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1. Introduction

This paper is introducing a new missing link data problem for survival analysis. The missing link is referring to the 
missing link between the time of origin of a failure and the failure time itself. Information is available about origins and 
information is available about failures, but the link between these pieces of information is missing. During the recent Covid-
19 pandemic, this kind of missing link survival data was omnipresent. This paper is a methodological paper proposing a 
new tool in survival analysis including both underlying theory and finite sample studies. While we have seen important 
advances in nonparametric and semiparametric survival analysis and reliability theory including highly multidimensional 
problems and time-dependent covariates (see for example Andersen et al. (1993), Martinussen and Scheike (2006) and 
Gámiz et al. (2011)), survival models have not - to our knowledge - been developed taking account of missing information 
on the origin of durations as investigated in this paper. The missing data survival model described and analysed in this 
paper is similar but different from the backcalculation method of Brookmeyer and Gail (1988) and Brookmeyer (1996), see 
also Jewell (1990) for a review paper on missing data statistical modelling used in the time of the AIDS epidemic. We 
believe that our approach would have been useful had it already been developed at the outbreak of the AIDS epidemic. 
One could for example had been interested in the connection between the total number of tested HIV-positive individuals 
and the number of onsets of AIDS. The approach advocated for in this paper is based on easy-to-collect data and can be 
used as a benchmark method, for example when catching up in the confusing beginning of a pandemic, where there is 
no time for complicated data discussions across boundaries and districts. In recent years, there has been an increasing 
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interest in landmarking future forecasts based on marker information for example, see Ferrer et al. (2019), Proust-Lima et 
al. (2016), Blanche et al. (2015) and Proust-Lima et al. (2014), however such methodology seems to be too complicated to 
serve as a benchmark methodology in the beginning of a pandemic. Our methodology is simpler than the EM-algorithm 
where complicated conditional means have to be considered, see for example Allassonniere and Chevallier (2021) and Zhao 
et al. (2020) for recent contributions in this direction. It is also different from missing data work as introduced in Heckman 
(1979), because in our model it is the starting point of a duration that is missing. The reason our algorithm is working 
anyway is that the starting point of the duration can be recovered via the changes in new cases over time, the pattern of 
changes of new cases translates into a pattern of durations. The preliminary theory provided in this paper provide evidence 
for this claim.

Our method is illustrated on recent data from the Covid-19 pandemic that is available for most countries or even regions 
within countries. The empirical illustration of this paper focuses on duration effects on mortality and recovery of hospital-
ized Covid-19 patients via aggregated data. Since the beginning of the Covid-19 pandemic there has been daily information 
on the number of hospitalized patients with the virus. Often data are aggregated and contain only information about daily 
numbers of patients staying in hospitals or leaving the hospital at this day. Thus key statistical information has been lost 
including information on current duration in hospital of each Covid-19 patient. In this paper we show that one can analyse 
this new sampling scheme - with important duration information missing - almost as well as if one indeed had full infor-
mation from the beginning. This is only one important building block while understanding the development of a pandemic. 
Other building blocks like the spread of the virus provide similar missing data issues when cross-country data is applied. 
We believe that the insights of this paper provide an important first step towards making mathematical statistical sense of 
the kind of data that is actually available during a pandemic.

Forecasting the development of a pandemic is complicated and the mathematical analysis of the missing data application 
in this paper is non-trivial providing a new theoretical problem of mathematical statistics. However, the data input needed 
to apply the forecasting methodology suggested by this paper is easy to understand and monitor. Also the forecast itself, 
the output, is easy to understand and apply to monitor the development of the pandemic. The ambition of this paper is 
to provide the first indication of a new methodology that can be communicated to epidemiologists or other practitioners 
in the field. When the input and the output is easy to understand, one could imagine or hope for that our method could 
enter basic textbooks in the field, see for example Jewell (2004). Such basic communication is possible when both input and 
output are easy to understand even when the theoretical mathematical statistical steps are highly sophisticated.

While missing data analyses have a long tradition in mathematical statistics, our problem is different from the problem 
of Rubin (1996). In our aggregated data, one cannot isolate and impute the missing data via the modelling provided in Rubin 
(1996) or the many other papers working with multiple imputation or missing covariates, see Liu and Hu (2020) for a recent 
example. Also, aggregated data analysis as in Farebrother (1979) or King (1997) do not match the aggregated data problem 
we face with our Covid-19 data, because there is no linear transformation available defining the missing data problem. The 
related approach involving an original underlying continuous stochastic process model, as we indeed also have, in Lawless 
and McLeish (1984) does also not match to our type of data, because we do not have observed information of the exact 
timing between aggregated data points. It is exactly this timing that is our missing data. In other words: we have identified 
a new data missing problem in survival analysis that is applicable to the kind of data all of us have witnessed during the 
year 2020. Our practical and theoretical solutions provided below show that one can overcome this missing data problem 
with almost as good results as had we known the missing information on duration.

2. Counting process formulation of the simplest version of the missing link survival analysis problem

In this section we consider the simplest possible version of the missing link survival analysis problem with only two 
observed counting processes that we call N̄1 and N̄2. The first of these two counting processes counts arrivals and the 
second counts departures. The link between these arrivals and departures is missing, the two observed counting processes 
do not contain this information. In our applied work on hospitalized Covid-19 patients later in the paper, the situation is 
slightly more complicated with two different possible reasons for leaving the hospital, namely death or recovery. However, 
for clarity we present the fundamental problem in the simplest possible setting. In Section 2.1 below, we introduce the 
problem in the situation where data are observed continuously and in Section 2.2 we make the necessary amendments to 
the situation where data are only observed within discrete intervals. In our practical study later in this paper, data are only 
observed on a daily basis and therefore follow the notation and set-up of Section 2.2 below. In Appendix A we provide a 
brief glossary with this notation.

2.1. The fundamental missing link survival analysis problem with continuous data

Let us assume that subjects arrive to a system at random times modelled by a counting process N̄1. Specifically N̄1(t)
counts the number of subjects that enter the system during the interval (0, t]. Each subject entering the system gives rise 
to a new counting process N2,i that can only take values in zero or one. This counting process starts at the time of arrival 
jumping to one when the event under study is happening (if this event is happening at all). We assume that the intensity 
function of the process N2,i fits the multiplicative Aalen model and can be written λ2,i(s) = α(s)Y2,i(s), where Y2,i is a 
predictable process taking value 1 when the subject i is in the system and 0 otherwise and α is an unknown (deterministic) 
2
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Fig. 1. Missing data problem. A simple case.

hazard function. When full information is available of the stochastic processes N2,i and Y2,i , one could estimate the hazard 
function α, by usual kernel smoothing

α̂b(s) =
∑n

i=1

∫ +∞
0 K̄s,b(s − u)dN2,i(u)∑n

i=1

∫ +∞
0 K̄b,s(s − u)Y2,i(u)du

where K̄ ·,b(·) is the local-linear kernel, and b is the bandwidth, see Nielsen and Tanggaard (2001). However we do not 
observe the stochastic processes N2,i and Y2,i directly. Instead, we observe the counting process N̄1 above counting arrivals 
and the following counting process

N̄2(t) =
∑

{i:ti≤t}
N2,i(t − ti)

Fig. 1 is a graphical simplification of the real situation. The available data are the two counting processes N̄1 and N̄2. 
The arrivals are represented on the horizontal axis of Fig. 1 by the counting process N̄1(t); and, on the other hand, we have 
the counts of departures from the system by calendar time, represented on the vertical axis of the figure by the counting 
process N̄2(t). For example, the plot is illustrating the particular case that N̄1(t5) = 5 and N̄2(t5) = 2. The time spent in the 
system for these 2 subjects that leave the system at or before t5 are respectively s1 = t4 − t1 and s2 = t5 − t4. The subject 
entering at time t5 still remains in the system at the current time, that is t . Exact information about durations represented 
in the plot is not provided.

In the next subsection we will see that the set-up of this subsection immediately generalizes to the further missing data 
case where observations are only observed in discrete intervals. While this generalization is immediate, the discrete set-up 
leads to a quite different and perhaps more tedious notation than the elegant continuous counting process formulation 
above. Our choice of nonparametric smoothing method above, Gámiz et al. (2016), is exactly chosen because it can be 
immediately transferred to the discrete data set-up of the next subsection. We do not know of other hazard smoothing 
methods, where this transfer to discrete data is this simple and immediate.

2.2. The fundamental missing link survival analysis problem with discretely observed data

Often occurrences and exposures are not observed continuously and the only data available is discretely collected during 
pre-specified time intervals. In the following we introduce notation for discretized observed versions of the above contin-
uous counting processes: N̄1(t), for the arrivals of subjects to the system; and, N̄2(t), for the number of departures, when 
observed, not continuously, but on a discrete grid of time points. This grid not necessarily has to be equidistant, but for 
simplicity in the notation and without any loss of generality, we consider the set {1, 2, . . . , M}.

Let us define, for x = 1, 2, . . . , M ,

Ex,1 =
x∫

dN̄1(u);

x−1

3
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the total number of subjects entering the system in the interval (x − 1, x]; and,

O x =
x∫

x−1

dN̄2(u);

are the total number of subjects that leave the system in the interval (x − 1, x].
As mentioned above, each subject that enters the system originates a counting process associated with its survival time 
inside the system, N2,i for the ith subject arriving at time ti . Let N2,x be the aggregated counting process for all subjects 
arriving in the interval (x − 1, x], that is

N2,x(s) =
∑

{i:ti∈(x−1,x]}
N2,i(s)

for s > 0. When the processes N2,i are observed (full information), we can also define the following counts

O x,d =
d∫

d−1

dN2,x−d+1(s)

for 1 ≤ d ≤ x ≤ M , which are the total number of subjects that enter the system at time x − d + 1 and leave at time x.
It must be satisfied that O x = ∑x

d=1 O x,d , for all 1 ≤ x ≤ M , that is, we need to check that

O x =
x∑

d=1

d∫
d−1

dN2,x−d+1(s).

To get this, first we define v = x −d + s and do the corresponding change of variable in the integral, then exchange the sum 
with the integral

x∑
d=1

O x,d =
x∑

d=1

x∫
x−1

dN2,x−d+1(v − (x − d)) =
x∫

x−1

x∑
d=1

dN2,x−d+1(v − (x − d))

then we do the following change of variable in the sum z = x − d

x∑
d=1

O x,d =
x∫

x−1

x−1∑
z=0

dN2,z+1(v − z) =
x∫

x−1

dN̄2(v) = O x

When full information is available, these counts are of course directly observable. However, our missing link survival data 
problem implies that full data information is not available, and we are left to do our survival analysis with occurrence 
counts data like O x above together with discrete exposure data like Ex below

Ex =
x∑

r=1

Er,1 −
x−1∑
r=1

O r

for x = 1, 2, . . . , M , and depending on duration, we have the number of subjects that remain in the system on the day x
with duration exactly equal to d,

Ex,d = Ex−d+1,1 −
d−1∑
s=1

O x−s,d−s

for 1 ≤ d ≤ x ≤ M . It can be checked that Ex = ∑x
d=1 Ex,d .

In Section 3 and onwards we will discuss our discrete missing data problem in a slightly more complicated situation 
than the one above, namely with two possible reasons for leaving the system instead just one as above. These two reasons 
(death or recovery in our applications) give rise to slightly more complicated notation.
4
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3. The intuition behind our new missing data methodology

In this section we illustrate the situation in Section 2.2 via our concrete Covid-19 data on hospitalizations and with 
two possible reasons for leaving the hospital: death or recovery. Our missing data problem is of a typical survival analysis 
nature: while data collectors take great care with occurrences, they tend to be less careful with information about exposure. 
In our data we have daily accounts of people leaving the hospital and whether they left alive. That is good information on 
occurrence. We do know how many people are at risk of dying at hospital every single day, but the data collectors have 
not kept record of the duration distribution of this exposure. That is the main reason that standard survival models cannot 
be used on this type of pandemic data. Our methodology is an iterative procedure overcoming this missing data survival 
problem. First we assume that we know the answer to our problem: the duration distribution of people coming into hospital. 
Given this distribution we can forecast future exposures of every daily entry to hospital and aggregate this information 
to give us the relative daily distribution of exposure on duration. So, we do not use forecast exposure directly, only the 
information it provides on the relative daily distribution of exposures. This information is of course biased by the first a 
priori assumption on knowing the duration distribution in the first place, but it does give us a place to start our analyses. 
In the second step we use the relative exposure duration information collected in the first step to estimate the duration 
distribution using standard non-parametric survival smoothing techniques. This distribution could be our answer, but it is 
even better to iterate the above two steps until convergence. Our simulation study below shows that the method almost 
estimates the duration distribution as well as had the data collector indeed collected the detailed duration information on 
the daily exposure.

4. The formal model and discussion

We have decided to formulate our model via two-dimensional Poisson point processes to be able to derive some asymp-
totic theory indicating that our approach indeed works as our simulation study indicates it does. We could also have chosen 
to formulate our model via the standard continuous counting process Aalen survival model that is so common in survival 
analysis, see Section 2 above and Gámiz et al. (2016), but that would leave us with two later translations. First a translation 
describing the relationship between the continuous model and the discrete data actually observed, and secondly a trans-
lation from the continuous counting process martingale theory to the two-dimensional Poisson process considered for our 
first theoretical insight on this extremely difficult queuing problem. So, eventually we decided to be direct in our model 
formulation and work directly with the two-dimensional Poisson process. The formal model formulation includes the cru-
cial time points for the i-th individual and the available information. We assume that we have a data set that contains only 
partial information on i.i.d. time points ei and ti (i = 1, . . . , n). Here ei is the moment the i-th individual is hospitalized, and 
ti is the moment he/she abandons the hospital due to death or recovery. We are interested in the distribution of di = ti − ei
i.e. in the length of time that patient i has spent in the hospital until he/she recovers or dies.

We assume that for all time points t in an interval [0, M] our data set contains the values of the number of individuals 
who entered the hospital before t , the number of patients who left the hospital before t after recovery and the number of 
patients who left the hospital before t because of death.

We model the tuples (ei, ti) as generated by a two-dimensional Poisson point process ξ . For an interval [as, bs] ×[aw , bw ]
we assume that ξ([as, bs] × [aw , bw ]) is a Poisson random variable with mean 

∫ bs
as

γ (s)ds{S(aw) − S(bw)}. Here γ (s) is 
the intensity of the number of patients admitted in a hospital. Furthermore, for the random duration W at the hospital 
S(w) = exp

{−∫ w
0 α(v)dv

}
is the survival function and α(w) is the corresponding hazard function. We make the central 

assumption that the distribution of W does not depend on the date when the patient enters a hospital. And by the model 
assumption of a Poisson point process the Poisson random variables ξ(B1) and ξ(B2) are independent for two disjoint 
subsets B1, B2 of R2. These two properties are important for our approach. The assumption of Poisson distributions is 
made mainly for having a simplified mathematical discussion but it is not essential for our approach.

This model is related to the literature on statistical inference for M/G/∞ queues studied in queuing theory. Such models 
have been discussed under conditions where no information is available on which incoming person is identical with a 
served leaving person. This has been done for discrete and continuous time, see e.g. Pickands and Stine (1997), Bingham 
and Pitts (1999) and Goldenshluger (2016). In all these papers it has been assumed that the intensity γ (s) is constant. Then 
the statistical analysis is simplified by the stationarity of the process. Our data do not show stationarity and for this reason 
it requires other approaches. The paper Goldenshluger and Koops (2018) is an example where non-constant intensities of 
incoming claims are considered as in our paper, but this is done under smoothness conditions on γ that our approach does 
not need.

In the next section we consider a discretized version of the discussed model that better fits to our data set where only 
aggregated daily observations are observed.

5. Specified model formulation via aggregated Covid-19 data

We formulate our data via an aggregated data formulation to avoid the perhaps more challenging continuous time 
counting process formulation used in Section 2.1 above. The approach of this section is therefore an adaptation of Section 2.2
to the Covid-19 hospitalization data. Patients data are almost always observed on a monthly basis, a weekly basis, a daily 
5
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basis or an hourly basis for example. The aggregated data formulation below is therefore an attempt to reach a wider 
audience in the statistical community without sacrificing the generality of the applicability of the method. The Covid-19 
data studied in this paper are aggregated on a daily basis.

We consider a model where one observes counts of daily occurrences and exposures for a population of individuals with 
different age and thus different hazard rates. Formally the model can most easily be described by defining independent 
Poisson random variables O x,d for (x, d) in a set that will be specified below. The variables O x,d denote the number of 
occurrences at day x for individuals of age d. In our data application O x,d is the number of individuals who leave hospital 
at day x and have been in the hospital for d days. In the notation of the last section we have O x,d = ξ((x − d − 1, x −
d] × (x − 1, x]). Again, we will distinguish two types of occurrences: death and recovery. We denote by O D

x,d the number 
of deaths occurring at day x for individuals having stayed for d days at hospital. Furthermore, O R

x,d denotes the number of 
individuals who have stayed at hospital for d days and leave the hospital at day x. We denote the total number O D

x,d + O R
x,d

by O x,d . We assume that there is an upper bound for the days staying at the hospital which we denote by D + 1. Then 
the number of patients that enter the hospital at a day x is given by O x,1 + O x+1,2 + · · · + O x+D,D+1, which we denote 
by Ex,1. Furthermore, we observe O v

x = O v
x,1 + · · · + O v

x,D+1, with v equal to R , D or to a blank. This is the number of all 
occurrences at day x counting recoveries, deaths or the sum of both, respectively.

We assume that O v
x,d with v equal to R or D have a Poisson distribution with parameter γx−d+1[(1 −α1) · · · (1 −αd−1)α

v
d ]

for some γx, αv
d > 0 with αd = αD

d + αR
d . Furthermore, we assume that the variables O R

x,d and O D
x,d are independent. Then 

also the variables O x,d are independent Poisson random variables and Ex,1 has a Poisson distribution with parameter γx =∑D
d=1 γx(1 − α1) · · · (1 − αd−1)αd + γx(1 − α1) · · · (1 − αD). Thus γx is the number of expected incoming patients at day 

x. Note that in the notation of the last section we have γx = ∫ x
x−1 γ (v)dv ≈ γ (x) and αd = {S(d − 1) − S(d)}/S(d − 1) =

1 − exp{−∫ d
d−1α(t)dt}, which is approximately equal to α(d) if α is continuous in the interval [d − 1, d].

We assume that no patient has entered the hospital before day 1. This means that γx = 0 for x ≤ 0. Furthermore, we 
define O v

x,d for all patients that arrived at the hospital between day 1 and day M . Thus we define O v
x,d for all values (x, d)

that fulfil both, x = 1, . . . , M + D and d = max(1, x − M + 1), . . . , D + 1. Furthermore, αv
d denotes the probability that a 

patient who is in the hospital at a day x and has been in the hospital for d days leaves the hospital at that day for reason 
v . These are the parameters we are interested in. The values of γx are nuisance parameters.

We consider the case that all our information consists on only observing the sums Ex,1 and O v
x , for v ∈ {D, R}, over a 

period x = 1, . . . , M , for some M ≥ D + 1. In particular the values of O D
x,d and O R

x,d are unobserved. This is equivalent to 
assuming that one observes the values of Ex and of O v

x for v ∈ {D, R} and x = 1, . . . , M , where Ex is the observed total 
number of people in hospital on the day x. To see this statement note that E1,1 = E1 and that for x > 1 the values of Ex,1

are given by

Ex,1 = Ex − (Ex−1 − O x−1). (1)

We assume for simplicity that the marginal distributions of Ex,1 and of O v
x for v ∈ {D, R} are Poisson. This is done mainly 

for having a more transparent description of the model and simpler arguments for its mathematical study but we argue 
that it is not essential for the performance of our approach.

In the next section we will describe an estimator for the hazards αv
d (d = 1, . . . , D) for v ∈ {D, R}.

6. Hazard estimation for augmented data

We now describe procedures for the estimation of the hazards αv
d (d = 1, . . . , D) for v ∈ {D, R}. For this purpose in 

a first step we estimate αd (d = 1, . . . , D) by an iterative procedure. This estimate will be used in a second step to get 
estimates of αD

d and αR
d .

In the iteration cycles of the first step the values of the fits of O x,d and of Ex,d are updated. Here Ex,d is the unobserved 
total number of people in a hospital on the day x with duration d. Notice that Ex = ∑D+1

d=1 Ex,d .
We consider two alternative procedures. In the first procedure the unknown values of O x,d and of Ex,d are fitted by 

random quantities (random version). In the second procedure the algorithm is deterministic (deterministic version). These 
values will then be used to get estimates of the total sums O +,d and E+,d , where O +,d = O 1,d + · · · + O M,d and E+,d =
E1,d + · · · + E M,d . The number O +,d is the total number of recoveries and deaths for people who have been in hospital 
exactly d days and leave the hospital in the period x = 1, . . . , M . The exposure, E+,d , is the total number of people who, 
at a day x = 1, . . . , M , have been in hospital exactly d days. At the end of each cycle the estimate of αd is updated by the 
smoothed ratio of the fitted values of O +,d and of E+,d .

The fitted values after the r-th iteration are denoted by Ô (r)
x,d , Ê(r)

x,d , Ô (r)
+,d , Ê(r)

+,d , and α̂(r)
d respectively.

We now describe the iteration cycles of the first step of the algorithm. At the start r = 0 we generate initial values for 
Ô (0) and Ê(0) and we make an initial choice for α̂(0)

(d = 1, . . . , D), e.g. an Exponential distribution.
x,d x,d d

6
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r-th iteration cycle of the first step of the algorithm

(i) For all x = 1, . . . , M proceed as follows. Put Ê(r)
x,1 = Ex,1. In the random version of the algorithm generate a random 

variable Ô (r)
x,1 with Binomial distribution with parameters Ê(r)

x,1 and α̂(r)
1 . In the deterministic version of the algorithm 

choose Ô (r)
x,1 as the mean α̂(r)

1 Ê(r)
x,1 of this Binomial distribution. At the start r = 0 we also tried a Binomial distribution 

with probability parameter 1/O x .
(ii) Then, for d = 2 define Ê(r)

x+d−1,d = Ê(r)
x+d−2,d−1 − Ô (r)

x+d−2,d−1. Now, in the random version of the algorithm, Ô (r)
x+d−1,d

is generated as a Binomial random variable with parameters Ê(r)
x+d−1,d and α̂(r)

d . In the deterministic version of the 
algorithm, Ô (r)

x+d−1,d is again the mean α̂(r)
d Ê(r)

x+d−1,d of the Binomial distribution. At the start r = 0 we also used the 
mean of a Binomial distribution with probability parameter 1/O x+d−1.

(iii) These calculations are repeated for d = 3, . . . , min(M − x + 1, D + 1). For all x = 1, . . . , M this gives the values of 
the following occurrences and exposures: {(Ô (r)

x,1, Ê
(r)
x,1), . . . , (Ô (r)

M∗,D∗ , Ê(r)
M∗,D∗ }, being M∗ = min(M, x + D) and D∗ =

min(M − x + 1, D + 1). Thus, after having repeated the procedure for all x = 1, . . . , M , we have the values of Ô (r)
x,d and 

Ê(r)
x,1 for all (x, d), with x = 1, . . . , M and d = 1, . . . , min(x, D). Furthermore to simplify notation, we put Ô (r)

x,d = Ê(r)
x,d = 0

for x, d = 1, . . . , D + 1 (x < d).
In the resulting matrix, Ô (r)

x,d , with x = 1, . . . , M , d = 1, . . . , D + 1, the sum of elements in the x-th row is the marginal 
distribution corresponding to occurrences according to notification time x, whereas the sum of the elements in the d-th 
column is the marginal distribution of duration. In the same way, in the resulting matrix Ê(r)

x,d , with x = 1, . . . , M and 
d = 1, . . . , D+ 1, the sum of elements in the x-th row is the marginal distribution of exposure according to notification 
time x, whereas the sum of the elements in the d-th column is the marginal distribution of duration.

(iv) Normalize the two matrices to obtain the distribution of occurrences and exposures for duration d, given the notifica-
tion day x. So, define

q̂(r)
x,d = Ô (r)

x,d∑D+1
d′=1 Ô (r)

x,d′
and ĥ(r)

x,d = Ê(r)
x,d∑D+1

d′=1 Ê(r)
x,d′

,

for occurrences and exposures, respectively, for x = 1, . . . , M and d = 1, . . . , D.
(v) Finally the simulated occurrences and exposures for duration d are obtained as

Ô (r)
+,d =

M∑
x=1

q̂(r)
x,d O x and Ê(r)

+,d =
M∑

x=1

ĥ(r)
x,d Ex,

for d = 1, . . . , D + 1, where O x and Ex are the observed occurrences and exposures at notification day x, for x =
1, . . . , M .

(vi) For y = 1, . . . , D, the estimated hazard function is updated by local-linear smoothing (Nielsen and Tanggaard, 2001):

α̂
(r+1)
y =

∑D+1
d=1 K̄b,y(y − d)Ô (r)

+,d∑D+1
d=1 K̄b,y(y − d)Ê(r)

+,d

(2)

with a suitable bandwidth choice such as the double one-sided cross-validation method of Gámiz et al. (2016) (see 
also Mammen et al. (2011)). Here K̄b,s is a local linear kernel

K̄b,s(s − u) = a2(s) − a1(s)(s − u)

a0(s)a2(s) − {a1(s)}2
Kb(s − u),

where a j(s) = ∫
(s − u) j K (u)Y (u)du, for j = 0, 1, 2, and Kb(·) = b−1 K (·/b), with a bandwidth parameter b > 0 and a 

kernel K being a symmetric probability density function. For d = D + 1 we set α̂(r+1)

d = 1.

(vii) These steps are iterated until max1≤d≤D{|α̂(r+1)

d − α̂
(r)
d |/α̂(r)

d } < ε , with ε > 0 small enough.

In the second step of the algorithm the final hazard estimator for duration, α̂y , is split into hazards for duration due to 
death, α̂D

y and hazards due to recovery, α̂R
y , as follows:

α̂D
y =

∑D+1
d=1 K̄b,y(y − d)Ô D

+,d∑D+1
d=1 K̄b,y(y − d)Ê+,d

and α̂R
y =

∑D+1
d=1 K̄b,y(y − d)Ô R

+,d∑D+1
d=1 K̄b,y(y − d)Ê+,d

,

with Ô D
+,d = ∑M

x=1 q̂x,d O D
x , where O D

x is the total number of deaths registered on the day x, q̂x,d = q̂(r)
x,d and Ê+,d = Ê(r)

+,d

for the last value of r; and Ô R
+,d = ∑M

x=1 q̂x,d O R
x , where O R

x is the total number of recoveries observed on the day x
(x = 1, . . . , M).
7
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Fig. 2. Estimated hazards of the elapsed time since admission until death (solid) or recovery (small dashes).

In Section 8 we will study the performance of the estimators by simulations. There we will also compare them with 
oracle estimators that make use of the unobserved quantities O D

+,d . These quantities allow to calculate the values of Ô D
+,d , 

Ô R
+,d and Ê+,d so we can calculate the following infeasible estimators, which we call oracle estimators:

α̂oracle,v
y =

∑D+1
d=1 K̄b,y(y − d)O v

+,d∑D+1
d=1 K̄b,y(y − d)E+,d

,

with v equal to D , R or a blank.
In Section 9 we will discuss the asymptotic performance of our estimator. For simplicity we will only do that for a 

modified version where no smoothing is applied in the updating of the hazard α̂(r+1)
y . This means that we replace (2) by 

the update

α̂
(r+1)
y = O (r)

+,y

E(r)
+,y

(3)

for y = 1, . . . , D and put α̂v
y = Ô v

+,d/Ê+,d , with v equal to D , R or a blank. There we will also compare these estimators 
with the oracle estimators that are now given as α̂oracle,v

y = O v
+,d/E+,d , again with v equal to D , R or a blank. We will 

argue that our estimators converge with the same rate of convergence as the oracle estimator only if the values of γx show 
an irregular pattern. Otherwise the rate may be slower.

7. Empirical analysis of Covid-19 duration in France

We consider publicly available data from France which consist of aggregated counts of daily accumulated occurrences 
(deaths and recoveries) and counts of daily hospitalized people. The data record extends from 24 January 2020, however 
there is no reliable information on the number of hospitalized persons until 18 March 2020. So, in our analysis we have 
taken data only from 18 March 2020 to 1 November 2020 (following the notation of the previous sections we have that 
M = 229), which amounts to about n = 166987 observations.

Our goal is to estimate the hazard function of the elapsed time since admission in hospital until death or recovery. 
Through the deterministic algorithm presented above we estimate these two hazards separately. Results were very similar 
for the random version as expected for the large sample size we have (see Section 8). On the one hand we consider 
the length of time in hospital until death, and, on the other hand, the length of time in hospital until the individual is 
discharged. In the second step of the algorithm we need to choose the bandwidth b for the hazard estimators. In this data 
analysis we have used the double one-sided cross-validation method of Gámiz et al. (2016) that is implemented in the 
R package DOvalidation (Gámiz et al., 2017). The final hazard estimates are shown in Fig. 2. The hazard for the time to 
leave the hospital alive since admission indicates that there is around a 6% chance of recovery every day in the beginning 
of hospitalization. This percentage is decreasing till around 2% for longer durations. The hazard for the time-to-death in 
hospital indicates that the probability of dying is around 1.5% per day in the beginning of hospitalization and it decreases 
below 0.5% for longer hospitalizations.

Age and gender seem to be risk factors for Covid-19 (ISARIC (2020), Horwitz et al. (2021)). Using available information 
about gender and age we have rerun the algorithm for subgroups. Fig. 3 shows the hazard estimates considering four age 
groups: less than 40 years, between 40 and 60, between 60 and 80, and 80 years and above. We can see that age is a 
8
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Fig. 3. Estimated hazards for deaths (top) or recoveries (bottom) for all individuals (solid) and by age groups: less than 40 years (pink small dashes), 
between 40 and 60 (green dashes), between 60 and 80 (blue dots), and more than 80 (red dot-dash). (For interpretation of the colours in the figure(s), the 
reader is referred to the web version of this article.)

significant marker in both the chances of recovering (graph on the top) and dying (graph on the bottom). Older people 
(above 80 years) have about 2.5% risk of dying at the beginning of the hospitalization, roughly double than people between 
60 and 80 years, and almost five times bigger than those in the 40-60 age group. The risk of dying is decreasing with the 
time of hospitalization as well as differences among age groups. For the recovery rates, at the beginning of hospitalization 
the chances of recovering are above 10% for the younger people, around 5% for ages between 60 and 80 years and about 4% 
for the older ones (above 80). Again differences among groups are attenuated as the time in hospital increases.

The hazard estimates for women and men are shown in Fig. 4. Gender seems to have less influence in both the chances 
of dying and recovering. Death hazards of men and women only differ slightly at the beginning of the hospitalization. The 
hazards are around 1.5% at the beginning of the hospitalization time and move below 0.5% for longer times. Women and 
men recovery rates almost overlap with slightly better chance of recovery for women.

From the hazard derived by our algorithm we have estimated the expected remaining time (or residual time) in hospital 
as a function of the duration. This is the additional time that a subject is expected to stay in the hospital conditioned to the 
number of days he/she has already been hospitalized. Formally, let Wd be the remaining time in hospital for a patient who 
arrived before day d. The expected remaining time in hospital is E(Wd) = {S(d)}−1

∫ ∞
d S(w)dw . We estimate this expression 

by plugging-in an estimator of the survival function S(·) derived from the algorithm. The results considering age groups are 
shown in the top panel of Fig. 5 and compared with results considering the full sample (all ages). For the full sample, the 
estimated remaining time agrees with the first increasing and after decreasing hazard estimate shown on the bottom graph. 
For subjects just admitted in hospital the mean hospitalization time is about 20 days however, as time passes, this value 
increases reaching to 40 days after the first month in hospital. The expected remaining time in hospital decreases gradually 
after two months of stay. We can see that the estimated residual time in hospital changes with the age of the subject (see 
also Fig. 5). At the beginning of the hospitalization people between 40 and 60 years are expected to stay for around two 
weeks (a bit less, about 10 days for ages below 40 years), while older people are expected to stay in hospital for a bit more 
than three weeks. As the time passes, younger people (40-60 years) who have been in hospital for one week are expected 
to stay around three more weeks hospitalized, and again this time increases above four weeks for subjects above 60 years.

The residual time has also been estimated separately for men and women and shown in Fig. 6. We can see that residual 
time in hospital for men and women is very similar, with slight differences for longer stays where women are expected to 
stay about 2 days less than men.

Also we have estimated the cause-specific (death or recovery) probabilities of leaving the hospital in terms of length of 
time since admission. Defining random variables for each subject: W D (time from admission until death) and W R (time 
from admission until recovery). The probability of getting out alive is
9
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Fig. 4. Estimated hazards for deaths (top) or recoveries (bottom) for all individuals (solid), for men (blue small dashes) and for women (red dot-dash).

Fig. 5. Estimated remaining time in hospital for all individuals (solid) and by age groups: less than 40 years (pink small dashes), between 40 and 60 (green 
dashes), between 60 and 80 (blue dots), and more than 80 (red dot-dash).

pr{W D > W R | W > d} = {S(d)}−1

∞∫
d

S D(w)αR(w)dw,

and the probability of dying in hospital is

pr{W R > W D | W > d} = {S(d)}−1

∞∫
S R(w)αD(w)dw.
d

10
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Fig. 6. Estimated remaining time in hospital for all individuals (solid), for men (blue small dashes) and for women (red dot-dash).

Fig. 7. Cause-specific (death or recovery) probabilities of leaving the hospital in terms of length of time since admission. Analysis for all individuals (solid) 
and by age groups: less than 40 years (pink small dashes), between 40 and 60 (green dashes), between 60 and 80 (blue dots), and more than 80 (red 
dot-dash).

The results are shown in Fig. 7 and Fig. 8, considering age and gender classification, respectively, and compared to the 
results considering the full sample. From Fig. 7 the probability of getting out of the hospital alive (bottom graph) slightly 
increases with the time that the subject has already been hospitalized. This increase is more substantial for the older people 
(above 80 years) in the first month in hospital. Similarly the probability of dying in hospital decreases with hospitalization 
time. For the older hospitalized people (above 80 years) the probability of dying in the first day in hospital is about 0.35, 
this reduces to about 0.2 for people between 60 and 80 years, and about 0.1 for people below 60 years. After one month 
is hospital people above 80 years will reduce their probability of dying up to 20%. Considering a gender classification (see 
Fig. 8) we can see that the probability of getting out of the hospital alive or dead varies with gender in about 5%. This 
11
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Fig. 8. Cause-specific (death or recovery) probabilities of leaving the hospital in terms of length of time since admission. Analysis for all individuals (solid), 
for men (blue small dashes) and for women (red dot-dash).

Fig. 9. Time series of daily hospitalized. The black curve represents the number of patients in hospital reported every day since March 18th until November 
1st (Ex). The red curve shows the expected number of patients in hospital every day in the same period of time (Êx).

difference decreases until around 2% as time in hospital passes. Women in hospital will survive the disease with about 2% 
more chances than men.

Finally, to confirm whether the estimated hazard function works properly in the real data application, we have produced 
Fig. 9 where the observed time series of patients in hospitals reported every day is compared with the expected daily 
number of patients in hospitals estimated every day using our methodology.

8. Simulations

In this section we evaluate the performance of the deterministic algorithm and the random version considering simu-
lated data. The simulation settings have been chosen to mimic the design of the Covid-19 data analysed above. We have 
defined two theoretical models consisting of a model for the new arrivals and hazard specifications for the time spent in 
hospital until death, αD , and time until recovery, αR . In both cases we assume a non-homogeneous Poisson process (NHPP) 
12
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Fig. 10. True simulated models: cumulated new hospitalized by day (top); two hazard models (middle and bottom) for the time spent in hospital until 
death (red solid) and for time spent in hospital until recovery (blue small-dashes).

for the new arrivals with piecewise-constant intensity function. The intensity has been estimated from the Covid-19 data 
(restricted to the first M = 64 days, this is, until 20th May) considering one change-point. This model is shown in the first 
plot of Fig. 10 and represents well the observed cumulative new arrivals in the data, also shown in the same plot. The haz-
ard models are plotted in the second and third panels of Fig. 10. Model 1 assumes a constant hazard for time to death and 
time to recovery, this is, exponential distributions with rate 0.0074 for deaths and rate 0.0315 for recoveries (both values 
have been estimated again from the data). Model 2 assumes non-constant hazards described by the following Beta mod-
els: αD(x) = B(x/65; 2, 2)/65 and αR(x) = (0.6/65) {B(x/65;0.5,0.5) + B(x/65;2,4) + B(x/65;4,2)}, for x ∈ (0, 65), where 
B(t; a, b) denotes the density at t of a Beta distribution with parameters (a, b).

From each model we have simulated data with sample sizes n = 104, 105 and 106, following the steps described in 
Appendix B. For each case we simulate 500 samples and construct two types of hazard estimators. On the one hand the 
oracle estimators, α̂oracle,D and α̂oracle,R , using full information. And on the other hand the estimators α̂D and α̂R derived 
from the two versions of the algorithm described above, using only partial information. The performance of all methods 
is evaluated through the integrated squared error (ISE) criterion. Giving an estimator α̂ of a hazard α, we define ISE(α̂) =∫ {

α̂(w) − α(w)
}2 dw . All hazard estimators have been computed using infeasible optimal bandwidths derived from the 

same ISE criterion.
The simulation results are presented in Tables 1 and 2. For each model and sample size we report the aver-

age (along the 500 samples) of the ISE values (MISE), as well as the median of these values (MedISE). Additionally, 
the MISE has been decomposed into bias (ISB) and variance (MIV) terms, computed as ISB= ∫ {α(w) − α(w}2 dw and 

MIV= ∑500
s=1

∫ {
α̂(s)(w) − α(s)(w)

}2
dw/500, respectively, where α(w) = ∑500

s=1 α̂(s)(w)/500, with α̂(s) being the estimator 
computed from the s-th sample.

From the numbers reported in the tables we can see that the deterministic and random version perform very similarly, 
with slightly better performance of the deterministic algorithm for Model 1, and the random version for Model 2. These 
13
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Table 1
Simulation results based on 500 samples from Model 1. Numbers have been multiplied by 109.

Full information Partial information

Oracle Deterministic Random

n Criteria Death Recovery Death Recovery Death Recovery

103 MedISE 42.4690 227.9892 42.4895 520.497 43.0862 372.1278
MISE 87.8287 414.9680 99.8704 1295.563 134.8471 1982.1454
ISB 0.0424 1.4865 8.1855 203.066 13.3475 274.0193
MIV 87.7863 413.4815 91.6850 1092.497 121.4996 1708.1261

104 MedISE 0.4868 2.1474 0.8224 11.7252 4.0191 73.5455
MISE 0.9047 4.3089 1.6167 24.0084 5.1414 88.8570
ISB 0.0001 0.0136 0.6567 12.0568 3.5391 66.8636
MIV 0.9046 4.2953 0.9601 11.9516 1.6023 21.9934

105 MedISE 0.0054 0.0201 0.0638 1.2736 0.0444 0.7981
MISE 0.0101 0.0406 0.0759 1.3955 0.0632 1.1078
ISB 0.0001 0.0001 0.0629 1.2403 0.0430 0.8035
MIV 0.0100 0.0406 0.0130 0.1552 0.0202 0.3043

106 MedISE 0.0000 0.0002 0.0076 0.1435 0.0061 0.1184
MISE 0.0001 0.0004 0.0077 0.1451 0.0064 0.1200
ISB 0.0000 0.0000 0.0076 0.1439 0.0058 0.1085
MIV 0.0001 0.0004 0.0001 0.0012 0.0007 0.0116

Table 2
Simulation results based on 500 samples from Model 2. Numbers have been multiplied by 109.

Full information Partial information

Oracle Deterministic Random

n Criteria Death Recovery Death Recovery Death Recovery

103 MedISE 363.0705 412.9618 1304.1770 479.9957 2392.4805 1696.5205
MISE 747.8199 801.7007 1787.1386 1381.4157 3577.6675 4253.8616
ISB 191.2974 222.4912 1181.2439 466.8975 2121.0992 1946.5344
MIV 556.5226 579.2095 605.8947 914.5182 1456.5683 2307.3272

104 MedISE 8.2421 12.6770 148.1062 84.8517 65.2069 37.6386
MISE 11.0830 19.0822 185.0273 153.7580 88.3409 50.3968
ISB 3.2460 8.9466 156.5900 99.3605 67.3017 34.8546
MIV 7.8369 10.1356 28.4372 54.3976 21.0392 15.5422

105 MedISE 0.1733 0.6863 15.7356 3.6894 9.5892 3.3615
MISE 0.2012 0.7013 15.5417 3.8643 10.7606 4.3471
ISB 0.0378 0.3130 15.3606 3.5399 9.8182 3.2527
MIV 0.1633 0.3883 0.1811 0.3244 0.9424 1.0945

106 MedISE 0.0026 0.0174 1.5606 0.3777 1.2725 0.4097
MISE 0.0030 0.0207 1.5612 0.3757 1.2221 0.4098
ISB 0.0006 0.0062 1.5600 0.3735 1.2047 0.3821
MIV 0.0025 0.0144 0.0012 0.0022 0.0174 0.0277

improvements seem to be more significant for the smaller sample sizes. Notice that in our data application the sample size 
was about 170000 so it is expected from these results that both algorithms work similarly. On the other hand, estimating 
with partial information, as the two versions of the algorithm do, leads to a loss in terms of the MISE (also MedISE) as 
expected. Looking at the bias/variance decomposition we can see that the major contribution in the MISE corresponds to 
the bias, for the two versions of the algorithm. Meanwhile the oracle estimator exhibits quite small bias terms in all cases.

9. Asymptotics

In this section we will discuss asymptotics for the iterative estimation procedure introduced in Section 6. We concentrate 
on asymptotics for the estimator α̂ and provide some heuristics implying that our approach estimates α̂ at the optimal 
asymptotic rate of convergence. There are several ways for an asymptotic framework for our model. There is the length M
of the observation period and the number of incoming patients Ex,1, where we could assume that their expectation γx is 
of order I , uniformly in x for some I → ∞. Furthermore, there is the bandwidth b used in the smoothing step and there is 
the support of α where we could assume that αd = a(d/(D + 1)) for a fixed smooth function a and some support length 
parameter D. In a very general asymptotic approach one would let M, I , and D converge to infinity and b converge to zero. 
For simplicity below we will discuss the case where D and b are fixed and where only I and M converge to infinity. For 
simplicity we assume that b = 0, i.e. that there is no smoothing. That means that α̂(r+1)

y is updated by (3).
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In this setting we now discuss the first step of our algorithm where α1, . . . , αD are estimated. We make the distributional 
assumptions stated in Section 5. Thus we assume that O x,d are independent Poisson random variables with parameter 
γx−d+1(1 −α1) · · · (1 −αd−1)αd . For our asymptotic discussion we assume that the parameters α1, . . . , αD are fixed and that 
the nuisance parameters γx , i.e. the expected number of incoming patients at day x, converge to infinity:

(A1) For some constants 0 < c < C < ∞ and I → ∞ it holds that cI ≤ γx ≤ C I , for x = 1, . . . , M .

For Q = (Q 0, . . . , QD+1) with 1 = Q 0 ≥ · · · ≥ QD+1 = 0 we define for 1 ≤ d ≤D + 1

E∗
x,d(Q ) = Q d−1 Ex−d+1,1,

O ∗
x,d(Q ) = (Q d−1 − Q d)Ex−d+1,1.

For an estimator α̂ of α and for the underlying α we define Q̂ and Q ∗ by Q̂ 0 = Q ∗
0 = 1, Q̂D+1 = Q ∗

D+1 = 0, and Q̂ d =
(1 − α̂d) · · · (1 − α̂1), Q ∗

d = (1 −αd) · · · (1 −α1) for 1 ≤ d ≤D. Note that E∗
x,d(Q̂ ) = E∗

x,d(Q ) = 0 for x, d = 1, . . . , D+1 (x < d), 
because of Ex,1 = 0 for x < 0. For the description of our iterative procedure define

q∗
x,d(Q̂ ) = O ∗

x,d(Q̂ )∑D+1
l=1 O ∗

x,l(Q̂ )
, h∗

x,d(Q̂ ) = E∗
x,d(Q̂ )∑D+1

l=1 E∗
x,l(Q̂ )

,

O ∗
+,d(Q̂ ) =

M∑
x=1

q∗
x,d(Q̂ )O x, E∗

+,d(Q̂ ) =
M∑

x=1

h∗
x,d(Q̂ )Ex.

In the r-th iteration cycle of the first step of our algorithm we replace α̂(r−1) by

α̂(r)(y) =
∑D+1

d=1 K̄b,y(y − d)O ∗
+,d(Q̂ (r−1))∑D+1

d=1 K̄b,y(y − d)E∗
+,d(Q̂ (r−1))

,

with Q̂ (r−1)

d = (1 − α̂
(r−1)

d ) · · · (1 − α̂
(r−1)
1 ). As said, we will discuss the estimator only for the case b = 0 of no smoothing. 

Then we have the update α̂(r)
d = O ∗

+,d(Q̂ (r−1))/E∗
+,d(Q̂ (r−1)), for d = 1, . . . , D. With

E∗
x(Q ) =

D+1∑
d=1

Q d−1 Ex−d+1,1,

O ∗
x(Q ) =

D+1∑
d=1

(Q d−1 − Q d)Ex−d+1,1,

we have O ∗
x(Q̂ ) = ∑D+1

d=1 α̂d Q̂ d−1 Ex−d+1,1 and we get

α̂
(r)
d =

∑M
x=1

O∗
x,d(Q̂ (r−1))O x

O∗
x (Q̂ (r−1))∑M

x=1
E∗

x,d(Q̂ (r−1))Ex

E∗
x (Q̂ (r−1))

=
∑M

x=1
α̂

(r−1)

d Q̂ (r−1)

d−1 Ex−d+1,1 O x

O∗
x (Q̂ (r−1))∑M

x=1
Q̂ (r−1)

d−1 Ex−d+1,1 Ex

E∗
x (Q̂ (r−1))

= α̂
(r−1)

d

∑M
x=1

Ex−d+1,1 O x

O∗
x (Q̂ (r−1))∑M

x=1
Ex−d+1,1 Ex

E∗
x (Q̂ (r−1))

,

which is equivalent to

α̂
(r)
d = α̂

(r−1)

d

⎡⎢⎣1 +
∑M

x=1 Ex−d+1,1

{
O x

O∗
x (Q̂ (r−1))

− Ex

E∗
x (Q̂ (r−1))

}
∑M

x=1
Ex−d+1,1 Ex

E∗
x (Q̂ (r−1))

⎤⎥⎦ .

We now assume that this iterative algorithm converges to a fix point α̂ , Q̂ of the equation. Then we get the following 
equation for the fix point:

α̂d = α̂d

⎡⎢⎣1 +
∑M

x=1 Ex−d+1,1

{
O x

O∗
x (Q̂ )

− Ex

E∗
x (Q̂ )

}
∑M

x=1
Ex−d+1,1 Ex

E∗
x (Q̂ )

⎤⎥⎦ .

This is equivalent to

F (Q̂ ) = 0, (4)
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where

Fd(Q ) = 1

I M

M∑
x=1

Ex−d+1,1

{
O x

O ∗
x(Q )

− Ex

E∗
x(Q )

}
,

for d = 1, . . . , D. For the derivative F ′ of F we have that

F ′
d,d′(Q ) = 1

I M

M∑
x=1

Ex−d+1,1

{
O x

O ∗
x(Q )2

(Ex−d′+1,1 − Ex−d′,1) − Ex

E∗
x(Q )2

Ex−d′+1,1

}
.

Using that I−1 O x,d − I−1(Q ∗
d−1 − Q ∗

d ) = oP (1) uniformly for 1 ≤ x ≤ M , 1 ≤ d ≤D, we get that

F ′(Q ∗) = �M,I + op(1),

where

�M,I,d,d′ = 1

M

M∑
x=1

γx−d+1

{
γx−d′+1 − γx−d′∑D+1

s=1 γx−s+1(Q ∗
s−1 − Q ∗

s )
+ γx−d′+1∑D+1

s=1 γx−s+1 Q ∗
s−1

}
.

In the following lemma we will state that Q̂ achieves an optimal rate of convergence if �M,I is uniformly invertible:

(A2) �M,I is invertible with bounded operator norm of the inverse.

Lemma 1. Make Assumptions (A1) and (A2). Then it holds that the equation F (Q̂ ) = 0 in (4) has a solution Q̂ with Q̂ d − Q ∗
d =

O P ((I M)−1/2).

For a proof of the lemma we make use of the Newton-Kantorovich theorem, see Deimling (1985), Section 15, for example. 
According to this theorem it suffices to show that ‖F ′(Q ∗)−1 F (Q ∗)‖ = O P ((I M)−1/2), ‖F ′(Q ∗)−1‖ = O P (1), and ‖F ′(Q 1) −
F ′(Q 2)‖ = O P (1), uniformly for vectors Q 1 and Q 2 in a neighbourhood of Q ∗ . These claims can be easily shown. E.g. 
one shows ‖F (Q ∗)‖ = O P ((I M)−1/2) by using that given Ex,1 (x = 1 . . . , M), the summands V x = Ex−d+1,1[O x/O ∗

x(Q ∗) −
Ex/E∗

x(Q ∗)] = Ex−d+1,1[{O x − O ∗
x(Q ∗)}/O ∗

x(Q ∗) − {Ex − E∗
x(Q ∗)}/E∗

x(Q ∗)] have conditional mean zero and are of order 
O P (I−1/2), and that V x and V z are conditional independent for |x − z| > D + 1. For a check of the other claims note also 
that the denominators O ∗

x(Q ) and E∗
x(Q ) can be easily bounded from below.

Assumption (A2) is a strong condition that requires that γx depends irregularly on x. For a constant γx or for a γx

that smoothly depends on x condition (A2) may be violated. But also in the case that (A2) does not hold we conjecture 
that one can show consistency but only with a slower rate of convergence. One can show that 

√
I(F ′(Q ∗) − �M,I ) has a 

normal limit. Using that multivariate normal random variables take values in a lower dimensional manifold with probability 
0 we conjecture that one can show that with high probability the smallest eigenvalue of the random matrix 

√
I F ′(Q ∗) is 

bounded from below. Then, by applying again the Newton-Kantorovich theorem, we get a rate of convergence of the order 
O P {I−1/2(I/M)1/2} = O P (M−1/2) which is slower by a factor I1/2. We guess that depending on the irregularity of γx all 
rates between O P (M−1/2) and O P {(I M)−1/2} are possible.

The rates of Q̂ − Q carry over to the same rates for α̂d − αd (d = 1, . . . , D) if one assumes that α1, . . . , αD are bounded 
away from 0 and 1. One can compare the rates with the rates that hold for the oracle estimator, α̂oracle

d = O +,d/E+,d . Because 
E+,d is of order O P (I M) one gets that the oracle estimator converges with rate O P {(I M)−1/2}, which is identical with the 
fastest possible rate for α̂d − αd .

10. Conclusion

Our paper develops a survival analysis approach for aggregated data where only information on the number of individuals 
entering or leaving a status is available but no information can be collected how long the individuals have been in the status. 
We show that also in this set-up valid statistical inference can be made on the distribution of durations of individuals in 
the status. Our main motivation for studying this model came from applications to study the temporal development of 
durations of hospital stays of Covid-19 patients. A French data set on the number of hospitalized Covid-19 patients served 
also as a main illustration for the power of our approach. We show that much detailed information can be achieved and 
that the received statistical information is comparable to the case that the data are fully observed for all individuals. This 
conclusion is also supported by simulations.
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Appendix A. Glossary

Table A.3 gives a brief description of the counting processes and other relevant information that are defined and used 
across the paper.

Table A.3
Glossary of terms.

Continuous time Discrete time

Time variables Time variables

t Notification time t ∈ (0,+∞) x Notification time, x ∈ {1,2, . . .}
s Duration time s > 0 d Duration time, d ∈ {1,2, . . . ,D + 1}
Available information Available information

N̄1(t) Number of arrivals in (0, t] Ex,1 New arrivals at time x
N̄2(t) Number of departures (occurrences) in (0, t] O x Occurrences notified at time x

Ex Number of subjects at risk at x

Non-available information Non-available information

N2,i(s) 1, if subject i arriving at ti O x,d Occurrences notified at time x
leaves in (ti , ti + s]; and 0, otherwise with duration d

N2,t (s) Number of departures in (t, t + s] among Ex,d Number of subjects at risk at x
subjects arriving at time t with duration d

Appendix B. Simulation scheme

To generate one sample from each model in the simulations we follow the following steps:

1. Fix the sample size n.
2. Generate E1,1, E2,1, . . . , E M,1, with Ex,1 the number of new arrivals in the interval (x − 1, x], given that n = ∑M

x=1 Ex,1. 
Considering the specifications above, we fix some restrictions for the new arrivals, that is 

∑M0
x=1 Ex,1 = n0 and ∑M

x=M0+1 Ex,1 = n − n0, with n0 = 0.75 n.
3. Construct matrices O x,d and Ex,d , for 1 ≤ d ≤ x ≤ M , based on the true hazard α. For a fixed x ∈ {1, 2, . . . , M}, put d = 1

and randomly simulate O x,d from a Binomial distribution with size Ex,d and probability α(d). Then, define Ex+1,d+1 =
Ex,d − O x,d , and continue simulating O x+1,d+1 from a Binomial distribution with size Ex+1,d+1 and probability α(d + 1), 
continue for d = 1, 2, . . . , M − x + 1, then we construct matrices for the corresponding sequences of occurrences and 
exposure. To obtain the occurrences attending to a specific cause, death or recovery, we define O D

x,d = O x,d
αD (d)
α(d)

, for 
deaths, and O R

x,d = O x,d − O D
x,d , for recoveries, for all 1 ≤ d ≤ x ≤ M .

From a sample we construct the oracle estimators using matrices O D
x,d , O R

x,d and Ex,d , for all 1 ≤ d ≤ x ≤ M . Full informa-

tion in terms of duration is then accessible through the sequences: O D
d = ∑M

x=1 O D
x,d , O R

d = ∑M
x=1 O R

x,d and Ed = ∑M
x=1 Ex,d , 

for 1 ≤ d ≤ M . On the other hand, for the two versions of the algorithm in Section 6 we consider that only partial 
information is available as in our data application. More specifically, the sample information is limited to the follow-
ing sequences O D

x = ∑M
d=1 O D

x,d; O R
x = ∑M

d=1 O R
x,d; and Ex = ∑M

d=1 Ex,d , for 1 ≤ x ≤ M . The algorithm is then applied to 
{(O D

x , O R
x , Ex), x = 1, . . . , M} to estimate data related to time-duration in hospital.
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