pole_Mid_L −36 15 −33 50 5.1976

LOPD vs. HCo

Cluster 1 Fusiform_L −30 −66 −12 70 −3.9464

Cluster 2 Lingual_R 21 −54 −9 325 −4.6391

Fusiform_R 80

Cluster 3 Temporal_Mid_L −60 6 −21 66 −5.3395

Cluster 4 Pallidum_L −21 0 −3 44 −4.0632

Cluster 5 Angular_L −42 −72 42 82 3.7453

The changed brain regions in fMRI images among EOPD, LOPD, and age-matched
HC group. MNI coordinate, Montreal coordinate; the p-value is smaller than 0.01
and voxel size is more than 40 (p < 0.01, corrected by AlphaSim).

p < 0.01, voxel size >40 was defined as statistically significant
corrected by AlphaSim.

Altered ALFF in PD Patients
Amplitude of low-frequency fluctuation results of EOPD and
LOPD compared with age-matched HC, respectively, are shown
in Figure 2, and the local maxima of ALFF values obtained
by two-sample t-test are listed in Table 3. In comparison with
HCy, the EOPD group showed increased ALFF values in the
right middle temporal gyrus (MTG_R) related to emotional
processing circuits and the areas of visual processing circuits
including right superior occipital gyrus (SOG_R) and right
middle occipital gyrus (MOG_R), while the decreased ALFF
values in the right supplementary motor area (SMA_R) and
left thalamus (THA_L) related to motor processing circuit.
Additionally, we found increased ALFF values in the left angular
gyrus (ANG_L) in the LOPD group compared with the HCo
group. Here, p < 0.01 and voxel size >40 was defined as statistical
significance corrected by AlphaSim.

Significant Correlation Between
Functional Image and Clinical Feature
The clinical status with regard to ReHo and ALFF changes
were explored using Spearman rank correlations. The results
revealed a significantly positive correlation between ReHo values
of SFGmed_R and HAMD score in the EOPD group (r = 0.5703,
p = 0.0448, not corrected), shown in Figure 3A. Figure 3B
showed a significantly positive correlation between ReHo values
of FFG_L and MOCA score in the LOPD group (r = 0.4972,
p = 0.0474, corrected by Bonferroni). There was no significant
correlation between ALFF values and clinical features.

DISCUSSION

The current study exposed the significantly different spontaneous
brain activity pattern between EOPD, LOPD and corresponding
age-matched HC groups in the motor, emotional, and visual
processing circuits. As compared with HCy, EOPD showed lower
ReHo and ALFF values in the motor processing circuits, as well
as lower ReHo value and higher ALFF value in the emotional
processing circuits. As compared with HCo, we found that
ReHo decreased in the motor, emotional and visual processing
circuits, while ReHo and ALFF increased in the ANG_L related
to emotional processing circuit.

Strengthened Cerebellum
Synchronization Might Compensate for
Impaired Motor Circuits
Functional connectivity changes in the CSTS circuit have been
demonstrated that were associated with clinical manifestations,
such as bradykinesia and rigidity (Wu et al., 2011), and
weakened FC in the CSTS pathway was found in PD patients
(Hacker et al., 2012; Wu et al., 2012). In the current study,
EOPD showed decreased ReHo in PreCG_R and decreased
ALFF in SMA_R and THA_L, and LOPD showed decreased
ReHo in PAL_L. These results indicated both EOPD and
LOPD groups have lower synchronization and more impaired
functional activity in motor processing circuits. Although the
decreased ReHo values of brain areas in this study are different
from those reported by Sheng et al.’s (2016) study, all these
areas are involved in CSTS circuit. These results accord
with the pathological change of substantia nigra results in
basal ganglia dysfunction in PD and the oscillatory activity
changes in the motor related nuclei (Lindenbach and Bishop,
2013). Additionally, several studies have reported the damage
of the dopaminergic system was more serious in EOPD
than that in LOPD (Mayer et al., 1986; Schrag and Schott,
2006). Consistent with pathological change, we found a more
widespread dysfunction within CSTS circuit in EOPD under
the condition of no significantly different disease duration
and severity. We also found higher synchronization in the
lCbe_4_5 in EOPD. As we know, the cerebellum predominantly
contributes to motor coordination, precision, and accurate
timing (Fine et al., 2002), and it may also be involved in some
cognitive functions (Wolf et al., 2009). Anatomical atrophy in
the cerebellum in PD was observed (Lotankar et al., 2017);
additionally, functional changes of the cerebellum were also
reported. In a prior task-evoked fMRI study, more cerebellum
areas were activated, and connections within cortico-cerebellar
motor regions were strengthened in PD (Gao et al., 2017)
to compensate for basal ganglia deficit when a single tapping
task and simple dual-task were performed (Wu et al., 2009,
2011). A rs-fMRI study also described an increased FC in
the cerebellum as the more effective compensation mechanism
in EOPD as compared with LOPD (Hou et al., 2016). Our
results provide additional evidence that strengthened cerebellum
synchronization could be a compensation for the striatal
dysfunction in EOPD.
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FIGURE 2 | ALFF analysis. Two-sample t-test results are presented, voxel level p < 0.01, voxel size > 40, corrected by AlphaSim. Area in blue with significantly
decreased ALFF value; area in yellow and red with significantly increased ALFF value.

Different Impairments of Visual
Processing Circuits in EOPD and LOPD
Visual hallucination, a frequent non-motor symptom of PD
(Fenelon et al., 2000; Weil et al., 2016), has been demonstrated to
be related to visual circuit dysfunction (Matsui et al., 2006; Arrigo
et al., 2017; Hepp et al., 2017). Abnormal brain function was
detected even before any visual complaint (Li et al., 2005; Cardoso
et al., 2010). Herein, we found different visual circuit disturbances
in both PD subgroups; however, no patients presented visual
symptoms. EOPD showed greater ALFF in SOG_R and MOG_R
than HCy. LOPD showed lower ReHo in FFG and LING_R than

TABLE 3 | ALFF analysis.

Cluster Brain regions MNI coordinates Voxel size Peak

X Y Z

EOPD vs. HCy

Cluster 1 Supp_Motor_Area_R 6 12 60 63 −4.7819

Cluster 2 Postcentral_L −39 −24 51 64 −4.2421

Cluster 3 −30 −27 33 520 −4.3059

Thalamus_L 48

Cluster 4 Occipital_Sup_R 24 −93 21 145 4.9508

Occipital_Mid_R 64

Cluster 5 Temporal_Mid_R 48 −66 15 42 4.2245

LOPD vs. HCo

Cluster 1 Angular_L −57 −60 27 63 3.5283

The changed brain regions in fMRI images among EOPD, LOPD, and age-matched
HCs group. MNI coordinate, Montreal coordinate; the p-value is smaller than 0.01
and voxel size is more than 40 (p < 0.01, corrected by AlphaSim).

HCo. Occipital gyrus, FFG, and LING play important roles in the
visual processing circuits (Machielsen et al., 2000; Stoeckel et al.,
2009; Weiner and Zilles, 2016). Several studies have reported
anatomical atrophy and lower functional activity in FFG, LING,
and occipital gyrus in hallucinatory PD than non-hallucinatory
PD and HC (Watanabe et al., 2013; Goldman et al., 2014; Yao
et al., 2015; Guimaraes et al., 2016). In the current study, we
identified the impaired function in FFG and LING in the LOPD
group, which may imply that the risk of hallucinations increases
with age in LOPD (Fenelon et al., 2000). This phenomenon of
presymptomatic image change could be a potential application in
clinical diagnosis. Meanwhile, inconsistent with previous studies,
EOPD showed an increased functional activity in occipital gyrus,
which may suggest a compensation mechanism to sustain visual
function in this subgroup.

EOPD With More Widespread
Dysfunction in Emotional Processing
Circuits
Emotion disturbance is a common non-motor symptom in PD
patients, presenting as apathy, fatigue, anxiety, and depression
(Li et al., 2017; Shen et al., 2018). Previous studies indicated that
the emotional processing circuits were disrupted in PD patients
(Pohl et al., 2017; Bell et al., 2019). In this study, HAMA and
HAMD score were significantly higher in LOPD than those in
HCo, while there was no significant difference between EOPD
and HCy. EOPD showed the ReHo changes in TPOmid_L,
SFG_L, SFGmed_R and MFG_R, and ALFF changes in MTG_R.
LOPD showed ReHo changes in MTG_L and ANG_L, and ALFF
changes in ANG_L. These nuclei located in the frontal lobe and
temporal lobe were critically involved in emotional function, and
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FIGURE 3 | (A) Correlations diagram between right medial superior frontal gyrus ReHo values and HAMD score in EOPD group (r = 0.5703, p = 0.0448, not
corrected, Spearman rank correlation). (B) Correlations diagram between left fusiform gyrus and MOCA score in LOPD group (r = 0.4972, p = 0.0474, Bonferroni
correction, Spearman rank correlation).

our results indicated that EOPD patients had more widespread
dysfunction in emotional processing circuits. Previous studies
have identified that hypoactivation or hypometabolism of SFG
was associated with fatigue and apathy (Li et al., 2017; Shen et al.,
2018; Zhang et al., 2018), as well as that atrophy and dysfunction
of MFG might result in depression (Ring et al., 1994; Huang et al.,
2016; Chagas et al., 2017; Hanganu et al., 2017) in PD patients.
Furthermore, dysfunction within the temporal lobe was also
related to depressive symptom (Zeng et al., 2012; Koseki et al.,
2013; Kim et al., 2016). An increased FC between the superior
temporal gyrus and amygdala was found in PD with depression,
which was positively associated with depression severity (Hu
et al., 2015a). Atrophy and dysfunction of the temporal pole may
be associated with depressive symptoms in PD with depression
and major depressive disorder (Feldmann et al., 2008; Zhang
et al., 2017). Consistent with this, we found extensive dysfunction
of the frontal gyrus, temporal pole, and temporal gyrus in EOPD,
which might result in higher incidence of depression.

CONCLUSION

In this study, we used ALFF and ReHo analysis to explore
the functional abnormality in the motor, visual, and emotional
processing circuits between EOPD, LOPD, and age-matched
HC, respectively. We found EOPD patients showed different
impaired functional activity and synchronization in motor,
visual, and emotional processing circuits while LOPD patients
only showed impaired synchronization in motor and visual
processing circuits, as compared with related age-matched HC.
Furthermore, the EOPD group displayed relatively widespread
brain areas with changed functional activity, and the LOPD group
existed relatively strengthened desynchronization. However, one
limitation of this study was a small sample size, which might
reduce the statistical power. In addition, long-term use of anti-
parkinsonism agents may change the plasticity of the neural

circuits of PD patients. Hence, future studies will employ larger
sample sizes and investigate the effect of anti-parkinsonism
agents in different age of onset subgroups.
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