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Abstract: The amount of atmospheric nitrogen-containing aerosols has increased dramatically due to
the globally rising levels of nitrogen from fertilization and atmospheric deposition. Although the
balance of carbon and nitrogen in plants is a crucial component of physiological and biochemical
indexes and plays a key role in adaptive regulation, our understanding of how nitrogen-containing
aerosols affect this remains limited; in particular, regarding the associated mechanisms. Using a
fumigation particle generator, we generated ammonium nitrate solution (in four concentrations of 0,
15, 30, 60 kg N hm−2 year−1) into droplets, in 90% of which the diameters were less than 2.5 µm, in
the range of 0.35–4 µm, and fumigated Iris germanica L. and Portulaca grandiflora Hook. for 30 days
in April and August. We found that the weight percentage of nitrogen in the upper epidermis,
mesophyll tissue, and bulk of leaves decreased significantly with the N addition rate, which caused
a decrease of carbon:nitrogen ratio, due to the enhanced net photosynthetic rate. Compared with
Portulaca grandiflora Hook., Iris germanica L. responded more significantly to the disturbance of N
addition, resulting in a decrease in the weight percentage of nitrogen in the roots, due to a lower
nitrogen use efficiency. In addition, the superoxide dismutase activity of the two plants was inhibited
with a higher concentration of nitrogen sol; a reduction of superoxide dismutase activity in plants
means that the resistance of plants to various environmental stresses is reduced, and this decrease in
superoxide dismutase activity may be related to ROS signaling. The results suggest that inorganic
nitrogen-containing aerosols caused excessive stress to plants, especially for Iris germanica L.

Keywords: nitrogen contained aerosol; nitrogen use efficiency; superoxide dismutase activities; Iris
germanica L.; Portulaca grandiflora Hook

1. Introduction

The extensive use of nitrogen-containing fertilizers, industrial emission, automo-
bile exhaust, and fossil fuels has dramatically increased the amount of atmospheric
nitrogen-containing aerosols [1]. Excessive deposition of nitrogen leads to soil acidifi-
cation and water eutrophication, which threatens the stability of nitrogen-related ecological
processes [2–4], and has a substantial negative impact on the structure and function of
ecosystems globally [5–8]. According to their aerodynamic diameter, the aerosols in partic-
ulate matters (PM) can be classified as PM10 (Ø ≤ 10 µm), PM2.5 (Ø ≤ 2.5 µm), and PM0.1
(Ø ≤ 0.1 µm) [9]. Among them, PM2.5 is known for its difficult settlement, a wide range of
influences, great harm to the human body, control difficulties due to a small particle size,
and easy enrichment [10]. Furthermore, water soluble inorganic salt is the main component
of PM2.5, and its contribution rate to the mass concentration of PM2.5 is more than 40% [11].
NH4+ and NO3− are the main components of water-soluble inorganic salts [12]. Therefore,
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study of the environmental effects of inorganic-nitrogen-formed PM2.5 is important to
understand the effect of aerosols on the physiological and ecological processes of animals
and plants.

As a natural purifier to improve the environment, plants can effectively block and absorb
aerosols and other particles in the air, and play a leading role in improving air quality [13,14].
The dust retention ability of plants is closely related to their leaf morphology and leaf surface
characteristics. Leaves with a rough surface, or that are fluffy or mucus secreting, are more
likely to absorb aerosols and other particles in the atmosphere [15]. Meanwhile, increased
emissions of inorganic-nitrogen-formed aerosols have influences on plants, either via affecting
the soil chemistry and other abiotic and biotic interactions, which have been well studied in
the form of traditional nitrogen addition or fertilization [16–18], or via surface penetration
on above ground organs directly [19], about which knowledge remains limited. It used to
be believed that PM0.1, which represents only a small proportion of aerosols, was the main
component that can pass through the plant stomata. However, Lehndorff et al. [20] showed
evidence that PM2.5 can also penetrate into the leaves through the stomata, and it became
the dominate component affecting physiological and biochemical process in leaves, due to its
high proportion in aerosols comparing to PM0.1.

It has been reported that, due to the proportional dependence on carbon and nitro-
gen caused by the long-term evolution of plants, proper application of nitrogen to the
leaves will lead to an increase of photosynthetic rate, to maintain the carbon and nitrogen
balance[21,22], and some plants growing in adversity can also actively increase their photo-
synthetic rate, to improve nitrogen metabolism [23,24]. The high concentration of nitrogen
in air can have a negative effect on the physiology and growth of individual plants [25,26],
caused by the cellular acidosis and the destruction of electron transport in chloroplasts,
which usually results in yellowing, slowed growth, and necrosis of leaves [27]. When a
nitrogen-containing droplet enters the plant through the stomata on the leaves, it dissolves
rapidly in the continuous area of the surrounding cell wall [28]. An overdose of nitrogen
in the cell wall will inhibit the activity and content of photosynthetic enzymes in leaves,
and eventually lead to a decrease of photosynthetic rate and carbon nitrogen ratios. At the
same time, it can depress the production of NADP+ in chloroplasts, increase the content of
active oxygen, and cause oxidative damage [29,30], which can be reflected by the change of
superoxide dismutase (SOD) activity. SOD is the first antioxidant enzyme shown to play a
role in the process of scavenging reactive oxygen species [31]. In addition, nitrous oxide
dissolved in cells will be reduced to ammonium by nitrous reductase and then combined
with other substances, to form macromolecular amino acids or proteins [32].

However, these results usually came from experiments spraying or smearing the
nitrogenous solution on the leaves of fruit trees or other crops, while the spraying of
nitrogen fertilizer on leaves, known as foliar fertilization, is an important management
method in agriculture [33], in which the effect of nitrogen application is more through
infiltration than through penetration into the sub-pores [34]. The nitrogen concentration
in PM2.5 is usually represented by the unit µg/m3 [35,36] (such as 13.9–14.7 µg m−3 in
2004–2005 from Hangzhou City, China) [37], which is much less than the application
concentration in foliar fertilization that usually uses the unit g N [38,39] (such as leaves
spraying 0.5–1 g N plant−1 week−1 in a foliar fertilization experiment) [40]. In addition,
the amount of nitrogen penetrating through stomata and participating in the process of
metabolism and circulation in plants is also much less than the amount of nitrogen applied
for fertilization. Therefore, whether the effects of inorganic nitrogen PM2.5 applications
(with lower nitrogen concentrations and lesser penetration processes) on the photosynthesis
and other physiological processes of plant leaves are all negative is worth exploring.

Iris germanica L. and Portulaca grandiflora Hook. are widely used garden plants and are
representative C3 and C4 plants. The hypothesis that a C4 plant has much higher nitrogen
use efficiency (NUE) than a C3 plant was put forward by Brown [5]. It can be summarized
as follows: (1) C4 plants can assimilate NH4

+ in both mesophyll cells and vascular bundle
sheath cells, to synthesize amino acids and proteins, while C3 plants reduce nitrogen only
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in mesophyll cells, resulting in low NUE. (2) Compared with the CO2 fixed by C3, the
nitrogen demand from the C4 photosynthetic pathway will increase correspondingly, to
maintain the carbon–nitrogen balance [41]. Therefore, in the long-term evolution process,
C4 evolved a complex biochemical adaptation mechanism to improve NUE, such as higher
cytoplasmic nitratase [42,43], and lower Ribulose bisphosphate carboxylase/oxygenase
(Rubisco) [44,45] and Calvin-Benson cycle enzyme contents [46]. Therefore, it has been
reported that C4 plants suffer a competitive disadvantage during nitrogen addition treat-
ments [47,48]. However, whether the amount of nitrogen penetrating across the stomata
from PM2.5 is sufficient for the relief of nitrogen limitation remains unclear, although it
had been reported that the photosynthetic rate of C3 plants increased slightly in the low
concentration of gaseous nitrogen dioxide, without thorough discussion, because of the
total decreased pattern, along with the increase of nitrogen addition concentration [49]. Iris
germanica L. and Portulaca grandiflora Hook. have similar differences in light and coping, so
experimental verification of their differences is required.

Therefore, inorganic nitrogen containing aerosol fumigation needs to be conducted
to improve our understanding of the response of carbon and nitrogen balance in plants.
The objectives of this study were (1) to examine the effects of inorganic nitrogen PM2.5
on photosynthetic rate and carbon/nitrogen assignment, and (2) to evaluate the different
strategies of Iris germanica L. and Portulaca grandiflora Hook. under its influence, due to
their different NUE.

2. Materials and Methods
2.1. Materials Preparation

Iris germanica L. and Portulaca grandiflora Hook. were chosen as the experiment materi-
als, due to their common use as urban greening herb species. The two species were sown
in a greenhouse in February with uniform nursery soil (Model 422, Klasmann-Deilmann
GMBH Incorporated, Geeste, German), located in Jiangsu Academy of Forestry, Nanjing,
China. Thirty two plants growing in unison for both species were chosen in April and
August, which was the vegetative stage for both.

2.2. Experimental Design

A six-jet Atomizer (Model: 9306A, TSI Incorporated, Shoreview, MN 55126, USA) with
compressed air pump (Model 36-7, Jiebao Incorporated, Shanghai, China) was used as the
fumigation particle generator and generated ammonium nitrate solution into droplets, in
90% of which the diameters were less than 2.5 µm, in the range of 0.35–4 µm. This was
calibrated by adjusting nozzle the valve and monitored using a Dusttrak II particulate
monitor (Model: 8530, TSI Incorporated, Shoreview, MN 55126, USA). The plants were
placed in a series of chambers, alternately connected with rubber hose and PVC pipe
(Figure 1). The size of each chamber was 30 × 30 × 65 cm, with a side sliding door. In order
to prevent nitrogen-contained aerosols from being absorbed by the soil, a plastic film was
used to wrap the containers for planting plants, to eliminate the influence of fumigation on
the soil. For watering, a PVC pipe with a lid on the top was inserted into the soil.

The concentration of aerosols was set at 50 µg/m3 through the adjustment of a flux
valve, while the value of Nanjing city was 43–74 µg/m3 in 2014–2016 [50]. The nitrogen
levels were 0, 15 (half dose), 30 (background dose), and 60 (double dose) kg N hm−2 year−1

(32 plants were needed for each species), while bulk deposition fluxes of inorganic nitrogen
averaged 35.8 kg N hm−2 year−1, and wet deposition fluxes of inorganic nitrogen were
28.7 kg N hm−2 year−1 [51]. In order to maintain the uniformity of carbon dioxide and
temperature, the control was fumigated using pure water vapor, to ensure the uniformity
of environmental factors (such as temperature, CO2 concentration, etc.)
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Figure 1. Experimental setup diagram of one application concentration of inorganic nitrogen fumi-
gation. Chambers I and II were for the two types of tested plants (Iris germanica L. and Portulaca 
grandiflora Hook.). The aerosol concentration test valve was for the monitoring of aerosol concen-
tration, which was only opened for concentration checking during fumigating. The basic absor-
bent was sodium bicarbonate solution. The fans were for the uniform distribution of aerosols, tem-
perature, and CO2, vertically and horizontally. 
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2.3. Sampling and Measurements 
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ing season) 2018, under natural light conditions, leaves with the same status and complete 
shape were selected to measure the physiological indexes of net photosynthetic rate, tran-
spiration rate, and stomatal conductance, using a portable photosynthetic instrument 
(Model: LI-6400, LI-COR Incorporated, Lincoln, Nebraska 68504, USA), which was com-
pleted before 12:00 a.m. in sunny weather (once each week during fumigations and lasting 
for one month (5 measurements)). On 1 May (non-growing season) and 16 August (grow-
ing season) of 2018, leaves with the same growth, complete shape, and healthy maturity 
from each plant were taken, and the roots were collected, from 10:00 a.m. to 12:00 a.m., 
and then stored with dry ice and brought back to the laboratory for testing.  

  

Figure 1. Experimental setup diagram of one application concentration of inorganic nitrogen fumi-
gation. Chambers I and II were for the two types of tested plants (Iris germanica L. and Portulaca
grandiflora Hook.). The aerosol concentration test valve was for the monitoring of aerosol concentra-
tion, which was only opened for concentration checking during fumigating. The basic absorbent was
sodium bicarbonate solution. The fans were for the uniform distribution of aerosols, temperature,
and CO2, vertically and horizontally.

2.3. Sampling and Measurements

From 1 April to 30 April (non-growing season) and from 15 July to 15 August (growing
season) 2018, under natural light conditions, leaves with the same status and complete
shape were selected to measure the physiological indexes of net photosynthetic rate, transpi-
ration rate, and stomatal conductance, using a portable photosynthetic instrument (Model:
LI-6400, LI-COR Incorporated, Lincoln, Nebraska 68504, USA), which was completed
before 12:00 a.m. in sunny weather (once each week during fumigations and lasting for
one month (5 measurements)). On 1 May (non-growing season) and 16 August (growing
season) of 2018, leaves with the same growth, complete shape, and healthy maturity from
each plant were taken, and the roots were collected, from 10:00 a.m. to 12:00 a.m., and then
stored with dry ice and brought back to the laboratory for testing.

The preparation process was as follows: Weigh about 0.2 g of fresh leaves, cut them
into pieces, add 10 mL of precooled PBS 7.8 solution (added twice), grind and extract, then
centrifuge at 4 ◦C in 10,500 rpm for 15 min, take the supernatant, and store at 4 ◦C. SOD
activity was tested with the nitro blue tetrazolium (NBT) photoreduction method [52]. An
enzyme activity unit determined 50% inhibition of NBT photoreduction. It was calculated
as follows:

SOD activity = [(ACK − AE) × V]/(ACK × 0.5 ×W × Vt) (1)

where ACK is the light absorption value of illumination to the care; AE is the light absorp-
tion value of the sample tube; V is the total volume of sample solution; Vt is the dosage of
sample solution in determination; and W is the weight of samples.

Total C and N were measured using an element analyzer (Elementar Vario EL, Hanau,
Germany) from part of the leaves and roots, which had already been oven baked for 30 min
at 105 ◦C, dried to constant weight at 55–65 ◦C, and ground.
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The other parts of leaves were prepared as portrait section slices with a square blade,
with side length of 5 mm, after freeze-drying, and the chemical composition of their
upper epidermis and mesophyll tissue (Example diagram in Figure 2) was studied using
a field emission scanning electron microscope (Model: JSM-7600F, JEOL Incorporated,
Akishima, Japan).
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Figure 2. Example of field emission scanning electron microscope output for the leaves of two species.
Spectrum 1 and 2 are the sample area for the weight percentage (%) of carbon (C), nitrogen (N), and
oxygen (O) in the upper epidermis and mesophyll tissue of leaves, respectively.

2.4. Statistical Analysis

To test the effects of species, nitrogen addition, weeks in fumigation, and season on
the net photosynthetic rate, stomatal conductance, and the weight percentage of carbon
and nitrogen in the upper epidermis, mesophyll tissue, and bulk of leaves, we used the
following linear mixed model:

Yijklmn = Sn + Ni + Mj + Dk + Interaction within Sn, Ni, Mj and Dk + π
∣∣∣Bl + εm(ijkl) (2)

where Yijklmn is the net photosynthetic rate, stomatal conductance, and the weight percent-
age of carbon and nitrogen in the upper epidermis, mesophyll tissue, and bulk of leaves; Sn
(n = 1, 2); Ni (i = 0, 1, 2, 3) is the level of nitrogen application (0, 15, 30, 60 kg N hm−2 year−1);
Mj (j = 1, 2) is the month (April and August); Dk (k = 1, 2, 3, 4, 5) is sample date (3, 8, 15, 22,
30 days in fumigations), which was excluded in the analysis of the weight percentage of
carbon and nitrogen, because they were measured only once at the end of each experimental
period; π|B l represents the random plot effect (l = 1, 2, . . . 16) nested in the two random
blocks; and Em(ijkl) (m = 1, 2) is the sampling error. We conducted a linear mixed effect
analysis, using the restricted maximum likelihood estimation with the “lme4” package [53].
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We then calculated the absolute values of spring and summer plant measurements: photo-
synthetic rate (Ph), transpiration rate (Tr), stomatal conductance (gs) and the corresponding
standard errors (Table 1).

Table 1. The absolute values of plant measurements in spring and summer: photosynthetic rate (Ph),
transpiration rate (Tr), stomatal conductance (gs), and corresponding standard errors.

Level of
Nitrogen Application
(kg N hm−2 year−1)

0 15 30 60

Iris germanica L. Ph Tr gs Ph Tr gs Ph Tr gs Ph Tr gs

April 7.03 0.32 3.02 7.47 0.42 3.24 7.78 0.29 4.69 8.18 0.26 6.19
Standard error ±0.38 ±0.05 ±0.22 ±0.53 ±0.05 ±0.22 ±0.48 ±0.03 ±0.22 ±0.49 ±0.03 ±0.28

August 5.88 0.36 3.14 6.46 0.45 3.88 7.00 0.51 3.45 7.88 0.45 3.04
Standard error ±0.60 ±0.05 ±0.22 ±0.69 ±0.06 ±0.35 ±0.65 ±0.04 ±0.30 ±0.79 ±0.07 ±0.29

Portulaca grandiflora Hook.
April 6.81 0.33 6.19 7.28 0.35 6.32 7.22 0.30 6.13 7.36 0.29 6.46

Standard error ±0.41 ±0.05 ±0.24 ±0.52 ±0.05 ±0.25 ±0.45 ±0.04 ±0.16 ±0.42 ±0.05 ±0.2
August 5.76 0.47 2.97 6.66 0.48 3.93 6.77 0.45 4.37 7.33 0.37 5.06

Standard error ±0.51 ±0.07 ±0.26 ±0.61 ±0.07 ±0.26 ±0.57 ±0.06 ±0.24 ±0.53 ±0.05 ±0.30

To better understand the mechanisms associated with changes in these physiological
and biochemical indexes, we used Pearson correlation analysis, which was performed
using the “PerformanceAnalysis” package [54], to examine the extent of associations. All
analyses were performed using R Statistical Software (Version: 4.1.3, The R Foundation for
Statistical Computing c/o Institute for Statistics and Mathematics, Vienna, Australia) [55].

3. Results
3.1. The Effect on Carbon and Nitrogen Distribution in Leaves

Our result showed that the percentage weight of nitrogen was enhanced and carbon
was depressed with the increase of nitrogen concentration in the form of aerosols, which
caused an increase of carbon and nitrogen weight ratios. The concentration of inorganic
nitrogen in the form of aerosols affected the nitrogen in the upper epidermis and the bulk
of Iris germanica L. leaves, and only the percentage weight of carbon in the mesophyll
tissue of its leaves varied significantly, while several interaction effects were statistically
significant (Table 2). The weight ratios of carbon and nitrogen in the upper epidermis and
mesophyll tissue of Iris germanica L. leaves increased significantly as the application was
increased to 60 kg N hm−2 year−1, due to the dramatic increase (rising by 19.4% comparing
to 0 kg N hm−2 year−1) of carbon and decrease of nitrogen (declined 26.4% comparing
to 0 kg N hm−2 year−1), respectively, which was not found in Portulaca grandiflora Hook.
(Figure 3A–F). Furthermore, the nitrogen containing PM2.5 induced a decrease of nitrogen
percentage weight and caused a decrease of the nitrogen percentage weight in the bulk
leaves, although it did not show significant differences for Portulaca grandiflora Hook., due
to the considerable standard errors (Figure 3H).
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Table 2. The effects of nitrogen-containing PM2.5 addition concentration (N), sampling date (M), and
their interaction (N ×M) on the weight percentage of carbon (C), nitrogen (N), and C/N in the upper
epidermis (UE), mesophyll tissue (MT), bulk of leaves (BL), and roots (R) in Iris germanica L. and
Portulaca grandiflora Hook. The linear mixed-effects model used the Kenward–Roger method as a
denominator of degrees of freedom.

Source C in UE N in UE C in MT N in MT C in BL N in BL

Iris germanica L. SS F p SS F p SS F p SS F p SS F p SS F p

N 405.9 4.0 0.105 354.2 7.9 0.036 472.7 8.0 0.034 89.3 2.1 0.258 4.7 0.3 0.846 1.0 7.1 0.043
M 9.5 0.4 0.548 520.0 47.1 <0.001 454.9 30.8 <0.001 28.2 2.7 0.116 0.2 0.1 0.818 8.0 225.5 <0.001

N ×M 174.1 1.7 0.181 310.3 9.4 <0.001 331.6 5.6 0.002 438.1 13.7 <0.001 6.5 0.5 0.762 0.9 6.3 0.001
Portulaca grandiflora Hook.

N 51.8 0.9 0.539 144.4 1.4 0.387 141.3 2.0 0.265 311.3 4.9 0.072 4.4 1.7 0.306 0.7 0.9 0.558
M 5.2 0.4 0.553 1045.4 39.4 <0.001 7.3 0.4 0.530 12.2 0.8 0.387 6.9 10.6 0.003 4.4 20.9 <0.001

N ×M 39.3 0.7 0.611 503.9 4.7 0.005 79.2 1.1 0.379 1026.0 16.4 <0.001 1.4 0.6 0.699 1.0 1.2 0.318

Source C in R N in R C/N in UE C/N in MT C/N in BL C/N in R

Iris germanica L. SS F p SS F p SS F p SS F p SS F p SS F p

N 22.53 1.92 0.271 1.01 5.94 0.056 1071.51 4.81 0.080 1069.88 6.65 0.052 112.14 3.43 0.132 1789.5 7.28 0.040
M 31.01 10.58 0.003 1.41 33.16 <0.001 436.02 7.97 0.010 135.04 3.44 0.077 1166.79142.67 <0.001 2136.6 34.78 <0.001

N ×M 20.63 1.76 0.169 0.79 4.65 0.006 588.47 3.58 0.032 437.44 11.08 <0.001 118.09 3.61 0.019 1215.2 4.95 0.004
Portulaca grandiflora Hook.

N 1.28 0.89 0.543 0.23 0.74 0.612 36.09 0.60 0.681 24.82 2.59 0.185 11.45 1.52 0.345 10.0 0.67 0.648
M 8.89 24.73 <0.001 4.22 54.53 <0.001 143.14 9.58 0.005 12.89 5.39 0.029 56.77 30.18 <0.001 186.45 49.82 <0.001

N ×M 5.33 3.71 0.018 0.12 0.39 0.814 62.85 1.05 0.401 97.35 10.18 <0.001 14.03 1.86 0.151 7.25 0.48 0.747

Note: Bold font indicates statistical significance (α = 0.10). The columns provide the sum squares (SS), F and p values.
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3.2. Effect on the Net Photosynthetic Rate, Transpiration Rate, and Stomatal Conductance

A significantly increased net photosynthetic rate and stomatal conductance were also
found in response to the nitrogen application rate, while the transpiration rate and SOD
decreased with the nitrogen application rate up to 30 and 60 kg N hm−2 year−1 (Table 3,
Figure 4). The net photosynthetic rate showed no significant differences at the nitrogen
application rates of 0 and 15 kg N hm−2 year−1, and Iris germanica L. showed a more
significant increase up to the highest nitrogen application (Figure 4A), which was totally
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opposite for the SOD activities. Portulaca grandiflora Hook. had higher SOD activities at
the nitrogen application rates of 0 and 15 kg N hm−2 year−1, but this effect disappeared
under the trend of a rapid decline at higher nitrogen application rates (Figure 4D). The
transpiration rate showed significant variation between the two species, but no significant
variation existed for the stomatal conductance (Figure 4B,C).

Table 3. The effects of inorganic nitrogen PM2.5 (N), species(S), days in fumigation (D), experimental
month (M), and their interactions on the net photosynthetic rate, transpiration rate, and stomatal
conductance of Iris germanica L. and Portulaca grandiflora Hook. The linear mixed-effects model used
the Kenward–Roger method as a denominator for degrees of freedom.

Source Net Photosynthetic Rate Transpiration Rate Stomatal Conductance SOD

SS F p SS F p SS F p SS F p

N 71.47 79.55 <0.001 0.30 7.67 0.013 77.48 242.39 <0.001 229,090 83.45 <0.001
S 7.71 25.73 0.001 0.0008 0.06 0.812 145.46 1365.07 <0.001 5821 6.36 0.040
D 1503.44 1255.02 <0.001 8.28 158.03 <0.001 275.77 647.00 <0.001 277,801 75.90 <0.001
M 36.18 120.79 <0.001 1.21 92.28 <0.001 191.58 1797.92 <0.001 9778 10.69 0.001

N × S 5.37 5.98 0.024 0.11 2.84 0.115 2.79 8.73 0.009 26,032 9.48 0.007
N × D 1961 5.45 <0.001 0.44 2.83 0.001 7.39 5.78 <0.001 40,377 3.68 <0.001
S × D 25.04 20.90 <0.001 0.96 18.40 <0.001 47.52 111.49 <0.001 115,819 31.64 <0.001
N ×M 9.21 10.25 <0.001 0.14 3.51 0.016 19.73 61.73 <0.001 15,244 5.55 <0.001
S ×M 1.46 4.88 0.028 0.0003 0.02 0.878 32.87 308.45 <0.001 109,988 120.20 <0.001
D ×M 168.46 140.62 <0.001 1.43 27.38 <0.001 25.43 59.67 <0.001 112,926 30.85 <0.001

N × S × D 6.86 1.91 0.034 0.62 3.94 <0.001 3.36 2.63 <0.001 37,932 3.45 <0.001
N × S ×M 0.22 0.25 0.861 0.18 4.60 0.004 85.57 267.68 <0.001 1905 0.69 0.556
N × D ×M 29.89 8.32 <0.001 0.91 5.79 <0.001 1.79 1.40 0.167 37,940 3.46 <0.001
S × D ×M 1.89 1.58 0.180 0.05 1.02 0.400 2.03 4.75 0.001 60,407 16.50 <0.001

N × S × D ×M 9.87 2.75 0.002 0.66 4.19 <0.001 5.20 4.06 <0.001 19,172 1.75 0.054

Note: Bold font indicates statistical significance (α = 0.05). The columns provide the sum squares (SS), F and p values.
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Figure 4. The response of the net photosynthetic rate (Npr) (A), transpiration rate (Tr) (B), stomatal
conductance (gs) (C), and SOD activity (D) to nitrogen application rate in the form of aerosols in
Iris germanica L. and Portulaca grandiflora Hook. over sampling dates. Values are means with 95%
bootstrapped confidence intervals (CI). Differences are significant at α = 0.05, when the CI does not
overlap the subsequent mean. Upper and lower case letters indicate significantly different results for
Portulaca grandiflora Hook. and Iris Germanica L. on applied nitrogen concentration, respectively.
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3.3. Correlation Analysis between Possible Drivers and Nitrogen Distribution in Plants

According to the correlation analysis, the net photosynthetic rate played an important
role in the decreasing weight percentage of nitrogen in the leaves of Iris germanica L. but did
not show the same pattern for Portulaca grandiflora Hook. (Figure 5), which could explain
the differences in Figure 3H between these two species. Although the correlation between
the net photosynthetic rate and nitrogen weight percentage in the upper epidermis of leaves
was still uniformly positive in the two species, the nitrogen densities in the leaves and roots
showed a contrary pattern (negative), in which the main effects of nitrogen application
concentration were also only significant in Iris germanica L. (Table 2). In addition, the
Pearson correlation analysis also showed the positive relationship between (1) the net
photosynthetic rate and the stomatal conductance, and (2) the nitrogen density of leaves
and roots in both Iris germanica L. and Portulaca grandiflora Hook. (Figure 5).
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Figure 5. Pearson correlations between the net photosynthetic rate (Ph), stomatal conductance (gs),
the weight percentage of nitrogen (N) in the upper epidermis (UE), mesophyll tissue (MT), bulk
of leaves (BL), and in the roots (R). At the bottom of the plot, bivariate scatter plots with a smooth
line are displayed. At the top of the plot, the value of the correlation plus the significance level are
displayed as asterisks (*** p < 0.001, ** p < 0.01, * p < 0.05). Units associated with the variables are
shown in Figures 3 and 4.
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4. Discussion
4.1. Nitrogen-Containing Aerosol Affected the Balance of Carbon and Nitrogen

It is common for plants to maintain their internal carbon and nitrogen balance by reg-
ulating net the photosynthetic rate, to a ensure normal physiological process, which was
widely recognized as the theory of carbon nitrogen ratio and often used as the theoretical
basis for the management of nitrogen fertilizer addition to promote photosynthesis [56,57].
However, our results show that a nitrogen-containing aerosol induced an excessive increase
of net photosynthetic rate and led to an imbalance of carbon and nitrogen, showing that the
percentage of nitrogen in plant leaves decreased. To our knowledge, this is the first report to
prove that nitrogen enters leaves directly through a stomata-induced increase of carbon and
nitrogen ratios, which could be explained by the formation of excess photosynthetic products.

The carbon and nitrogen assimilation process is closely related and interacts through
competition for photosynthesis. The photoreaction of photosynthesis produces ATP and
reduces ferredoxin as intermediates through photophosphorylation. The reduced ferritin
temporarily fixes electrons by reducing NADP+ to NADPH (for CO2 assimilation), and ni-
trate and nitrite ions to ammonium ion (for the synthesis of nitrogen-containing substances),
which both involve the coupling of carbon and nitrogen [58,59]. Therefore, exogenous
nitrogen can significantly affect the photosynthetic rate of plants [60], even the formation
of chloroplasts [61], because plants tend to maintain a stable carbon nitrogen ratio [62].
Our results also showed a trend of net photosynthetic rate increasing with the increase of
nitrogen concentration (Figure 4A), but not an inhibition due to the overdose of nitrogen,
as some research reported [63–65], which showed that the nitrogen applied in this study
was still at a low concentration level for plants.

However, a difference between this study and previous studies is the method of
nitrogen application. Increases of photosynthetic rate caused by nitrogen application are
mainly due to the active increase of stomatal conductance [66,67]. Nevertheless, in our case,
the increase of stomatal conductance induced a further increase in the amount of nitrogen
entering the pores and the sub-pores [68], which led to a temporary but large increase of
nitrogen concentration in the gas exchange space in direct contact with the chloroplast. This
is the mechanism by which “excessive photosynthesis” could happen. The chloroplast was
misled by the increase of nitrogen concentration in the local tissues and formed excessive
photosynthetic products, in order to balance the extra exogenous nitrogen. This can be
supported by the aerosols dramatically inducing enhanced carbon nitrogen ratios in the
upper epidermis and mesophyll tissue (Table 2). In addition, nitrogen can further closely
regulate the activity of cell protective enzymes related to plant senescence, by regulating
SOD activity, so as to regulate leaf senescence [69]. Our results showed that the decrease of
relative nitrogen content (Figure 3) caused by excessive photosynthesis led to a decrease of
SOD activity in leaves (Figure 4D), which may increase the malondialdehyde content in
plants and induce the premature senescence of leaves [70].

4.2. The Different Response of Iris germanica L. and Portulaca grandiflora Hook. to Nitrogen
Containing Aerosols

Our results showed that although the nitrogen application (p = 0.032) and species
(p < 0.001) affected the percentage weight of nitrogen in leaves significantly, the response of
Iris germanica L. (p = 0.043) and Portulaca grandiflora Hook. (p = 0.558) plants were different,
which indicated that the depression of nitrogen percentage weight in leaves (Figure 3), due
to “excessive photosynthesis”, had been alleviated in Portulaca grandiflora Hook. The results
that the net photosynthetic rate of Portulaca grandiflora Hook. increased with the increase of
nitrogen concentration, and that the change of leaf nitrogen mass percentage was different
from that of Iris germanica L. (Figures 3 and 4), may be explained by the following: The typ-
ical structural difference between C4 and C3 plants is the vascular bundle sheath cells with
a Kranz ring structure [71]. C4 plants have a higher NUE, due to different characteristics of
carbon metabolism (i.e., different positions of nitrogen reducing and assimilating enzymes
in the cells) and different mechanisms of nitrogen absorption, reduction, and assimila-



Plants 2022, 11, 2225 11 of 15

tion [5,72]. C4 plants can assimilate ammonium ions in both mesophyll cells and vascular
bundle sheath cells, to synthesize amino acids and proteins, while C3 plants only reduce
nitrogen in mesophyll cells, resulting in a low NUE and photosynthetic efficiency [73,74].
At the same time, in terms of cell anatomical structure, the distance between the veins of
C4 plants is generally smaller than that of C3 plants, the density of veins is higher, and
the number of mesophyll cell layers between veins of C4 plants is also less [75,76]. The
higher NUE and photosynthetic efficiency of C4 plants caused a higher tolerance to the
low nitrogen concentration, in the form of an aerosol-induced imbalance of carbon and
nitrogen. This was also supported by the different correlation patterns between the net
photosynthetic rate and weight percentage of nitrogen in leaves (Figure 5).

Furthermore, our results showed that the nitrogen in plant roots was transported
upward, in order to alleviate the phenomenon of the decrease of nitrogen content in leaves,
while the carbon and nitrogen balance in the leaves of Iris germanica L. was disturbed as
discussed, which led to the significant decrease of nitrogen weight percentage in the roots
(Figure 3K, Table 2). The organic nitrogen in the root system is transported to the leaves
through the xylem, and glutamine and glutamate are formed through the assimilation
reaction, to participate in nitrogen metabolism [77]. At the same time, the amino acids
produced by nitrogen metabolism in the leaves can also be transported back to the root
system through the phloem [78]. Therefore, there must be a linear positive correlation
between the nitrogen content in leaves and roots [79,80], as shown in Figure 5. This
determines that when the relative content of nitrogen in leaves decreases, in order to
maintain the balance of carbon and nitrogen, the root system will increase the transport
of nitrogen [81]. However, for Iris germanica L., with a low NUE, the additional nitrogen
transport from roots could not offset the decline of nitrogen relative content caused by
“excessive photosynthesis”, which eventually led to the decrease of nitrogen percentage
weight in roots.

5. Conclusions

In summary, we found that the inorganic nitrogen-containing aerosols caused a de-
crease of nitrogen percentage weight in leaves, due to an excessively enhanced net photo-
synthetic rate, which led to an imbalance of carbon and nitrogen in the plants. Portulaca
grandiflora Hook. had a higher tolerance due to its higher NUE, while the nitrogen weight
percentage in the roots of Iris germanica L. was also affected. In addition, the SOD ac-
tivities were depressed with higher nitrogen concentrations of aerosols for both species,
which might have caused the premature senescence of leaves; hence, the effect of inorganic
nitrogen containing aerosols on plants was generally negative.
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