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Abstract

Understanding how humans master complex skills has the potential for wide-reaching socie-

tal benefit. Research has shown that one important aspect of effective skill learning is the

temporal distribution of practice episodes (i.e., distributed practice). Using a large observa-

tional sample of players (n = 162,417) drawn from a competitive and popular online game

(League of Legends), we analysed the relationship between practice distribution and perfor-

mance through time. We compared groups of players who exhibited different play schedules

using data slicing and machine learning techniques, to show that players who cluster game-

play into shorter time frames ultimately achieve lower performance levels than those who

space their games across longer time windows. Additionally, we found that the timing of

intensive play periods does not affect final performance—it is the overall amount of spacing

that matters. These results extend some of the key findings in the literature on practice and

learning to an ecologically valid environment with huge n. We discuss our work in relation to

recent studies that have examined practice effects using Big Data and suggest solutions for

salient confounds.

1 Introduction

Among the many determinants of expertise in skilled human endeavour, the accumulation

of experience is one over which the aspiring expert has significant control. Research on skill

acquisition and expertise, in particular the framework of “deliberate practice” [1, 2], has dem-

onstrated that the quantity and quality of sustained engagement within a domain of skill is an

important driver of ultimate performance. The relationship between practice, performance,

and expertise has been subjected to much scientific inquiry [3–7], and despite much debate

surrounding its importance in relation to other factors, the effect of practice is widely accepted

to be substantial [8, 9]. Researchers seeking to understand and accelerate skill acquisition have

adopted a mixture of approaches, including the measurement and comparison of expert and

novice performance [10, 11], the tracing of expert thought during practice [12–14], and use

of interview methods to elicit expert knowledge [15, 16]. Unfortunately these methods share

several difficulties—notably the expenses of recruiting human (expert) samples, the detailed
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tracking of cognition and behaviour over periods of training, as well as the use of laboratory

tasks that may fail to generalise to the real world.

In recent years, researchers have proposed the use of games as a solution to some aspects of

these problems [17–19]. The competitive and immersive nature of many games encourages

players to develop profound skill over hours, days and even years of practice. Because most

actions taken during a game are recorded on a computer, many competitive online games gen-

erate huge reservoirs of ecologically valid performance data that can be requested and interro-

gated by the curious analyst. Due to their size and richness, naturally occurring data sets from

online games afford both statistical power and the ability to extract and examine “participants”

that exhibit features of interest to the researcher—features that would usually require experi-

mental manipulation to permit empirical investigation [20]. In the present study we analysed

the relationship between skill acquisition and the distribution of practice across time using a

data set drawn from League of Legends, an immensely popular online game that has previously

been estimated to generate over one billion hours of game play per month [21], with a current

tournament viewership of over four million spectators [22]. In doing so we generalised a

known effect in the psychological literature to a real-world context comprising millions of

stakeholders, and extended previous methodological approaches in this space by using cluster-

ing techniques to interrogate how learners space their practice sessions across time.

1.1 Effects of practice distribution on learning

One aspect of practice that has received considerable attention from researchers is its distribu-

tion across time. In the literature on learning and skill acquisition, the effect of distributed

practice refers to the tendency of learners to exhibit superior performance following a practice

schedule containing rest periods between practice sessions (i.e., distributed practice), com-

pared to a practice schedule containing shorter or no rest periods (i.e., massed practice). The

terms distributed and massed practice lack strict definitions—researchers distinguish between

the two in terms of the relative amounts of rest time between sessions in different practice

schedules [23]. While there is some consensus that distributed practice leads to better learning

than massed practice [24–27], it is important to examine what is meant by “learning” in this

context, and to consider factors that have been shown to moderate this effect.

The study of distributed practice can be traced back to early studies on the recall of verbal

material by Ebbinghaus [28], and so a significant amount of related work has been conducted

on the effects of spaced studying on verbal memory, which we will not consider here. How-

ever, the effect has also been demonstrated in psychomotor learning [29]. In its simplest form,

a study of distributed practice in this context involves participants practicing some motor task

(e.g., mirror tracing, rotary pursuit) over a block of practice trials. The amount of rest time

between a block of trials (i.e., the “intertrial” or “intersession” interval) in a distributed practice

condition is greater than in a massed practice condition, but the spacing between individual

trials within each block is kept constant. The researcher then compares performance on a final

“test” trial between the two groups. Because learning is said to have occurred when changes in

performance are relatively stable [30], more involved designs include a final trial or block of

trials separated from the practice block by a non-trivial amount of time (� 24 hours). By com-

paring performance in the “retention” block and the practice block, it can be judged how well

acquired performance is retained following a period of no practice. Donovan and Radisevich

[25] use the terms acquisition performance (performance in the last trial of the practice block),

and retention performance (performance in the first trial of the retention block) to denote this

distinction.
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Overall, distributed practice appears to have a moderate to large positive effect on motor

learning. For example, in a meta-analysis of 47 psychomotor studies, Lee and Genovese [24]

reported a large weighted average effect size of.91 for acquisition, and a moderate average

effect size of.49 for retention, although the spread on these effect sizes was large. A later meta-

analytic review of 61 studies [25] yielded a smaller mean weighted effect size of.46, with a 95%

confidence interval ranging from.42 to.50. The authors computed separate averages for effects

sizes describing acquisition performance (.45) and retention performance (.51). Noting the

importance of the type of task trained in these studies, the authors conducted additional mod-

erator analyses to estimate how task type may influence the magnitude of the distributed prac-

tice effect. Ratings of task complexity were collected from 95 graduate and undergraduate

students across three dimensions (overall complexity, physical requirements, mental require-

ments) for all 28 tasks examined in these studies. A cluster analysis resulted in four clusters of

task complexity, optimised for maximal within-group homogeneity with meaningful between-

group heterogeneity. Correlating between task complexity and effect size suggested that the

distributed practice effect is diminished with increasing overall complexity (Pearson’s r = -.25,

p<0.05), while mental and physical requirements were not significantly correlated with the

effect. Moreover, bucketing studies into four different levels of intertrial interval, the authors

considered the relationship between intertrial interval and task complexity by examining a 4 x

4 matrix of effect sizes. While it was noted that tasks of different complexity may have a differ-

ent “optimal” intertrial spacing, the observation is caveated by a small number of effect sizes

per cell.

1.2 Distributed practice in digital games

As mentioned previously, one approach to mitigating difficulties associated with laboratory-

based experimentation is through the use of digital games. In cognitive science, a growing

body of researchers have advocated for the use of games as an environment for the study of

skill learning [17–19] noting several advantages afforded by games that allow researchers to

bypass limitations of experimentation. These include large observational data sets (affording

statistical power and ecological validity), participants that are intrinsically motivated to engage

with the task, and a level of task complexity resembling that of real-world tasks. We review

here studies that have used digital games to investigate the spacing effect of practice, in order

to provide background on the current work.

Three observational studies of skill acquisition examined the relationship between practice

and performance in Axon, a casual computer game where players click on periodically gener-

ated targets with a mouse to maximise growth of an axon. Performance is measured by a single

game score—the final length of the axon. In a first study, Stafford and Dewar [31] analysed

digital records of�850,000 Axon players to test the impact of spacing on acquisition. Players

were identified heuristically as having distributed (versus massed) their practice if their first 10

plays took place in a>24 hour window (versus <24 hour window). Defined this way, distrib-

uted practice had a small but significant effect on subsequent performance (highest score on

plays 11 to 15; d = 0.11, p<0.00001). Further analysis showed that the association between

spacing and acquisition remained after testing separately on subsamples of players with com-

parable initial ability.

Stafford and Haasnoot [32] extended this work by investigating whether the presence of

sleep could explain the effect of distributed practice, and by examining the magnitude of the

effect at different levels of spacing. Players in the aforementioned distributed practice category

were categorised into a “sleep” or “wake” group based on the timing of their breaks, account-

ing for geographical location. Comparing average scores between these groups showed no
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additional benefit of sleep (in fact, players in the wake group had slightly higher scores than

their counterparts). To examine how different rest intervals affected acquisition, the authors

plotted average scores of players on plays 11 to 15 against amount of time elapsed between

games 1 and 10—an amount ranging from 0 to 60 minutes, discretised into 16 bins. The result-

ing curve suggested that the relationship between practice distribution and acquisition can

be described by a non-monotonic function, where optimal spacing between games lies in the

middle of this range.

Agarwal, Burghardt, and Lerman [33] also investigated the relationship between practice

and performance by revisiting the Axon data set. After segmenting the players’ games into

sessions (defined as a sequence of games with no longer than 2 hours between consecutive

games), they plotted aggregated performance trajectories for sessions of different length (rang-

ing from 4 to 15 games per session), observing that players scored abnormally high on the last

game of a session, regardless of session length. Consequently, the authors suggested that the

spacing related performance boost observed by Stafford and Dewar [31] could be attributed

to this score spike at the last game of a session. The accuracy of this claim is difficult to assess,

however, as the two groups of researchers had different quantifications of rest interval, and

Agarwal and colleagues did not report any statistics to support this particular observation.

Two studies investigated the effect of distributed practice on acquisition in first-person

shooters (FPS), a genre of action video game characterised by fast-paced weapon-based com-

bat in a three-dimensional environment. Importantly, these games are considerably more

complex than Axon (and many motor tasks employed in the study of distributed practice), see-

ing as they are played against human or AI opponents, load on bimanual dexterity, and involve

communication with other players on the same team. Huang and colleagues [34, 35] reported

on the effects of play frequency and breaks between play on performance in Halo Reach using

a longitudinal data set comprising performance of 3.2 million players over a 7 month period.

Players were subsampled by play frequency (operationalised as number of matches played per

week), and average performance of each group was plotted first against match, then against

time. This produced two perspectives. Players who played a relatively small number of matches

per week (4–8) had the fastest acquisition per match, while those who played more frequently

(>64 matches per week) had the fastest acquisition over time. Despite starting lower on initial

performance, these players had the highest performance by the end of the 7 month period.

These findings show some agreement with the literature on deliberate practice, and illustrate a

trade-off inherent to spacing—taking breaks between practice sessions results in greater learn-

ing per unit of time invested into practice, but massing of practice can result in the fastest

acquisition within a given time period. Additionally, the authors reported a reduction in skill

rating following a break from the game longer than a day. However, the magnitude of this

reduction grew smaller with an increase in gap size, and in most cases players regained their

pre-break skill level after several hours of play. In contrast to Agarwal and colleagues [33], the

Halo Reach data suggested that players terminate a session of play after a decline in perfor-

mance rating (associated with a loss) as opposed to after an atypically strong performance.

Stafford and colleagues [36] obtained similar results by observing the performance of play-

ers in Destiny, another FPS game. Performance was measured by a proprietary “Combat Rat-

ing”, a Bayesian skill rating system comparable to TrueSkill and Elo [37], systems

fundamentally based on a player’s win/loss ratio. The authors reported a small but significant

positive correlation between performance and distribution of practice (r—0.18, 99% CI [0.14,

0.22]), operationalised as the time range over which players recorded their first 25 days of play.

In contrast to results from Huang and colleagues [34, 35], players who spaced their practice

started slightly lower on initial ability (Pearson’s r = -0.09, 99% CI [-0.14, -0.05]). Additionally,

performance over the first 50 matches were plotted for players in the top and bottom quartiles
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of spacing, defined as the time gap between the 1st and 25th match. Players who distributed

their first 25 matches over a greater time range had higher performance in their subsequent 25

matches. However, this difference was not tested for statistical significance.

Johanson and colleagues [38] are the first group, to our knowledge, to have procured exper-

imental data on distributed practice in digital games. In an online experiment participants

played Super Hexagon, a minimal action game where players must rotate a triangle inside a

hexagon with the aim of avoiding incoming obstacles. Players control the triangle using left

and right arrow keys on a keyboard and performance is measured as time until failure. Partici-

pants played the game for 5 trials of duration 5 minutes, separated by a rest interval of varying

length (5 conditions, ranging from 3 seconds of rest to 1 day). The last trial was a retention

test, separated from the preceding trial by one day across all conditions. Analyses revealed a

small but significant overall effect of distributing practice on acquisition performance (η2 =

.127, p<.001) and a marginally significant effect on retention performance (η2 = .108,

p = 0.44). Additional pairwise comparisons showed that practice with no gap resulted in signif-

icantly inferior acquisition compared to most conditions. However, the effect on acquisition

did not differ significantly between groups with rest intervals, and pairwise differences in

retention were not significant at all.

Expanding on this work, Piller and colleagues [39] tested whether the effects of spaced prac-

tice are present in a game more complex than Super Hexagon, as well as to test differences in

acquisition arising from types of break taken. The researchers developed a 2D side-scrolling

platformer called SpeedRunners, in which players controlled an avatar with the ability to run,

jump, and swing with a grappling hook to run laps around a circular obstacle course. Perfor-

mance was measured as average lap time as well as total distance travelled. Participants played

20 minutes of SpeedRunners split into four 5-minute sessions. Participants in a spaced practice

group had breaks of 2 minutes in between sessions, while those in the continuous practice

group had 3-second breaks. Participants also returned for a 5-minute test of retention one

week after the 20-minute training block. Analyses did not support a positive overall affect of

spaced practice on acquisition, but did reveal a small effect of spaced practice on retention

performance (η2 = 0.093, p = 0.042 for average lap time; η2 = 0.087, p = 0.046 for distance

travelled).

1.3 Contributions of studies using behavioural telemetry from action

games

What do these studies of skill learning in digital games reveal about distributed practice? The

reported data are generally in line with previous experiments showing that the cramming of

practice into relatively short time frames tends to produce depressed performance following a

training period. More specifically, players who distributed their game play sessions over longer

time windows exhibited higher performance in subsequent game play sessions, and in some

cases during the “training” period itself. In sum, this body of work answers the question as to

whether or not practice spacing affects performance, and perhaps learning, in games. Unsur-

prisingly, it does. Unfortunately, comparing it to previous laboratory experiments of psycho-

motor tasks is difficult for several reasons.

For one, the majority of these studies were observational in nature, and operationalisations

of practice distribution consequently diverged from previous (experimental) approaches.

Where in earlier studies practice distribution referred to the amount of time elapsed between

individual practice trials or sessions, working definitions in the present studies included the

time gap between first and last recorded game instance [31] or game session [36], as well as the

number of game instances recorded within a week [34, 35]. Thus, the possible conflation of
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practice distribution with practice frequency is a concern. In some cases, data visualisation

lacked supporting inferential statistics, making the interpretation of effect significance and size

impossible [33–35]. Finally, interpreting players’ performance dynamics in commercial games

is less straightforward than in laboratory tasks, as performance in the former is typically

described by proprietary scoring systems. Taken together, while evincing that the effects of

practice distribution persist in complex psychomotor tasks such as action games, the difficul-

ties described above prohibit additional commentary, for instance on the conditions under

which the effects might be strongest.

Despite these drawbacks, the studies summarised above highlight several advantages associ-

ated with the interrogation of longitudinal, observational data sets. Traditional laboratory

experiments of skill acquisition are difficult: Although an observational approach sacrifices

experimental control, a sufficiently large data set permits the subsampling of “participants”

that meet multiple conditions of interest (e.g., practice at various levels of spacing), and enables

the study of skill acquisition over far longer periods than is ordinarily practical (e.g., months).

Such data also make it possible to compare the relative impacts of different factors on the

dependent variable of interest. For example, Stafford and Haasnoot [32] made an argument

for the relevance of distributed practice by demonstrating that the effect of spacing was compa-

rable to tripling the practice amount. In light of these features, the capacity to test theory-led

hypotheses using large observational data sets of game performance seems promising.

1.4 Aims of the present work

In the current study we extended this line of enquiry to a popular commercial action game,

with the aim of generalising work on distributed practice that has been conducted using artifi-

cial tasks created by researchers, to a non-artificial, ecologically valid environment with which

researchers have not interfered. We analysed a large body of observational performance data

to investigate the effects of distributed practice on performance, mirroring operationalisations

of practice distribution adopted in recent studies, and extending previous work by using

machine learning techniques to investigate how the timing of breaks influences performance

gains. In conducting iterative work of this nature, we tested the generalisability of the distrib-

uted practice effect in a non-laboratory context comprising millions of stakeholders (e.g.,

amateur to professional action game players) with a vested interested in fast and efficient

acquisition of skill.

2 Materials and methods

We used a Python 3.8 [40] environment to preprocess and analyse data, with additional pack-

ages for data munging, analysis, and visualisation including Pandas [41, 42], NumPy [43], and

SciPy [44]. We used the Pingouin [45] and statsmodels [46] packages for all statistical analyses.

All analysis code are publicly available at (https://github.com/ozvar/lol_practice_distribution),

together with additional documentation detailing all required software dependencies.

2.1 Task environment

Our study focuses on League of Legends, a subgenre of action game referred to as Multiplayer

Online Battle Arenas (MOBAs). League of Legends is one of the most popular competitive

online games (esports) in the world, having previously recorded a monthly player base of 67

million players, many of which participate annually in international tournaments [47]. Like

other MOBAs, League of Legends is a team-based invasion game that involves a high degree

of team coordination and fast-paced action as two teams of five seek to destroy the opposing

team’s headquarters entity, located on the opposite corner of a 2.5D game arena. Each player
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uses a keyboard and mouse to control a single game entity (a “champion”) selected at the start

of each game out of a pool of 150, each with a different set of synergistic combat abilities (e.g.,

boosting the attributes of friendly champions, immobilising opposing champions). Players

must use their abilities to eliminate opponent champions (reanimated after a scaling delay)

and computer-controlled entities, as well as to support teammates, in order to reach the win

condition of destroying the opposing team’s “Nexus”. Over the course of the game, each player

accumulates “gold” and “experience points” (XP) in proportion to their successful participa-

tion in combat with enemies and contest over intermediary map objectives. These resources

can be used to strategically modify the abilities and attributes of champions as the game pro-

gresses, in order to best adapt to the current game state. The combination of decision making

involved in champion selection, modification, and combat, together with the fine motor skills

necessary to effectively control champions, makes League of Legends a complex game that is

hard to master.

Previous studies have used League of Legends as an environment to study longitudinal

skill acquisition [48], model the relationship between engagement and individual perfor-

mance in team-based games [49], and investigate teamwork at different temporal resolutions

[50–52]. Moreover, as the participation of many players in esports is driven partly by a com-

mitment to skill mastery [53], we anticipate these results to be of interest to relevant stake-

holders such as players and professional esports teams, in addition to researchers interested

in skill acquisition.

2.2 Measures

Whenever players queue online for a match, Riot’s servers attempt to balance the teams to

ensure a fair game. This balancing is strongly weighted by each player’s Match Making Rating

(MMR), a relative skill score calculated using a method broadly similar to those used in Destiny
and Halo Reach. That is, a player’s rating updates following each match based on the relative

skill level of opponents, with wins resulting in an increase and losses a decrease [54]. While

MMR is kept hidden from players, it is used to predict a player’s ranking in different public

tiers and divisions. A player’s ranking is visible to other players and determines the skill

bracket within which they may play, as well as tournaments that they may qualify for. Thus,

while MMR is reflective of skill, individual changes in MMR from match to match may not

directly reflect on the performance of any individual player, as MMR is primarily governed by

the ratio of wins to losses [54, 55], and the likelihood of a win is dependent on more than the

contribution of any single player (e.g., performance of teammates and opponents). For this

reason, we concentrated our analyses on post-match statistics that describe the performance of

an individual at each match. These included the the amount of gold per minute (GPM) earned

in a match, and the ratio of kills and assists scored against opposing champions to the number

of deaths experienced by the player’s own champion (KDA), calculated using the formula

(kills + assists) / max(1, deaths). While metrics like this can be impacted by the role that their

chosen champion may fill [56] (e.g., support roles typically earn less gold than the “carry”

role), we judged these to be the best available to work with, and had no expectation of system-

atic bias as players play a variety of roles across their trajectory. As League of Legends devel-

oper Riot Games keeps the MMR algorithm confidential, we normalised all values of MMR

across the data and analyses reported here.

2.3 Data and preprocessing

League of Legends developers Riot Games digitally log all match events and summary statistics,

and make a subset of all global game logs available to access through a public Application
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Programming Interface (API). Presently, we analyse a large data set of game logs describing

the longitudinal performance trajectories of League of Legends players across matches. Our

data closely resemble that which is available through the API, but were provided to us by Riot

Games and therefore differ in that they additionally contain a record of player MMR at each

match, which is ordinarily not publicly available. The data comprise all ranked matches played

by a random sample of 482,415 new League of Legends accounts over the course of a competi-

tive season, dating from 21 January 2016 to November 2016. All analyses were in compliance

with the terms and conditions for data usage made clear to us by Riot Games. All matches cor-

respond to the default “Solo/Duo Queue” ranked mode of play, with five players on each team.

Each row in the data lists a single match for a single given player, containing a unique player

identification number, unix timestamp, and various performance and outcome variables (see

Table 1 for an overview of the raw data). Importantly, these were newly created accounts that

had not previously been registered with any competitive League of Legends play prior to the

start of this season. New player accounts are initialised at the same MMR value when they first

enter ranked play, and therefore nominally appear to be of equal skill at the start of their trajec-

tories. However, as the data set lacks records of unranked matches that may have been played

in order to unlock the ranked game mode, we are limited in our knowledge of differences aris-

ing from prior experience. Additionally, as all account IDs are anonymised, we cannot associ-

ate each ID with a single unique player, and acknowledge hereby another source of potential

bias, although we do not expect it to be systematic.

We took several steps to ensure the quality of the data prior to analysis. These preprocessing

steps were focused on ensuring data quality for an initial window of 100 matches, as visualisa-

tion indicated that this was the period in which most players appeared to reach asymptotic per-

formance. We first dropped all players who had not played a minimum of 100 games over the

course of the season, and any players with missing values in any of their first 100 match rec-

ords. We dropped any players who had a non-default initial MMR value, as well as players

with records in multiple servers, as these observations violate our assumption of equal starting

Table 1. Raw data columns available in a single row of the data set analysed in this study.

Column Description

Account ID Unique anonymised numeric identifier of player account

Platform ID Identifier of server the match was played on

Game ID Unique numeric identifier of match

Neutral Creep Number of neutral AI entities killed

Enemy Creep Number of opponent AI entities killed

Win Boolean indicator of match result

Timestamp Unix timestamp indicating when the match was logged

Date Date on which the match was played

Hour Hour at which the match was played

Gold Earned Total amount of Gold earned by the player

Damage Dealt Total damage dealt by the player to opponents

Time Dead Total time in seconds the player champion spent dead

Time Played Total time in seconds played in the match

Kills Total kills scored on opponent champions

Deaths Total number of times the player champion was killed

Assists Total number of times the player assisted in scoring a kill

Rating Normalised MMR of the player before the match

Position Role of the player champion

https://doi.org/10.1371/journal.pone.0275843.t001
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experience. These inconsistencies can occur when a player migrates from one server to

another, and would have confounded our assumption that all accounts in the sample started

with similar experience. We also dropped any players with matches that lasted less than 900

seconds within the first 100 matches we sampled, as this is indicative of a match which has

been abandoned by one or more players, and thus does not reflect a match experience that is

on equal terms with all others in the sample. Finally, we removed any players with games in

which they were likely completely inactive (i.e., matches in which they scored 0 Kills, Assists,

Deaths, and Creep Kills). In addition to dropping players that did not meet analysis require-

ments, we performed several linear combinations of columns from the raw data to generate

additional variables of interest: KDA, GPM, and the time gap between the end of one match

and the start of the next. We retained a total of 162,417 players following preprocessing and a

corresponding 16,241,700 rows worth of data (at 100 matches per player).

3 Results

To assess general changes in performance as a function of experience, we first plotted the tra-

jectory of GPM and KDA against matches played for all players in the sample (Fig 1). The tra-

jectories of average GPM and KDA per match displayed a sharp initial climb with decelerating

gains. This is in line with previous studies that have found good fit between the power or expo-

nential function and averaged performance, demonstrating the diminishing returns of sus-

tained experience on performance across a range of domains [57–59]. We also plotted the

averaged MMR trajectory of all players in the sample which, in contrast, sharply decreased

before showing a gradual rise towards later matches (S1 Fig). We attributed this initial rating

drop to our sample being composed exclusively of new accounts. Specifically, we expected new

players to suffer more losses against the relatively more experienced majority (unobserved in

the sample) towards the start of the season, where the matchmaking algorithm has begun to

calibrate for fair matches. This intuition is supported by the trajectory of loss percentage,

which descends to 50% as the average rating of the sample stabilises (plotted together with

MMR).

We assessed the effects of spacing on acquisition performance first by subsampling and

comparing groups of players with different patterns of spacing. We concentrated these

Fig 1. Trajectories of mean GPM (left panel), and KDA (right panel) of all players against match. Shaded regions indicate 95% confidence intervals.

https://doi.org/10.1371/journal.pone.0275843.g001
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analyses on the first 100 matches, as player performance appeared to asymptote towards the

end of this window, and we were predominantly interested in acquisition effects. Similar to

Stafford and colleagues [36] spacing was operationalised as the gap in days between the 1st and

95th game. After visualising the frequency distribution of time in days elapsed between the

first and 95 match for each player (S2 Fig), we subsampled three groups of players that were

sufficiently discrete in terms of their break schedules, and that were adequately sized for statis-

tical analysis: players that took between 136–150 days, 76–90 days, or up to 15 days to play

their first 95 matches. Visualising the impact of gap size on mean performance over the final

five (96th to 100th) matches, we initially observed that while players who spaced their first 95

matches over a greater range had higher acquisition, players who massed their matches in a

shorter range initialised at much higher initial performance (close to the maximum observed

performance). Due to the negative correlation between this time range and initial GPM (Pear-

son’s r = -0.295, 95% CI [-0.30, -0.29]), we suspected our spacing measure to be confounded

by initial performance, potentially explained by a combination of play intensity and other fac-

tors related to ability.

In order to control for initial levels of absolute performance, we subsampled players who

scored a mean GPM of between 315 and 385 (an interval centered on the median of mean ini-

tial GPM; 350 ± 25) over their first five matches, resulting in a subsample of size n = 52,440.

Analogously, we replotted KDA trajectories after subsampling players with a mean KDA of

between 1.64 and 2.24 (median initial KDA 1.94 ± 0.19), resulting in a subsample of size

n = 17125. Fig 2 shows the mean GPM and KDA trajectories of players who took between

136–150 days, 76–90 days, or up to 15 days respectively to play their first 95 rated matches.

Players who clustered their matches the most exhibited a faster initial climb in initial, but

lower performance overall by the end of their trajectory. Although we produced an analogous

plot for mean trajecotires of MMR (S3 Fig), we neglected to conduct further (statistical) analy-

ses of this metric due to the aforementioned opaqueness of the MMR algorithm and the ubiq-

uitous downward trend in MMR across our entire sample, which we believe lent itself poorly

to a study of learning.

Fig 2. Trajectories of mean GPM (left panel) and KDA (right panel) against match for players with different patterns of match spacing. Data in

the figure are a subsample of players who initiate at a similar range of GPM and KDA (approximately surrounding the original sample median). Shaded

regions indicate 95% confidence intervals.

https://doi.org/10.1371/journal.pone.0275843.g002
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Players with the largest time range between their 1st and 95th match achieved an average

GPM in their final five matches that was 6.91 points higher (95% CI [3.74, 10.07], n = 1236,

M = 399.71, SD = 49.65) compared to those with the smallest time range (i.e., 1–15 days;

n = 2790, M = 392.81, SD = 46.18). This was statistically significant following a t-test at t(4024)

= 4.28, p<0.001, albeit for a small effect size (Cohen’s d = 0.146). For the subsample matched

on initial-KDA, players in the former (n = 373, M = 3.76, SD = 2.18) achieved a KDA 0.49

points higher (95% CI [0.28, 0.71]) points higher that those in the latter spacing group

(n = 1159, M = 3.27, SD = 1.74) This difference was also statistically significant [t(1530) = 4.45,

p<0.001, d = 0.265].

By binning players using our spacing measure, we produced a snapshot of the effects of

practice distribution on performance. To produce a fuller account of this relationship using

the entire range of our practice distribution variable, we linearly regressed spacing on both

GPM and KDA (Fig 3). We report regression slopes and supporting statistics for both variables

in Table 2. We report White’s heteroscedasticity-consistent standard errors [60] due to non-

constant variance in our residuals.

3.1 Time gap clustering

One issue with operationalising practice distribution as the time range between two matches,

is that different schedules of practice may coexist within identical time ranges. For instance, a

player with a consistent schedule of 1–2 matches per day could be grouped with a player who

played 10 matches per day followed by a handful of matches after a 10 week break. To explore

whether our spacing groups reflected the differences in practice distribution that we were

interested in, as opposed to some other systematic and unanticipated differences in play

Fig 3. Scatter plots of GPM and KDA against time range in days between first and 95th game respectively, with line of best fit. Axis plots show

distributions of respective axis variables.

https://doi.org/10.1371/journal.pone.0275843.g003

Table 2. Linear regressions of time delta in days between 1st and 95th match on average GPM and KDA between the 96th and 100th match.

B Std. Err. β T p R2 95% CI

GPM 0.0849 0.005 0.0727 16.045 <0.001 0.005 [0.075, 0.095]

KDA 0.0025 <0.001 0.0568 7.396 <0.001 0.003 [0.002, 0.003]

https://doi.org/10.1371/journal.pone.0275843.t002
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schedules, we conducted an alternative analysis to the rule-based slicing performed above by

clustering our original sample of 162,417 players by their time series of time gaps between

matches. First, we leveraged the Uniform Manifold Approximation and Projection (UMAP)

algorithm [61] to perform a visual inspection of how different players distributed their matches

over time. The UMAP algorithm is a non-linear dimensionality reduction technique based on

manifold learning. Given a high dimensional data-set, UMAP first infers its topological struc-

ture and then using stochastic gradient descent attempts to structurally reproduce it in a lower

dimensional space (two or three for visualization purposes). In our case, the original data-set

was represented by an N × T matrix of between matches time gaps, with N = 162, 417 being

the number of considered players and T = 95 the number of matches in the observation period.

We chose this range to align with the previous step of our analysis, allowing a window of five

final matches with which to analyse the effects of different spacing patterns on final perfor-

mance. The transformation performed by UMAP generated an N × D matrix with D = 2 being

the number of target dimensions. In this 2D representation, players with a similar pattern of

inter-matches temporal gaps were represented closer in space while players with a dissimilar

spacing profile were represented as far apart. The topological structure of the original data-set

was inferred by computing the euclidean distance in a local neighborhood of 1000 points,

while the dimensionality reduction was achieved by running the optimization part of the algo-

rithm for 1000 iterations. The remaining parameters were left at their default value as provided

by the python library used for our analysis (i.e., UMAP-learn [61]). The generated 2D repre-

sentation can be observed in Fig 4.

As we can observe form Fig 4, a number of naturally occurring groups appear to emerge

(i.e., the areas where the density of dots increases), suggesting the existence of different profiles

of play distribution. In order to formally evaluate whether differences in naturally occurring

spacing patterns truly exist, we decided to run a clustering analysis, adopting three different

approaches. This was done to test the consistency of the individuated profiles arising from

Fig 4. The left panel shows the two-dimensional projection of the observed 95 inter-match gaps in hours as generated by UMAP for the entire

sample. The y and x axes represent the two dimensions individuated by UMAP. As opposed to Principal Component Analysis their associated values

should be interpreted as coordinates on a plane rather than indicators of the magnitude of the two components. Each dot represents the history of inter-

matches gaps for a single player while distance between dots indicates the degree of similarity between different patterns of spacing. The right panel

shows the average evolution of inter-match gap in hours for the entire sample. The y axis indicates the time in hours elapsed since the previous

match while the x axis indicates the order of the match. The solid line indicates the mean value while the shaded region shows the 95% confidence

interval. The dotted red line separates the observation period (i.e., the first 95 matches) from the evaluation period (i.e., the last 5 matches).

https://doi.org/10.1371/journal.pone.0275843.g004
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clustering. Due to space constraints we will only describe and report the results derived from a

combination of recurrent autoencoder and mini-batch K-means. Details and results for the

remaining two approaches can be found in S1 Appendix, together with S5–S9 Figs.

Recurrent autoencoder and K-means. Autoencoders are a specific type of artificial neural

network (ANN), which given an input x attempt to produce a copy of the same [62]. This is

done by simultaneously learning the parameters of a function h = f(x) (called encoder), map-

ping the original input to a latent representation h, and of a second function x̂ ¼ gðhÞ (called

decoder), generating a copy x̂ from the same latent representation [62]. Learning occurs

through stochastic gradient descent, minimizing a reconstruction loss that measures the mis-

match between x and x̂. Once the training process is terminated the latent representation h
can be extracted, and should carry meaningful properties of the original input. In this sense,

the operations performed by the encoder function can be seen as a form of automatic feature

extraction.

In order to force the autoencoder to produce an h with interesting characteristics, a series

of constraints are usually applied during the learning process. In our case we adopted a combi-

nation of denoising and undercompleteness strategies. The first corrupts the input (usually

through random gaussian noise) forcing the autoencoder to learn a representation capable of

undoing the noise, while the second requires the dimensionality of h to be much smaller than

that of the original input [62]. Since we were dealing with time-series data, we parameterized

the encoder and decoder functions using two recurrent neural networks (RNN), a specific type

of ANN able to capture temporal dynamics [62]. The first RNN tasked to generated h, was

composed of two Long Short-Term Memory (LSTM) [63] layers respectively with 60 and 30

hidden units. The second RNN, used to reconstruct the corrupted input was a single LSTM

layer with 60 hidden units. The autoencoder minimized the Mean Absolute Error (MAE)

between the reconstructed and original inputs and used the Adaptive Moment Estimation

(Adam) optimizer [64] for gradient descent. Training was carried out by passing random

batches of 512 inputs and monitoring the reduction in MAE on a 20% held-out subset of the

original data. Training was terminated once the reconstruction loss stopped decreasing in the

held-out subset by a minimum of δ = 0.0001 for more than 15 consecutive epochs. At this

point, we proceeded to generate features from the original input passing a N × T × 1 tensor of

between matches gaps through all the operations carried out by the encoder function. This

generated an N × h matrix, with h = 30 being the dimensionality of the last layer of the

encoder, which other than offering a more compact representation of the original input

(making it easier to perform a cluster analysis) should have also distilled its most salient

characteristics.

Finally, in order to obtain different spacing profiles we applied Mini Batch K-Means (a

more scalable version of K-Means) [65] to the representation generated by the encoder. We

selected the number of centroids k by generating an elbow plot after running the algorithm for

a range of 2 to 10 k, with 2000 random initializations for a maximum of 3000 iterations each,

passing the inputs in random batches of 512 elements. Following the methodology proposed

by Satopa et al. [66], the optimal k = 4 was found by individuating the point of maximum cur-

vature in the aforementioned elbow plot (S4 Fig). In order to derive interpretable profiles from

the individuated cluster, we averaged the time series of between-match time gaps (along with

GPM and KDA) over the labels provided by the Mini Batch K-Means. The autoencoder was

realized using tensorflow’s high level API keras [67, 68], while the Mini Batch K-Means imple-

mentation we employed was the one provided by the library scikit-learn [69]. Results of this

clustering analysis can be seen in Figs 5 and 6.

Looking at Fig 5 we can see how the location and extension of the clusters on the 2D reduc-

tion provided by UMAP tells us when, for how long and how intensely the players in those
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clusters spaced their matches on average. Interestingly, the areas of high density in this repre-

sentation seem to identify groups of players taking a single long break at specific points during

our observation period. With the exception of a single period characterised by longer breaks

(more hours) between matches, players appear to maintain a consistent play schedule. Follow-

ing the representation in the right panel of Fig 5 we can see that clusters 1 and 3 represent the

Fig 5. The left panel shows the two-dimensional projection of the observed 95 inter-match gaps in hours as generated by UMAP for each spacing

cluster across the entire sample. The y and x axes represent the two dimensions individuated by UMAP. As opposed to Principal Component Analysis

their associated values should be interpreted as coordinates on a plane rather than indicators of the magnitude of the two components. Each dot

represents the history of inter-match gaps in hours for a single player while distance between dots indicates the degree of similarity between different

patterns of spacing. The right panel shows the average evolution of inter-match gap in hours for players in each spacing cluster. The y axis indicates

the time in hours elapsed since the previous match while the x axis indicates the order of the match. The solid line indicates the mean value while the

shaded region shows the 95% confidence interval. The dotted red line separates the observation period (i.e., the first 95 matches) from the evaluation

period (i.e., the last 5 matches).

https://doi.org/10.1371/journal.pone.0275843.g005

Fig 6. Trajectories of mean GPM (left panel) and KDA (right panel) against match for players in our 4 autoencoder clusters. Data in the figure are

a subsample of players who intiate at a similar range of GPM and KDA (approximately surrounding the original sample median). Shaded regions

indicate 95% confidence intervals.

https://doi.org/10.1371/journal.pone.0275843.g006
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extremes of a continuum going from a relatively early versus late rest period. Clusters also dif-

fered on the intensity of this rest period, with spacing cluster 3 exhibiting the longest breaks

during the shortest rest period, followed by the most consistent streak of play. These results,

albeit with some variation, appear to be consistent across all the clustering methods (see S5–S8

Figs).

Tabulating the joint frequencies of players across each of the clusters and original categories

(Table 3) showed that players in a given spacing category do not display uniform membership

to a single spacing cluster, supporting our intuition that operationalising practice distribution

as a time range may mask differences in underlying play schedules.

Fig 6 displays the typical averaged trajectories of GPM and KDA for players in each cluster.

Compared to the analysis of groups sliced by time range, there were no large differences

between spacing clusters in final GPM or KDA. We conducted one-way ANOVAs to test these

differences in mean final performance (average GPM and KDA over the last 5 matches). This

was significant for both GPM [F(3, 162413) = 517.93, p<0.001] and KDA, [F(3, 162413) =

439.87, p<0.001] but for negligible effect sizes (η2 <0.01). Additionally, we conducted pair-

wise comparisons (Holm-Bonferroni corrected t-tests) in GPM and KDA between each pair of

clusters. We identified significant differences in GPM between clusters 1 and 2 [t(31839) =

5.45, p<0.001, d = 0.061], clusters 1 and 3 [t(24758) = 3.65, p<0.001, d = 0.051], as well as

clusters 3 and 4 [t(30911) = 4.23, p<0.001, d = 0.049], but only negligible effect sizes. Clusters

1 and 3 were also significantly difference in mean final KDA [t(8195) = 3.05, p<0.001,

d = 0.075], but again with a negligible effect size.

4 Discussion

Analysing a large data set drawn from League of Legends—one of the world’s most popular

competitive online games—we extended recent work on the distributed practice effect [31, 32,

34–36] in an ecologically valid and complex perceptual-motor skill environment. Players in

our data set showed monotonic gains in measures of absolute performance (GPM, KDA),

which tapered off after approximately 100 matches. After matching players on initial ability

and subsampling groups defined by the amount of time elapsed between their 1st and 95th

game, we found that players who spaced practice the most showed initially depressed gains but

superior final performance, albeit for a small effect size, and only for a large time range of spac-

ing. These effect sizes were in line with those previously reported in action video games [31,

36, 38]. In a second analysis, we applied clustering techniques to identify and analyse differ-

ences in the timing of practice spacing in our data set, and tested whether the “when” of prac-

tice distribution has an effect on performance. Our analyses indicated that, for this task

environment, only the total amount of rest is what matters, and not the timing of these rest

periods. Practically speaking, our results suggest that by their 100th match, a player who maxi-

mised spacing would be earning on average 228 gold more and scoring a KDA of 0.49 higher

per match than a player who crammed their matches, given the typical match lasted roughly

Table 3. Joint frequencies of players in spacing group as defined by k-means cluster (rows) versus time in days

delta between 1st and 95th match (columns).

1–15 Days 76–90 Days 136–150 Days

K-means cluster 1 7701 3477 914

K-means cluster 2 1644 4120 1102

K-means cluster 3 583 2093 523

K-means cluster 4 2014 3430 1006

https://doi.org/10.1371/journal.pone.0275843.t003
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33 minutes in our sample. Although highly significant, our effects are limited by large spread

around our group means. This observation echoes concerns raised in recent research, namely,

that analyses of aggregated data sacrifice the ability to accurately describe dynamics of the indi-

vidual [18].

For the sake of completeness, we also reported players’ trajectories of MMR, a relative mea-

sure of performance calculated by a proprietary algorithm that is heavily weighted by match

outcome (i.e., win versus loss; [37, 54, 55]). A full description of the MMR algorithm is kept

hidden from the public, making MMR significantly more opaque than GPM or KDA as a mea-

sure of performance. Moreover, although MMR is partly dependent on match outcome, the

probability of winning a match is dependent on many factors (including the behaviour of

teammates and opponents), and is itself the subject of many efforts in prediction. For these

reasons we neglected to conduct further statistical analyses of MMR, and instead concentrated

our efforts on GPM and KDA, which we believe to provide a clearer perspective on individual

performance from match to match.

The size of our effects (Cohen’s d = 0.146 for GPM; 0.265 for KDA) are in keeping with

other studies of digital games that reported on the distributed practice effect. For example,

Stafford and colleagues reported a small effect size of distributed practice on subsequent per-

formance in Axon (Cohen’s d = 0.11; [31]), a small correlation of distributed practice on the

slope of performance in Destiny (Pearson’s r = 0.18; [36]), while Johanson and colleagues [38]

reported a small effect of distributed practice on acquisition (η2 = .127, p<.001) as well as a

marginally significant effect on retention (η2 = .108, p = 0.44). Importantly, it is also consistent

with early meta-analytic work that observed smaller effect sizes in studies involving motor

tasks of lower overall complexity [25]. Despite efforts to mimic related work, we are cautious

to make direct comparisons between the effects reported here and similar studies due to

differences in elements of study design, such as the length of our training window and our

operationalisation of practice distribution, as well as the exploratory nature of our design. An

explanation as to why practice distribution is less beneficial for more complex tasks presum-

ably depends on a fuller understanding of the mechanisms underlying memory consolidation

and the effects of extended inactivity on subsequent recall. Ultimately this is a question for

future experimental work that investigates the effects of distributed practice while directly

manipulating levels of task complexity.

Our initial results appeared to be confounded by pre-existing differences in gameplay hab-

its. Similar to Stafford and colleagues [36], the distribution of practice was significantly related

to the intercept of performance in our sample, but to a more extreme degree. Specifically, play-

ers who clustered their matches in relatively shorter time windows initiated at much higher

levels of absolute performance. Plausibly, we were observing in our “groupers” a category of

player characterised by intense, frequent play. Such players may be more motivated to engage

with the game, and would potentially have accrued a commensurately higher amount of expe-

rience during the early initiation period of the game where only unranked matches can be

played. We attempted to control for this confound by running our analysis on a subsample of

players matched on initial performance, but acknowledge that lingering effects of this con-

found may nonetheless impact our reported statistics.

Similarly, as our sample consisted only of ranked matches, we were agnostic to any experi-

ence that players may have acquired in unranked matches that were played between the ranked

matches recorded in our data set. A related concern is that players we found to have spaced their

matches the most may have played more matches generally than players in our massed practice

group, having had more opportunities to play unranked matches during breaks from the ranked

game mode. However, we contend that our observations are inconsistent with this hypothesis,

as we would then have expected the players that spaced their matches the most to have a more
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accelerated learning trajectory than what is observed in Fig 2, reflecting the additional practice

hours that they accumulated. Nevertheless, we suggest it is important for related future work to

eliminate any such ambiguity by ensuring that the entire history of player experience is visible

when curating the data. In this regard, it may be also be worthwhile to record players’ past expe-

rience with other digital games. In their analysis of gameplay patterns in Halo Reach, Huang and

colleagues [34] reported separate rating trajectories for players that had previous experience in

various related games, such as previous iterations of the Halo series, or other FPS games. This

showed that differences in prior experience resulted in differences in current rating. Thus, we

suggest that future work could deliver more precise results by capturing pre-existing differences

in game experience, for instance through an additional survey component.

Previous work that has leveraged game telemetry data to study distributed practice in

games has made use of data slicing techniques to isolate play schedules of interest [31–33, 36].

As an extension to this approach, we used machine learning to cluster players by their time

series of gap between matches. In doing so we aimed to reveal naturally occurring play sched-

ules in our data set and investigate whether these underlying patterns have any bearing on

effects arising from our data slicing procedures. Our results showed that players in the same

spacing group, defined by the time delta between two matches, may diverge considerably in

their underlying play schedules, as identified by our time series clustering. Specifically, players

across different spacing clusters differed in the timing of an extended “rest” period, character-

ised by less frequent gameplay. This suggests that operationalising practice distribution as a

time delta between two matches may not be as straightforward an analogue to classical opera-

tionalisations as one would have hoped. Nonetheless, players across these spacing clusters did

not differ significantly in their final performance, suggesting that it is indeed the amount of

time spent on breaks that impacts acquisition, but not necessarily the timing of these breaks.

By identifying and attempting to control for confounds in our data, we highlight both a

weakness and a corresponding strength of telemetry-based big data analysis. The use of obser-

vational data in behavioural science sacrifices total control of participant behaviour. In our

case, the absence of experimental control restricted our ability to compare groups of players

with homogenous time gaps between each of their play sessions, as has been done in laboratory

studies of distributed practice [23]. Our solution, similar to other studies that have used game

telemetry [31, 32, 36] was to use a proxy for intersession time interval, namely the time gap

between the first and last match. Although time between first and last match is likely related to

time between individual trials, we acknowledge that use of this alternative operationalisation

limits our ability to generalise from laboratory work to a non-artificial environment.

An additional consequence of using observational data is susceptibility to the effects of both

known and unknown nuisance variables that may systematically skew results in unpredictable

ways. Presently we attempted to filter out potential confounds, such as players that migrated

server (accumulating additional “hidden” experience), or players whose records contained

matches with abnormal participation (i.e., complete inactivity). In doing so we dropped approx-

imately two thirds of our data, but were nonetheless left with a sample size that offered ample

statistical power. However, despite our attempts to isolate our variables of interest, we remain

cognizant of the potential for additional confounding variables. These may include the presence

of multiple players using the same League of Legends account, or the existence of highly experi-

enced players who create new accounts to enjoy lower levels of ranked play (“smurfs”).

4.1 Conclusion

Research on motor learning has demonstrated that taking breaks between practice sessions, as

opposed to massing them in relatively short time windows, benefits ultimate performance [24,
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25]. By analysing an observational, longitudinal data set describing player performance in a

massive, commercially successful video game, we showed that the distributed practice effect is

relevant in an ecologically valid context comprising stakeholders with a vested interested in

improving their skills. Although data sets such as ours afford strong statistical power and the

ability to filter through observations that meet desired experimental conditions, they are also

complicated by noise and potential confounds. As a solution, we propose that researchers seek-

ing to use telemetry data adopt a hybrid approach, collecting demographic information on

players before tracking their play records through game APIs. In doing so, interested research-

ers may control for variables related to initial performance, such as age or cognitive ability

[70], and account for sources of data pollution such as players generating data on multiple

accounts.
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